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The number of publications performing genome-wide association studies (GWAS)

has increased dramatically. Penalized regression approaches have been developed to

overcome the challenges caused by the high dimensional data, but these methods

are relatively new in the GWAS field. In this study we have compared the statistical

performance of two methods (the least absolute shrinkage and selection operator—lasso

and the elastic net) on two simulated data sets and one real data set from a 50 K

genome-wide single nucleotide polymorphism (SNP) panel of 5570 Fleckvieh bulls. The

first simulated data set displays moderate to high linkage disequilibrium between SNPs,

whereas the second simulated data set from the QTLMAS 2010 workshop is biologically

more complex. We used cross-validation to find the optimal value of regularization

parameter λ with both minimum MSE and minimum MSE + 1SE of minimum MSE. The

optimal λ values were used for variable selection. Based on the first simulated data, we

found that the minMSE in general picked up too many SNPs. At minMSE + 1SE, the

lasso didn’t acquire any false positives, but selected too few correct SNPs. The elastic net

provided the best compromise between few false positives and many correct selections

when the penalty weight α was around 0.1. However, in our simulation setting, this α

value didn’t result in the lowest minMSE + 1SE. The number of selected SNPs from

the QTLMAS 2010 data was after correction for population structure 82 and 161 for the

lasso and the elastic net, respectively. In the Fleckvieh data set after population structure

correction lasso and the elastic net identified from 1291 to 1966 important SNPs for milk

fat content, with major peaks on chromosomes 5, 14, 15, and 20. Hence, we can conclude

that it is important to analyze GWAS data with both the lasso and the elastic net and an

alternative tuning criterion to minimum MSE is needed for variable selection.

Keywords: lasso, elastic net, simulation, GWAS, population structure, cattle

INTRODUCTION

The genome-wide association study (GWAS) is a well-established
technique for identifying genetic variants of interest, not only
for many common complex human diseases but also for traits
of interest in animal and plant genetics (McCarthy et al., 2008;
Goddard and Hayes, 2009; Heffner et al., 2009). While the GWAS
approach is extensively used and generally celebrated, there are
still several unresolved statistical challenges in studying the joint
effects of that huge number of genetic and environmental vari-
ables (Cantor et al., 2010; Moore et al., 2010). First, in a typical
GWAS, genotypes from some thousands to several millions sin-
gle nucleotide polymorphism (SNP) markers are determined in
subjects in the order of a few thousands, leading to the small
n, large p problem (i.e., many more predictor variables than
response variables). It is common in GWAS to perform single SNP
regression which leads to very high rates of Type I error (false pos-
itives). The standard procedure is then to adjust the significance
threshold with some kind of multiple comparison criteria, for
example Bonferroni or False Discovery Rate (FDR) corrections.

Unfortunately, these corrections will unavoidably introduce Type
II errors (false negatives) and true SNP-associations of moderate
and small effects will be erroneously discarded. Therefore, one
of the most important issues in contemporary statistical genet-
ics is to find methods that provide a satisfactory balance between
false positives and false negatives in large-scale GWAS (Rice et al.,
2008). Secondly, when a large number of SNPs are genotyped on
a genome-wide scale, correlated variables (linkage disequilibrium
between SNPs) occur both because of biological factors (e.g., pop-
ulation history) and because of high dimensionality (Fan and Lv,
2010).

There are several applications of regularized regression meth-
ods to GWAS (reviewed in Szymczak et al., 2009; Dasgupta
et al., 2011) and genomic selection, which is closely related to
GWAS but concerned with prediction of genomic breeding val-
ues (reviewed in de Los Campos et al., 2013). While in genomic
selection the focus is on predicting future performance, the asso-
ciation studies are designed to find genetic makers connected
to the trait of interest. Penalized regression methods have been
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previously used for variable selection in high dimensional studies
focused on human genetic data (e.g., Sung et al., 2009; Wu et al.,
2009; Cho et al., 2010). Kooperberg et al. (2010) compared the
performance of elastic net and lasso using uncorrelated predic-
tor variables. Ayers and Cordell (2010) examined the influence of
penalties in several penalized regression models.

To overcome the challenges mentioned above, penalized
regression approaches, also called shrinkage or regularization
methods, have been developed. Although shrinking some of the
regression coefficients toward zero may result in biased estimates,
these regression coefficient estimates will have smaller variance.
This can result in enhanced prediction accuracy because of a
smaller mean squared error (Hastie et al., 2009). Regression coef-
ficients are shrunk by imposing a penalty on their size, which is
done by adding a penalty function to the least-squares model.
Moreover, some of these procedures (e.g., the lasso) enable vari-
able selection such that only the important predictor variables
stay in the model (Szymczak et al., 2009).

Tibshirani (1996) proposed the lasso estimator which esti-
mates the regression coefficients through an ℓ1-norm penalized
least-squares criterion. This is equivalent to minimizing the sums
of squares of residuals plus an ℓ1 penalty on the regression coef-
ficients. While demonstrating promising performance for many
problems, the lasso estimator does have some shortcomings (Zou
and Hastie, 2005). Firstly, the lasso tends to have problems when
predictor variables are highly correlated. In the extreme case of
k identical predictor variables, the lasso breaks down. Secondly,
when there is some group or cluster structure among the predic-
tor variables, the lasso estimator usually selects only one predictor
from a group while ignoring others. Thirdly, the lasso method
cannot select more predictor variables than the sample size.
This could potentially be a problem in various genomic studies
that involve many more, often highly correlated, predictor vari-
ables than response variables. From a Bayesian point of view,
the lasso penalty corresponds to a Laplace (double exponen-
tial) prior over the regression coefficients, which expects many
coefficients to be close to zero, and a small subset to be larger
and non-zero (Kyung et al., 2010). However, the Bayesian lasso
doesn’t set any variables to exactly zero and therefore needs
to be combined with some other form of variable selection
(Hans, 2010).

On the other hand, ridge regression (Hoerl and Kennard,
1970) estimates the regression coefficients through an ℓ2-norm
penalized least-squares criterion. It is well-known that ridge
regression shrinks the coefficients of correlated predictor vari-
ables toward each other, allowing them to borrow strength from
each other (Friedman et al., 2010). However, this behavior is not
without its problems. For example, in the case of the k identical
predictor variables mentioned above, they each get identical coef-
ficients with 1/k the size that any single one would get if fit alone.
The ridge penalty is ideal if there are many predictor variables,
and all have non-zero coefficients (from a Bayesian perspective
these are drawn from a Gaussian prior distribution). One impor-
tant difference between the lasso and ridge regression occurs for
the predictor variables with the highest regression coefficients.
Whereas the ℓ2 penalty pushes the regression coefficients toward
zero with a force proportional to the value of the coefficient, the ℓ1

penalty exerts the same force on all non-zero coefficients. Hence
for the variables that are most valuable (i.e., that clearly should be
in the model and where shrinkage toward zero is less desirable)
an ℓ1 penalty shrinks less (Hesterberg et al., 2008). The extent of
shrinkage in ridge regression is also dependent on allele frequency
and sample size (Gianola, 2013).

Due to the drawbacks of using the lasso and ridge regres-
sion on their own, Zou and Hastie (2005) proposed the elastic
net penalty which is based on a combined penalty of lasso and
ridge regression penalties. The penalty parameter α determines
how much weight should be given to either the lasso or ridge
regression. The elastic net with α set to 0 is equivalent to ridge
regression. The elastic net with α close to 1 performs much like
the lasso, but removes any degeneracies and odd behavior caused
by high correlations. Studies have shown that analysis with the
elastic net can result in lower mean squared errors than the
lasso and ridge regression when predictor variables are correlated
(Bühlmann and van de Geer, 2011). Moreover, the elastic net pro-
duces a higher number of correctly identified influential variables
than the lasso, and has much lower false positive rate than ridge
regression (Tutz and Ulbricht, 2009).

The purpose of this study is to compare the statistical proper-
ties of the lasso and the elastic net in a typical GWA framework.
Ridge regression was not tested because it selects all variables. The
analyses are performed with the R package glmnet which uses the
fast cyclical coordinate descent (CCD) algorithm (Friedman et al.,
2010). Tests are performed on simulated SNP data that exhibit
LD, on simulated pedigree data from the QTLMAS 2010 work-
shop (Szydłowski and Paczyñska, 2011) as well as on real data
from a 50 K genome-wide SNP panel of 5570 individuals in a
dairy cattle study on fat content in milk.

MATERIALS AND METHODS

METHODS

Consider a standard multiple linear regression model

y = 1β0 + Xβ + e (1)

where y is a vector of length n including the response variable,
X =

(
xi1, . . . , xip

)
is a n × p matrix holding the predictor vari-

ables, β0 is the intercept, β =
(
β1, . . . , βp

)
is a column vector that

contains the regression coefficients and e is a vector of error terms
assuming normal distribution e ∼ N

(
0, σ2

e

)
. For models where

n > p, the values of the unknown parameters β0 and β can be
uniquely estimated by minimizing the residual sum of squares

β̂0, β̂ = argmin
β0, β

n∑

i = 1

⎛
⎝yi − β0−

p∑

j = 1

βjXij

⎞
⎠

2

. (2)

The number of SNPs (coded either as 0, 1, 2 or −1, 0, 1) is gen-
erally much larger than the number of observations in a typical
GWAS. A penalized regression function is formulated as

β̂0, β̂ = argmin
β0, β

[
n∑

i = 1

(
yi − β0 −

∑p

j = 1
βjXij

)2

+P (λ, β)

]

(3)
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where P (λ, β) a general penalty function with regularization
parameter λ. The lasso penalty (Tibshirani, 1996) regularizes
the linear regression coefficients through an ℓ1-norm penalized
least-squares criterion [i.e., P (λ, β) = λ ‖β‖ℓ1

]

β̂0, β̂ = argmin
β0, β

⎡
⎢⎣

n∑

i = 1

⎛
⎝yi − β0 −

p∑

j = 1

βjXij

⎞
⎠

2

+ λ

p∑

j =1

∣∣βj

∣∣

⎤
⎥⎦

(4)
The resulting regression problem is non-linear in y and results in
a convex optimization problem. The regularization parameter λ

controls the amount of shrinkage and needs to be tuned or chosen
based on some prior results.

Ridge regression (Hoerl and Kennard, 1970) estimates the
linear regression coefficients through an ℓ2-norm penalized least-
squares criterion [i.e., P (λ, β) = λ ‖β‖ℓ2

]

β̂0, β̂ = argmin
β0, β

⎡
⎢⎣

n∑

i = 1

⎛
⎝yi − β0 −

p∑

j = 1

βjXij

⎞
⎠

2

+λ

p∑

j = 1

β2
j

⎤
⎥⎦ (5)

This minimization problem can be solved analytically. In ridge
regression, the regularization parameter λ controls the amount of
shrinkage, but no predictor variables are set to zero. The shrink-
age makes the β estimates biased but with a smaller variance.
The regularization also facilitates the conditioning of the under-
determined system of linear equations that occurs in the p >> n

situation, thus enabling a numerical solution. For correlated pre-
dictor variables, ridge regression shrinks the coefficients toward
each other.

The elastic net (EN) method (Zou and Hastie, 2005) is based
on a compromise between the lasso and ridge regression penalties

β̂0, β̂ = argmin
β0, β

⎧
⎪⎨
⎪⎩

n∑

i = 1

⎛
⎝yi − β0 −

p∑

j = 1

βjXij

⎞
⎠

2

+λ

p∑

j = 1

[
1

2
(1−α) β2

j + α
∣∣βj

∣∣
]⎫
⎬
⎭ (6)

where 0 ≤ α ≤ 1 is a penalty weight. The EN with α = 1 is iden-
tical to the lasso, whereas it turns out to be ridge regression with
α = 0 (Friedman et al., 2010). Setting α close to 1 makes the EN
to behave similar to the lasso, but eliminates problematic behav-
ior caused by high correlations. When α increases from 0 to 1,
for a given λ the sparsity of the minimization (i.e., the number of
coefficients equal to zero) increases monotonically from 0 to the
sparsity of the lasso estimation. The elastic net can select more
variables than observations.

Recently, Friedman et al. (2007, 2010) developed a compu-
tationally efficient cyclic coordinate descent (CCD) method for
estimation and prediction in regression models with lasso, ridge
regression and the elastic net penalties. The CCD method is sim-
ilar to the forward, stepwise multiple regression approach. First,
it finds the λmax value along the regularization path for which

the entire vector β̂ = 0. The strategy is then to select a minimum
value λmin = ελmax, and construct a sequence of K-values of λ

decreasing from λmax to λmin on the log scale. Typical values
are ε = 0.001 and K = 100. Variables are then added iteratively
according to their importance along the λ path. One iteration
in the CCD algorithm is based on first computing the simple
least-squares coefficient on the partial residual, then applying soft
thresholding to take care of the lasso contribution to the penalty,
and finally using a proportional shrinkage for the ridge penalty.
We refer to Friedman et al. (2007, 2010) for details regarding
the algorithm, but we note here that there are options for naïve

updates, where a complete cycle through all p variables has a
computational cost of O(pn) operations, as well as for covariance

updates, with m non-zero terms in the model, where a com-
plete cycle costs O(pm) operations if no new variables become
non-zero and O(pn) for each new variable entered. The covari-
ance updating algorithm is more efficient for small data sets(
p < 500

)
, whereas the naïve updating is more efficient when

n ≪ p.
The optimal value of λ, where the predictor selection should

be done, can then be found by k-fold cross-validation to find the
minimum mean squared error (minMSE) or minMSE + 1 stan-
dard error of minMSE backwards along the λ path (minMSE +

1SE), i.e., the largest λ-value such that the error is within 1SE
of the minimum. In k-fold cross-validation, the original sam-
ple is randomly partitioned into k subsamples. One subsample
is then taken as the validation data for testing the model, and the
remaining k − 1 subsamples are used as training data. The cross-
validation procedure is repeated k times (the number of folds),
with each of the k subsamples used only once as the validation
data. The k results from the folds are then averaged to create a
single estimation with standard errors. The methods above have
been implemented in an R package called glmnet (Friedman et al.,
2010). minMSE and minMSE + 1SE are automatically calculated
using arguments s = “lambda.min” and s = “lambda.1se” in the
cv.glmnet function.

Single SNP regression is common in GWAS, but the signif-
icance tests need to be adjusted for multiple comparison. We
performed one single regression analysis for each SNP on all data
sets and collected the corresponding p-values in vectors. We then
calculated the local false discovery rate following Efron (2010)

fdr (z) = Pr (“null”|z) =
π0f0 (z)

f (z)
, (7)

where f (z) is a mixture density

f (z) = π0f0 (z) +π1f1 (z) , (8)

zi = �−1
(
pi

)
is the inverse cumulative normal distribu-

tion function of the p-values, π0 = Pr {null} and π1 =

Pr {non − null} (the prior probabilities of the null and non-null
hypotheses), f0 (z) the null density and f1 (z) the non-null density.
Estimates of fdr(z) can be obtained by

f̂dr (z) =
π̂0 f̂0 (z)

f̂ (z)
(9)
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where f̂ (z) is estimated by Poisson mixture regression of the
z-values (section 5.2 in Efron, 2010). The mean and variance
of the empirical null f̂0 (z) ∼ N

(
δ0, σ

2
0

)
are together with π̂0

also obtained from the z-values, but with Maximum Likelihood
Estimation according to section 6.3 in Efron (2010). We used the
locfdr (Efron et al., 2011) R package for estimating fdr(z) and set
a threshold value of 0.2 according to recommendations (Efron,
2010).

SIMULATED DATA

The purpose of the first simulation setting was to evaluate how
different levels of correlation (LD) between the predictor vari-
ables (SNP genotypes) influence the statistical properties of the
lasso, ridge regression and the elastic net with varying values of α.
Three correlation settings were considered using a data set of 1000
records and 25 important predictor variables (SNPs) selected
out of a total of 50,000 predictor variables. These 25 predictor
variables were divided into blocks of 5 and centered at position
1000, 10,000, 20,000, 30,000, and 40,000, respectively. In the first
correlation setting, all predictor variables should display high cor-
relation with each other, both within and between groups. The
second setting was designed for a mixture between high and
medium correlations, and the third contained only medium cor-
relations between all predictor variables. The selected positions
for important variables had no meaning in terms of chromoso-
mal locations, any position selected on purpose or random would
lead to the same result of correctly or incorrectly identified pre-
dictor variables. The R script to generate and analyze the data is
provided as a supplement to this paper.

The data for the first setting was simulated as follows: First, we
generated 1000 continuous values (phenotypes), where the first
half was associated with high y[1:500] ∼ N (2, 1) and the second
half with low y[501:1000] ∼ N (−2, 1) values without additional
sorting of phenotypes. The genotypes were constructed by ran-
domly simulating values (0 or 1) from a binomial distribution
with frequency 0.5 into two matrices of size 1000 × 50,000. The
numbers of these matrices were then added to obtain SNP geno-
types (predictor variables) coded as 0, 1, and 2 which is common
practice in GWAS. In order to get high effects and correlations of
the 25 selected predictor variables, these were simply sorted, inde-
pendently from each other, so that all SNP genotypes 2 and half
of genotype 1 were associated with the higher sorted phenotypic
values. Accordingly, the other half of genotypes 1 and all geno-
types 0 were associated with low values. This procedure resulted
in an average correlation coefficient, r, between the 25 important
predictor variables of 0.97

(
r2 = 0.94

)
.

In the second correlation setting (with a mixture of high and
medium correlations), we used the data from the first setting and
randomly permuted 25% of the sorted values within each of the
5 predictor variables centered around positions 1000 and 40,000
(i.e., resulting in a total of 10 predictor variables with medium
correlations and 15 with high correlations). The average correla-
tion between these 25 predictor variables was 0.78

(
r2 = 0.62

)
. In

the third correlation setting (with only medium correlations), we
randomly permuted 25% of the sorted values within each of all
the 25 important predictor variables. This resulted in a mean cor-
relation between these 25 predictor variables of 0.55

(
r2 = 0.30

)
.

A hundred replicates were generated for each of the three corre-
lation settings. One smaller (5000 predictor variables) and one
larger (100,000 predictor variables) high correlation data set was
also produced to test the influence of the ratio between n and p on
α. Finally, in order to evaluate the influence of number of impor-
tant predictor variables on α, we generated 100 replicates of the
high correlation setting with 100 important predictor variables to
be selected.

QTLMAS 2010 DATA

This data was initially constructed for the QTLMAS 2010 work-
shop (Szydłowski and Paczyñska, 2011). The number of indi-
viduals in the simulated pedigree was 3226 individuals of 5
generations deep. Of the 20 founders 5 were males and 15 were
females. The pedigree structure was created assuming that each
female mates once (mainly with males from their own genera-
tion) and gives birth to approximately 30 progeny. Five autosomal
chromosomes were simulated, each about 100 Mbp long. The
biallelic SNP data was simulated using a neutral coalescent model.
The genomes for founders were compiled by drawing a pair of
haplotypes from the haplotype pool. The founders’ alleles were
then dropped down the pedigree with a recombination rate of
1 cM/Mb and a mutation rate of 10−8 per base per generation.
The simulation algorithm produced 10,031 markers, including
263 monomorphic and 9768 biallelic SNPs. Out of the 9345
SNPs with MAF >0.05, 3933 loci showed significant deviation
from Hardy–Weinberg equilibrium (Pearson test under individ-
ual test error rate of 1%). Mean LD (r2 calculated from unphased

FIGURE 1 | Plot of the Mean-Squared Error (MSE) and the number of

SNPs in the model as functions of -log(λ) for the 10-fold

cross-validation analyses with the EN01 penalty of one the mixed LD

simulated data sets. The red dots are the mean form the cross-validation

and the bars indicate mean + 1SE and mean − 1SE, respectively. The

minMSE + 1SE of minMSE (left) and minMSE (right) and are indicated by

the dashed vertical lines.
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genotypes) between adjacent SNPs with MAF >0.05 was 0.100
(SD = 0.152).

The continuous quantitative trait used in our study was deter-
mined by 37 QTLs, including 9 controlled genes and 28 random
genes. The controlled genes were selected based on their high
polymorphism and high LD with markers. The random genes
were drawn from the simulated SNPs (excluding chromosome 5),
whereas their additive effects were sampled from a truncated nor-
mal distribution, N(0, 10), and then accepted if abs(add. eff.) <2.
Each simulated QTL was surrounded by 19–47 polymorphic
SNPs (MAF >0.05) located within 1 Mb distance from the QTL.
Of these, 364 SNPs were in moderate to high LD with the QTLs
(r2 >0.1). Residuals were assumed to be uncorrelated and sam-
pled from a normal distribution with variance of 51.76. The
narrow-sense heritability (h2) was 0.52 for males and 0.39 for
females. For data analyses SNPs with MAF <0.01 were discarded,
leaving a final sample of 9723 SNPs. We did not check for SNPs
that deviate from HWE because we did not want to lose loci that
could be under selection or in LD with selected QTLs.

CATTLE DATA

Deregressed breeding values (Garrick et al., 2009) for milk fat
content were calculated for dual purpose Fleckvieh bulls from

the joint German-Austrian genomic evaluation. Genotypes of the
bulls were scored as 0, 1, and 2 based on data from the Illumina
bovine 54 K SNP chip, but only unambiguously mapped SNPs
based on Fadista and Bendixen (2012) were kept for further anal-
ysis. The quality of genotypic data was checked for minimum
call rate >90% and MAF >1%. After correction for missing
genotypes and phenotypes, the number of bulls was 5570. Missing
alleles were replaced with the average allele frequency. SNPs sig-
nificantly deviating from the Hardy–Weinberg equilibrium (p <

0.00001) were deleted. Hence, a total of 34,373 SNPs were used in
the final analyses.

ESTIMATION OF POPULATION STRUCTURE USING SPECTRAL GRAPHS

Population structure can lead to spurious false positive associa-
tions in GWAS. There are several techniques available to adjust
for population structure (Price et al., 2010; Sillanpää, 2011). We
have chosen a new technique based on spectral graph theory that
is related to the popular PCA method (Lee et al., 2010). The main
goal of the spectral graph approach is to estimate a significant
number of eigenvectors from the genomic markers (SNPs) that
can be used as fixed covariates in the penalized regression anal-
yses. The underlying idea of this technique is to represent the
population as a weighted graph, where the vertex set is comprised

Table 1 | Results from the first simulation where three correlation settings (High, Mixture and Low) were considered, all with 25 significant

predictor variables out of a total of 50,000 predictor variables.

Lasso EN075 EN05 EN04 EN03 EN02 EN015 EN01 EN005 EN001

minMSE

High LD Correct 3 (0.99) 6 (1.69) 10 (2.36) 13 (2.42) 16 (2.43) 21 (1.99) 23 (1.89) 25 (0.66) 25 (0.00) 25 (0.00)

False positive 5 (13.51) 5 (15.48) 8 (24.31) 8 (18.60) 7 (19.27) 10 (25.19) 10 (27.33) 15 (34.78) 35 (72.89) 689 (335)

MSE 2.89 (0.11) 2.90 (0.11) 2.91 (0.11) 2.88 (0.10) 2.89 (0.11) 2.91 (0.11) 2.97 (0.08) 2.98 (0.08) 3.01 (0.08) 3.12 (0.09)

Mixed LD Correct 3 (1.04) 5 (1.38) 9 (1.71) 11 (1.94) 14 (1.87) 17 (1.66) 18 (1.41) 20 (1.52) 24 (1.15) 25 (0.00)

False positive 3 (23.47) 4 (16.78) 6 (19.96) 9 (21.46) 7 (20.20) 11 (32.30) 17 (30.23) 25 (43.00) 59 (87.53) 898 (369)

MSE 2.92 (0.10) 2.93 (0.10) 2.94 (0.10) 2.94 (0.10) 2.96 (0.10) 2.97 (0.10) 2.98 (0.11) 2.99 (0.11) 3.02 (0.11) 3.16 (0.11)

Low LD Correct 18 (1.87) 19 (1.88) 20 (1.78) 20 (1.44) 21 (1.33) 23 (1.23) 23 (0.91) 24 (0.66) 25 (0.24) 25 (0.00)

False positive 7 (16.73) 8 (20.85) 10 (28.81) 9 (30.58) 10 (29.86) 13 (30.76) 27 (32.62) 30 (54.56) 73 (81.20) 1227 (406)

MSE 3.10 (0.12) 3.10 (0.12) 3.09 (0.12) 3.08 (0.10) 3.09 (0.10) 3.09 (0.10) 3.10 (0.10) 3.11 (0.10) 3.14 (0.10) 3.31 (0.10)

minMSE + 1SE

High LD Correct 3 (0.91) 7 (1.80) 12 (2.38) 16 (2.32) 20 (2.05) 24 (1.22) 25 (0.81) 25 (0.10) 25 (0.00) 25 (0.00)

False positive 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.71) 0 (0.35) 0 (1.61) 0 (0.00) 0 (0.10) 0 (0.74) 35 (68)

MSE 2.99 (0.12) 3.00 (0.11) 3.01 (0.12) 3.00 (0.12) 3.00 (0.12) 3.01 (0.10) 2.97 (0.08) 2.98 (0.09) 3.01 (0.08) 3.12 (0.10)

Mixed LD Correct 3 (0.75) 6 (1.38) 10 (1.56) 12 (1.59) 14 (1.23) 16 (1.06) 17 (1.25) 18 (1.47) 24 (1.06) 25 (0.00)

False positive 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.31) 0 (0.14) 0 (0.74) 0 (0.72) 0 (1.19) 0 (2.24) 38 (64.72)

MSE 3.03 (0.11) 3.04 (0.11) 3.06 (0.11) 3.06 (0.11) 3.06 (0.11) 3.08 (0.11) 3.11 (0.11) 3.10 (0.12) 3.13 (0.12) 3.26 (0.11)

Low LD Correct 17 (2.12) 18 (1.89) 19 (1.88) 20 (1.49) 21 (1.36) 23 (1.22) 24 (0.78) 25 (0.51) 25 (0.00) 25 (0.00)

False positive 0 (0.39) 0 (0.65) 0 (0.48) 0 (0.56) 0 (0.80) 0 (2.45) 0 (1.21) 0 (2.06) 0 (1.91) 106 (109)

MSE 3.20 (0.13) 3.21 (0.13) 3.20 (0.13) 3.20 (0.12) 3.19 (0.11) 3.19 (0.12) 3.20 (0.11) 3.22 (0.10) 3.25 (0.10) 3.42 (0.11)

Reported values are medians and SD (within parentheses) over 100 replicates.

The values of the elastic net (EN) refers to the penalty weight α.

The stopping criteria for λ were obtained with 10-fold cross-validation both at minimum MSE and minimum MSE plus 1 SE.

The median and standard deviation of MSE at the stopping criteria is also reported.
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Table 2 | Results from the analysis of the simulated QTLMAS 2010 workshop data with and without correction for population structure (using

eigenvectors from spectral graph analyses).

Lasso EN09 EN075 EN05 EN03 EN01 EN005 fdr

No pop. struct. corr. Selected SNPs 161 176 168 219 232 326 454 78

minMSE + 1SE 0.2825 0.3082 0.3822 0.5331 0.9087 2.6208 4.8283 –

Pop. struct. corr. Selected SNPs 82 87 87 92 98 161 240 134

minMSE + 1SE 0.2421 0.2594 0.3114 0.4673 0.7751 2.1707 4.0467 –

The simulated pedigree consists of 3226 individuals from 5 generations.

The continuous trait was controlled by 37 QTLs that had 364 SNPs with r2 > 0.1. The stopping criteria for λ were obtained as the average of ten 10-fold cross-

validation runs at minimum MSE plus 1 standard error.

The values of the elastic net (EN) refers to the penalty weight α (e.g., EN005 is elastic net with α = 0.05).

fdr refers to the SNPs selected by the single marker regression local false discovery rate method (Efron, 2010).

by the individuals in the study, and the weights reflect the degree
of genetic similarity between pairs of subjects. The graph is then
embedded in a lower dimensional space using the top eigenvec-
tors of a function of the weight matrix. The number of significant
eigenvectors can then be estimated by a simulation approach that
generates a reference population without population structure,
for details see Lee et al. (2010). We used the methods imple-
mented in the R package GemTools (Klei et al., 2011) for the
QTLMAS 2010 and cattle data. The eigenvectors enter the glm-
net model without any penalty, using the penalty.factor function
argument.

RESULTS

SIMULATED DATA

The three simulation settings were evaluated at the following
penalty weights (α = 1, 0.75, 0.5, 0.3, 0.1, 0.05, 0.01), where
α = 1 is equivalent to the lasso. Ridge regression is obtained
with α = 0, but we did not perform any analyses with this value
because ridge regression doesn’t perform any variable selection.
All other α are elastic net penalties with varying degree of ℓ1- and
ℓ2-norm influence. The optimal value of λ (i.e., the stopping cri-
terion) was obtained by performing 10-fold cross-validations to
find the minMSE value and the minMSE + 1SE value. Friedman
et al. (2010) recommend using the latter because this avoids over
fitting, although we report results for both here. Figure 1 shows
both the number of SNPs in the model and MSE as functions of
λ. The figure also shows where the minMSE and minMSE + 1SE
are located.

We note that λ at minMSE provides results with too many
selected predictor variables because all evaluated models yielded
relatively large levels of false positives under all three correlation
settings (Table 1). Another interesting result for this stopping cri-
terion is that the lasso and some elastic net procedures with high
α values start to overfit (based on number of false positives) with-
out finding the correct number of predictor variables. For the
minMSE + 1SE stopping criterion, the lasso never picked up any
false positives, but acquired too few correct predictor variables
for all three simulation settings, with a median of only 3 and 2
correct predictor variables out of 25 for the high and mixed corre-
lations, respectively (Table 1). The elastic net generally performed
better, with α = 0.1 and 0.05 resulting in no missing predictor
variables and no false positives for the high and low correlation

setting. In the mixed correlation setting, no method yielded a
perfect result, but α = 0.05 picked up 24 out of the 25 predic-
tor variables and had no false positives. The 5000 and 100,000
predictor data sets both produced results that were very simi-
lar to the 50,000 predictor setting (results not shown). For the
data with 100 important predictor variables, the lasso selected a
median of 4 correct predictor variables and 0 false positives. The
elastic net with α = 0.01 selected a median of 100 correct and
0 false positives, whereas α = 0.05 resulted in a median of 97
correct and 0 false positives. This is a similar finding as for the
25 predictor variables in the previous simulations. Hence, these
results indicate that α around 0.1 seems to be the best choice
for the parameters that we have focused on in our simulation
set up.

QTLMAS 2010 DATA

We used penalty weights of α = 1, 0.9, 0.75, 0.5, 0.3, 0.1, and 0.05.
The average λ at minMSE + 1SE of ten 10-fold cross-validation
runs at each α was considered to be optimal, to account for
the minor differences in numbers of selected predictors between
the repeats. Since the simulation procedure of this data makes
it difficult to know the exact number of SNPs in LD with the
37 QTLs, we could not calculate the amount of correct or false
positive predictor variables. However, we know that 364 SNPs
were in moderate to high LD with the QTLs (r2 > 0.1), and that
chromosome 5 has no QTLs.

We first report the results without correction for population
structure. The lasso picked out the smallest number of predictor
variables (161) at minMSE + 1SE (Table 2). The elastic net with
penalty weight α = 0.1 (EN01) selected 326 SNPs. These selected
SNPs were located rather evenly over all 5 chromosomes, with
the highest positive regression coefficient of SNP number 4609
on chromosome 3 (Figure 2A).

The spectral graph method yielded 76 significant eigenvectors
that we used to correct for population structure. The eigenvectors
were set up as covariates that were forced to be in the model per-
manently without being penalized. With this approach, the lasso
selected only 82 SNPs and EN01 161 SNPs (Table 2). The num-
ber of selected SNPs on chromosome 5 was reduced from 24 to 6
with the population structure correction for EN01 (Figure 2B).
The single SNP regression results are shown in Figure 2C. For
comparison purposes, the local false discovery rate was computed
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FIGURE 2 | Plots of positions and regression coefficients of the

selected SNPs from the elastic net (EN01) analysis of the

QTLMAS 2010 data in relation to the positions of the 37

simulated QTLs (X). The red, blue and green colors of the QTLs

indicate additive positive, additive negative and epistatic (including

imprinted) effects, respectively. The manhattan plot for the single

marker regression shows the significance [-log10(p)-value] for all

SNPs. (A) Without population structure correction. (B) With

population structure correction using eigenvectors from spectral graph

analysis. (C) Single marker regression with population structure

correction. Highlighted markers (in magenta) are the important

SNPs picked by the local false discovery rate method (Efron, 2010).

on the single marker regression p-values using the locfdr R
package—134 influential SNPs were identified.

CATTLE DATA

In the Fleckvieh data set we used the same penalty weights as for
the QTLMAS 2010 data, i.e., α = 1, 0.9, 0.75, 0.5, 0.3, 0.1, 0.05,
and 0. Similarly to the QTLMAS2010 data set, ten 10-fold cross-
validation runs at each α were used to find the average λ value
pointing to minMSE + 1SE.

The SNPs picked up by the various methods were between
1439 and 2689 for runs without population structure correc-
tion and between 1291 and 2504 for runs with correction for
population structure (Table 3). The number of SNPs increased
by a decreasing penalty factor in fairly regular manner when
no population structure was applied, whereas the number of
selected SNPs increased sharply from α = 0.3 to α = 0.1. We
obtained 117 significant eigenvectors as a description of popu-
lation structure in this data using the spectral graph method.
With adjustment for population structure, the number of selected
SNPs was lower in all cases. The selected SNPs were situated
on all 29 autosomes, mostly with very low regression coeffi-
cients close to 0. All selected effects with corresponding regression
coefficients from lasso and the elastic net with penalty weight
α = 0.1 are shown in Figures 3A,B. The single SNP regression
results for the cattle data set are shown in Figure 3C, with
160 influential SNPs identified by the local false discovery rate
method.

The standard errors were similar between methods, but we
noticed an increasing trend in standard error with decreasing
penalty factor. When comparing the same methods with and
without population structure correction, the standard error was
similar for lasso and the elastic net with high penalty factors.

DISCUSSION

The goal of the first simulated data was to evaluate how different
levels of correlation (linkage disequilibrium) between the predic-
tor variables (SNP genotypes) influence the statistical properties
of the lasso and the elastic net. Three correlation settings (high,
mixed, and low LD) were considered, all with 25 influential pre-
dictor variables with known positions out of a total of 50,000
predictor variables. The response variable (phenotype) was cho-
sen to eliminate complications in the variable selection that arise
with high levels of error variance. When single SNP regression
with a Bonferroni threshold was applied to the three LD scenar-
ios it always resulted in 25 correctly selected variables and no false
positives. However, it would be necessary to perform further sim-
ulation studies with other LD patterns before we can conclude
that single SNP regression yields similar results as the elastic net.

The optimal value of the regularization parameter λ was
obtained by performing 10-fold cross-validation to find the min-
MSE value and the minMSE + 1SE value. When minMSE was
used as stopping criteria, the results show that an excessive
amount of false positive predictor variables were selected under
all three correlation settings. Moreover, the lasso and some elas-
tic net procedures with high α values started to overfit without
finding the correct number of true predictor variables. For the
minMSE + 1SE stopping criterion, the lasso produced no false
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Table 3 | Results from the analysis of the deregressed breeding value evaluation for fat content in Fleckvieh bulls.

Lasso EN09 EN075 EN05 EN03 EN01 EN005 fdr

No pop. struct. corr. Selected SNPs 1439 1451 1452 1556 1603 2142 2689 251

minMSE + 1SE 0.0029 0.0033 0.0039 0.0057 0.0092 0.0240 0.0438 –

Pop. struct. corr. Selected SNPs 1291 1291 1297 1400 1460 1966 2504 160

minMSE + 1SE 0.0028 0.0031 0.0038 0.0055 0.0090 0.0236 0.0433 –

34,373SNPs were analyzed on 5570 individuals with and without correction for population structure (using eigenvectors from spectral graph analyses).

The stopping criteria for λ were obtained as the average of ten 10-fold cross-validation runs at minimum MSE plus 1 standard error.

The values of the elastic net refer to the penalty weight α (e.g., EN005 is elastic net with α = 0.05).

fdr refers to the SNPs selected by the single marker regression local false discovery rate method (Efron, 2010).

positives, but picked up too few correct SNP predictor variables
for all three simulation settings. The elastic net generally per-
formed better, with α = 0.1 resulting in no missing predictor
variables and no false positives for the high and low correlation
setting and only a few missing correct predictor variables in the
mixed correlation setting. However, this α value never produced
the lowest minMSE or minMSE + 1SE. Hence, the minimum of
minMSE + 1SE should not be used to select variables over differ-
ent α values. It should be noted that many factors can influence
the tuning of λ and α. Waldron et al. (2011) used a 2D tuning
approach for the elastic net penalties and found that a simultane-
ous tuning was required to differentiate it from the lasso and ridge
regression. However, their approach is based on a combination of
cross validation and quasi-Newton optimization to maximize the
partial log-likelihood. It is unclear how our finding that the low-
est minMSE doesn’t correspond to the best penalty factors would
influence their approach.

The purpose of the analyses of the second simulated data,
from the QTLMAS 2010 workshop, was to evaluate the lasso
and the elastic net methods on SNP and phenotype data that
has been simulated under biologically more complex scenarios.
Unfortunately, because of the complexity of the procedure gen-
erating this data, we have no exact number and positions of
significantly associated SNPs. The continuous quantitative trait
used in our study was determined by 37 QTLs, each QTL being
surrounded by 19–47 polymorphic SNPs located within 1Mb dis-
tance from the QTL. 364 SNPs were found to be in moderate to
high LD with the QTLs (r2 > 0.1). Hence, the true number of
associated SNPs is likely be much larger than 37. Based on these
figures, it seems as if the lasso once again selects too few predic-
tor variables. The elastic net with α values around 0.1 appears
to have superior performance. However, this conclusion should
be interpreted with care since we don’t know the exact num-
ber of associated SNPs. Recently, Mucha et al. (2011) published
a compilation of results from the analyses of the QTLMAS 2010
data set. Seven different methods, including partial least-squares
and Bayesian variable selection, were used by different research
groups. None of the methods detected all of the 37 putative QTLs.
The highest number of associated SNPs was detected by partial
least-squares and BayesC. It is clear that these methods under-
estimate the number of SNPs that are in LD with the QTLs.
Ogutu et al. (2012) applied the lasso, ridge regression and the
elastic net to the QTLMAS 2011 data, but from a genomic selec-
tion perspective. Figure 2C shows the manhattan plot resulting

from the single marker regression with population structure cor-
rection. The results are similar compared to the elastic net, with
major peaks above the QTL positions. The fdr method selected
134 SNPs, similarly to the elastic net with alpha value 0.1 which
identified 161 markers.

For the real cattle data the largest effects were on BTA5
(at 100.6 Mb), multiple SNPs on BTA14 (0.6–2.6 Mb), BTA15
(51.9 Mb) and BTA20 (27.2 Mb). Note that these conclusions are
based on the elastic net with alpha value 0.1, but other alpha val-
ues tend to give similar results. The results were corresponding
with those of Hayes et al. (2010) who found significant asso-
ciations on BTA5, BTA14, and BTA20 in similar regions as in
our study. Meredith et al. (2012) found moderate association on
BTA15 in the 50 Mb region for protein content. The highest signal
located on BTA14 points to the DGAT1, a gene with major effect
on fat content (Grisart et al., 2002), located at 1.8 Mb. The single
marker regression for the cattle data set resulted into 160 selected
markers using the fdr methodology. This is a much lower num-
ber compared to the result from any of the penalized regression
methodologies. The main peaks (Figure 3C) corresponded with
the regions with the largest effects, identified by lasso and elas-
tic net, with the majority of SNPs on the beginning of BTA14.
Figure 4 shows the Venn diagram comparing the numbers of
selected markers by single marker regression with the local false
discovery rate method (Efron, 2010), lasso and elastic net with
alpha value 0.1. The area circles relate to the number of selected
markers, the area of overlap between the circles is proportional to
the number of commonly selected markers using different meth-
ods. About one third of these were on BTA14, the rest in smaller
groups on 16 other chromosomes. The list of the 72 SNPs selected
by all three methods can be found in the supplement file 2. Almost
all markers selected by lasso were also selected by the elastic net,
which can be explained by their methodological similarities.

Although it is not expected that the single marker and penal-
ized regression methods pick exactly the same SNPs, we note
a relatively large difference in numbers of selected SNPs in the
simulated and real data. We note that the deregressed breeding
values that were used as phenotypes contain almost no error vari-
ance. This could be the reason for the large difference between
the number of SNPs selected by single marker regression and
the penalized regression methods. The −log10(p) values for the
most significant region on BTA14 were unconventionally high as
well, possibly for the same reason. When reducing the numbers
of genotypes, the numbers of selected SNPs also decrease. One
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FIGURE 3 | Plots of positions and regression coefficients of the

selected SNPs from (A) Lasso, (B) elastic net with α = 0.1, and (C)

single marker regression with population structure correction for fat

content in Fleckvieh bulls. The manhattan plot shows the significance

[-log10(p)-value] for all SNPs. Highlighted markers (in magenta) are the

important SNPs picked by the local false discovery rate method (Efron,

2010).

thousand nine hundred animals instead of the full set yielded a
much lower number of SNPs (in the range of 500 based on the
elastic net with alpha value 0.1). Moreover, when looking at the
effect size of the selected SNPs, we see relatively high effect of each

FIGURE 4 | Venn diagram (BioVenn, Hulsen et al., 2008) for number of

overlapping markers selected by single marker regression (red), lasso

(lime), and the elastic net (blue). The area of overlap is proportional to the

number of commonly selected markers.

marker in the QTLMAS data set, but close to zero effects in the
cattle data for the majority of the SNPs.

There are several applications of the lasso, ridge regression
and elastic net to GWAS data (Malo et al., 2008; Wu et al.,
2009; Cho et al., 2010). However, few studies have made statis-
tical evaluations of these methods. Usai et al. (2009) tested the
least angle regression version of the lasso on the QTLMAS 2008
data and found that 169 SNPs were needed to explain the vari-
ation of the 48 simulated QTLs. Yet, they used a rather ad hoc
cross-validation approach where the highest correlation between
genomic breeding values (sum of the regression coefficients of
the SNPs) and true simulated breeding values was used as stop-
ping criterion. This approach is difficult to generalize to real
data because it relies on the fact that the breeding values are
known or estimated without error. Ayers and Cordell (2010)
compared the statistical properties of the lasso, ridge regres-
sion and elastic net on simulated data. However, the objectives
of their study differ from our study. Firstly, Ayers and Cordell
(2010) used a logistic model for binary phenotypes, whereas our
study is focused on quantitative traits. Secondly, we have used
cross-validation to obtain both minimum MSE and minimum
MSE + 1SE, while Ayers and Cordell (2010) used a permuta-
tion approach aimed at controlling the Type I error rate. Thirdly,
we have tried to argue that it is important to detect (map)
all SNPs that have high effects on the phenotype, regardless if
these are highly correlated with each other. Ayers and Cordell
(2010) considered effects from groups of highly correlated vari-
ables as a single signal to prevent inflated false-positive rates,
which we would regard more appropriate for prediction of future
phenotypes.

It is well-known that population structure can lead to spuri-
ous false positive associations in GWA studies (Price et al., 2010;
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Sillanpää, 2011). There are several ways to adjust for population
structure. If the pedigree is known, it is possible to use the
additive relationship matrix as a structured random effect in
a mixed model. Similarly, one can use the genomic relation-
ship matrix based on identity-by-state coefficients. However, both
these approaches are computationally demanding because of the
need to solve large mixed model equations. Another approach
is based on principal component analysis (PCA) where a cer-
tain number of important eigenvectors are calculated from a
similarity matrix (estimated either based on the pedigree or the
SNPs) between the individuals, and are used as covariates in
the SNP regression model (Patterson et al., 2006). The compu-
tationally challenging part of this approach is the orthogonal
decomposition of the similarity matrix. Lee et al. (2010) proposed
spectral graph approach that in combination with simulation
produces a certain number of significant eigenvectors that can
be used for correction of population structure in GWAS. The
correction was performed using the number of significant eigen-
vectors in our study, as we suspected some influence based on
pedigree structure. It is important to fix the eigenvectors and
not perform penalized variable selection on these because none
of them were selected in our analyses if not treated as fixed.
Further attempts to model population structure in a regularized
regression framework include Puniyani et al. (2010).

Some recent studies have developed Bayesian versions of
the elastic net. These methods are based on specifying shrink-
age priors over the regression coefficients β. Bornn et al.
(2010) suggested a hierarchical model with a prior distribu-
tion over β that combine and compromise between Laplace
and Gaussian priors. This model requires computationally chal-
lenging tuning of two parameters that determines the amount
of shrinkage. Li and Lin (2010) proposed a related Bayesian
elastic net method with a slightly different specification of
the prior where the two penalty parameters were chosen by
the empirical Bayes method, whereas Kyung et al. (2010)
showed that the two tuning parameters could be estimated
within the Gibbs sampler by assigning hyperpriors to them.
These methods are computationally demanding and it remains
to be seen how large data they can handle can become.
Simulation analyses in these two papers showed that the frequen-
tist elastic net performed well in comparison with its Bayesian
versions.

Finally, we would like to emphasize that the focus of this study
has been on association analysis. GWAS can be interpreted as a
mapping method where it is of importance to find all SNPs along
the chromosomes that are associated with the phenotype. In sta-
tistical terms, GWAS should be based on the correct estimation

of regression coefficients. On the other hand, in genome-wide
selection (GS), the goal is to predict future observations based
on a sub-set of SNPs that result in a high predictive accuracy.
The number of SNPs and their chromosomal positions are of
less concern in GS. It is difficult to draw any general conclu-
sions about the predictive difference between the lasso and the
elastic net based on our study. Further studies on the relation
between estimation and prediction in highly multicollinear data
and new criteria for variable selection and predictive performance
are needed.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/
fgene.2013.00270/abstract
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