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Abstract

This article considers the problem of phase synchrony and coherence analysis using a modified version of the S-

transform, referred to here as the Modified S-transform (MST). This is a novel and important time-frequency

approach to study the phase coupling between two or more different spatially recorded entities with non-

stationary characteristics. The basic method includes a cross-spectral analysis to study the phase synchrony of non-

stationary signals, and relies on some properties of the MST, such as phase preservation. We demonstrate the

usefulness of the technique using simulated examples and real newborn EEG data. The results show the advantage

of using the cross-MST in the study of the connectivity between different signals using the time-frequency

coherence. The MST led to improvements in resolution of almost twofold over the standard S-Transform in the

examples presented in the article.

Keywords: time-frequency coherence, cross time-frequency, modified S-transform, phase synchrony, array proces-

sing, EEG signal, time-frequency signal analysis, Quadratic Time-Frequency Distributions, instantaneous frequency

1 Introduction
1.1 Time-frequency methods

Non-stationary signals have statistical properties that

vary with time and hence the traditional time averaged

amplitude spectrum obtained using Fourier transform is

inadequate to track changes in signal magnitude, fre-

quency or phase. In analyzing non-stationary and multi-

component signals, time-frequency-based techniques

were shown to outperform classical techniques based on

either time or frequency domains [1] (Chapter 1). The

basic idea of time-frequency analysis is to understand

and describe situations where the frequency content of a

signal is changing in time. Although time-frequency

analysis had its origin almost 50 years ago, significant

advances have occurred in the past 20 years or so. In

particular, the time-frequency representation has

received considerable attention as a powerful high reso-

lution and precision tool for analyzing a variety of bio-

signals and systems such as speech, ECG, EEG, PCG,

EMG, as well as signals arising from other fields [2]. A

time-frequency distribution (TFD) is used to analyze

and process non-stationary signals in the joint time-fre-

quency domain. Several TFDs exist in the literature [1].

Most of them are based on the Wigner-Ville distribution

(WVD) [3], as all the other TFDs can be expressed as a

smoothed version of the WVD. A popular candidate of

this class is the spectrogram, which is the square modu-

lus of the short time Fourier transform (STFT). The

spectrogram is the WVD smoothed in time and fre-

quency by the ambiguity function of the window used

in the STFT [4]; and all the quadratic TFDs (QTFD) are

2D-smoothed versions of the WVD (and therefore of

the spectrogram which is the square modulus of the

STFT). The spectrogram has been widely used as an

initial investigative tool [1] as it has the property of

being a cross-terms free TFD; but it also suffers from

the undesirable trade-off between time concentration

and frequency concentration. To address the problem of

cross-terms suppression, while keeping a high time-fre-

quency resolution, other TFDs have been proposed.

Among these, one can cite the smoothed pseudo WVD

(SPWVD) [1], the Cone shaped kernel TFD (ZAMD)

[5], Gaussian TFD [6] and the Modified B-distribution
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(MBD) [1] (Chapter 3) just to name a few. These meth-

ods form a class commonly referred to as QTFDs or

Bilinear TFDs, as they represent and distribute the

energy of a signal in the time-frequency domain. A dif-

ferent method, the continuous wavelet transform

(CWT) has a wide area of application and can be seen

as an extension of the spectrogram in a wide sense,

except for representing signals in time-scale space

instead of time-frequency space. As it is linear and

based on amplitude decomposition, it is also a useful

technique for filtering in the time-scale space. A more

recently developed method called S-transform (ST) is

conceptually a hybrid of the STFT and CWT. The ST

uses a variable analyzing window length but preserves

the phase information by using a Fourier kernel in the

signal decomposition [7].

The above indicates that various methods of perform-

ing a time-frequency analysis exist. No method is super-

ior to another, since they all have benefits for specific

types of signals and applications to which they are

adapted, depending on signal characteristics such as

spectral contents.

The novel contributions in this article are mostly

based on

• The design of the modified ST (a signal-dependent

version of the standard ST with an improved time-

frequency resolution).

• The design and application of the cross-modified

ST to investigate the phase synchrony between sig-

nals in the time-frequency plane and source location.

1.2 Phase synchrony and source location

Phase synchrony analysis is a useful measure of linear

dependence between two stochastic signals. This

approach is based on the concept of phase synchroniza-

tion of chaotic oscillators studied by Rosenblum et al.

[8]. The phase synchrony (coefficient) takes on values

between 0, for two signals at different frequencies, and

1, for signals that exhibit a constant difference in instan-

taneous phase (representing the situation where a signal

and its time-shifted version are observed). So, phase syn-

chrony refers to the interdependence between the

instantaneous phases of two signals; the instantaneous

phases may be strongly synchronized even when the

amplitudes of the two signals are statistically indepen-

dent [8]. Estimating this measure requires pre-filtering

at a frequency of interest. The interesting properties of

the phase synchrony coefficient are its independence of

the signal amplitudes and that no assumptions about

the nature of the signals are made. Another useful mea-

sure of linear dependence between two stochastic signals

is the coherence function, which quantifies linear

correlations in frequency domain based measure

between two wide sense stationary signals [9,10]. The

magnitude squared coherence function “measures the

degree to which one process can be represented as the

output of a linear filter operating on the other process”

[10] and varies from 0–for two statistically independent

processes–to 1, when one process is the result of linear

filtering performed on the other. The phase coherence

is usually interpreted as a phase lead of one signal over

the other; it finds many useful applications but the

results based on coherence depend on several factors

like stationarity of the signal, segment length, number of

segments, etc. [11]. It is necessary to emphasize that

although phase coherence and phase synchrony are

quite similar and often are mixed up; they are two prin-

cipally different measures. Phase coherence can be inter-

preted as phase shifts and amplitude changes over

frequency between two correlated sequences, while

phase synchrony indicates whether the phase shift is

close to a constant over the specified time interval. This

interpretation justifies narrow-band filtering in the case

of phase synchrony. The concept of a phase shift (either

lead or lag) between two signals is only applicable when

both signals are at the same frequency. One way to

accomplish phase synchrony is via the Hilbert transform

(HT); which consists of transforming the original signal,

using an auxiliary function, into a complex-valued signal

called an analytical form, from which the instantaneous

phase is easily obtained [12]. This method relies on the

assumption that the signal is composed of a narrow

band of frequencies. Hence, it requires the bandpass fil-

tering of the signal around a frequency of interest and

then applies the HT to obtain the instantaneous phase.

Another approach to estimate the phase synchrony is by

performing a time-varying complex energy spectrum

using either the CWT with a complex Morlet wavelet

[13] or the short-time Fourier transform (STFT) [14].

Being Gaussian and well localised in time and frequency

domains, the Morlet wavelet has an optimal time and

frequency resolution [13]. Basically, both CWT and

STFT outperform the HT-based methods with the prior

giving higher resolution phase synchrony estimates over

time and frequency, especially at the low frequency

range [8], as they take into account the non-stationarity

of the signal. So, in contrast to HT, the wavelet-based

function has compact support in such way that it is

defined only for those frequencies close to the frequency

of interest, so it is equivalent to band-pass filtering at

this frequency, which makes the pre-filtering unneces-

sary. However, the phase information resulting from the

wavelet transform is currently not fully understood, and

is largely dependent on the specific wavelet, as it is

essentially a time-scale method and not a time-fre-

quency method; it has the useful property of being
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linear in time for sinusoidal signals, and can thus be

applied for phase synchrony. Although the wavelet and

STFT-based phase synchrony approaches consider the

nonstationarity issue, they suffer from a number of

drawbacks. In the case of the wavelet transform, where

we have a progressive time-frequency resolution the

estimate won’t be the same for the whole bandwidth of

the signal, which means a non uniform time-frequency

tiling on the analyzed signal and thus results in biased

energy representations and corresponding phase esti-

mates. In the case of STFT, there is a trade-off between

time and frequency resolution due to the window func-

tion. For these reasons, there is a need for a higher

time-frequency resolution phase distributions that can

track dynamic changes in phase synchrony over the

whole time-frequency plane. As cited above, and given a

measurements made from an array of electrodes or sen-

sors, phase synchronization methods are used to detect

the phase difference between two signals from two dif-

ferent electrodes or sensors, this can be applied for

source location. First, appropriate neighborhood of each

channel or electrode is constructed. Then phase syn-

chronization is measured between the channel and each

neighbor. Only those channels have been identified as

closest to the potential sources where strong phase syn-

chronization is detected will be considered for source

location.

The article is organized as follow: The Section 2 intro-

duces the ST definition, its key properties and provides

a brief comparison between ST, CWT, and QTFD will

be also reviewed. The Section 3 presents the concept

and formulation of generalized ST and shows the

improved resolution using the modified ST on synthetic

examples. The Section 4 discusses the Cross-MST for

time-frequency coherence analysis on synthetic exam-

ples. The Section 5 demonstrates the application of the

cross-MST for phase synchrony detection to simulated

EEG seizure and real newborn EEG data.

2 Advantages and limitations of the ST
The advent of time-frequency analysis techniques using

QTFDs, STFT, and wavelet transforms made the analy-

sis of non-stationary signals more precise. The low reso-

lution of the STFT and the absence of phase

information in the CWT led to the development of the

ST, which has the property of retaining the absolute

phase information, while preserving a good time-fre-

quency resolution for all frequencies. Even though the

ST has better time-frequency resolution compared to

STFT, the resolution is far from perfect and needs

improvement. The CWT uses a basis function which

dilates and contracts with frequency; it does not retain

the absolute phase information; further, the visual analy-

sis of the time-scale plots that are produced by the

CWT is intricate. The ST combines the good features of

STFT and CWT and can be viewed either as a variable

sliding window STFT or as a phase-corrected CWT [7],

as detailed below.

2.1 Definition and key relationships

Given a time series x(t), the local spectrum at time t = τ

can be determined by multiplying x(t) with a Gaussian

window located at t = τ and taking the Fourier trans-

form of the product. This defines the ST as follows: [7]

S(t, f , σ ) =

+∞
∫

−∞

x(τ )g(t − τ , σ )e−j2π f τ dτ (1)

The original ST uses g(t - τ, s) as the scaled Gaussian

window whose midpoint is τ = t. At any time t and fre-

quency f, the ST can be seen as a set of localised Fourier

coefficients, obtained by considering only the portion of

the primary function lying within a few cycles on either

side of τ = t. The scaled contraction of g(t - τ, s) causes

the relevant range of τ to become more localised around

t as f increases.

g(t − τ , σ ) =
1

√
2πσ

e

−(t − τ )2

2σ 2 (2)

If we select σ = 1

|f |, Equation (2) becomes

g(t − τ , 1/f ) =

∣

∣f
∣

∣

√
2π

e
−(t−τ)2f 2

2 (3)

and its Fourier transform with respect to τ (which is

gaussian as well) becomes

G(ν, f ) = e
−2π2ν2

f 2 (4)

By choosing σ = 1

|f | makes g(t - τ, s) with two control

parameters rather than three and add some constraints

to the frequency. Hence, the ST can be defined as an

adaptative STFT or as a CWT with a specific mother

wavelet-like term multiplied by a phase factor.

S(t, f ) = e−j2π ftWT(t, d) (5)

where the scale factor d is inversely proportional to

the frequency f and

WT(t, d) =

+∞
∫

−∞

x(τ )g(t − τ , d)dτ (6)

is the CWT of a function x(t) with a mother wavelet-

like term g(t - τ, f). Using Equations (3) and (5), this

term can be defined as
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g(t − τ , f ) =

∣

∣f
∣

∣

√
2π

e−
−f 2(t−τ)2

2 e−j2π f (t−τ) (7)

The ST separates the mother wavelet-like into two

parts, the slowly varying envelope (the Gaussian func-

tion) which localises in time the amplitude modulated

(AM) component, and the oscillatory exponential kernel

e-j2πfτ which selects the frequency being localised, the

frequency modulated (FM) component. Hence, this

separate AM-FM decomposition is similar in concept to

the empirical mode decomposition (EMD), which is a

local and fully data-driven technique aimed at decom-

posing non-stationary multicomponent signals in

“intrinsic” AM-FM contributions [15]. The ST analyzing

window is actually not a mother wavelet in a strict

sense. It is the time localizing Gaussian parameter that

is translated while the oscillatory exponential kernel

remains stationary. By not translating the oscillatory

exponential kernel in Equation (7), the ST localises the

real and the imaginary components of the spectrum

independently, therefore localizing the phase spectrum

as well as the amplitude spectrum. This is referred to as

absolutely referenced phase information [7]. Unlike the

CWT, the ST produces a time-frequency representation

instead of a time-scale representation.

2.2 The ST and signal spectrum

Integrating the ST over time results in the Fourier

transform. This direct relation to the Fourier transform

and the linearity property of the ST make both the

inversion to time domain and the filtering process in

the time-frequency domain possible. The ST is thus a

representation of local spectrum; The relationship

between the ST and the signal spectrum X(f) can be

expressed as follows:

+∞
∫

−∞

S(t, f )dt = X(f ) (8)

where X(f) is the Fourier transform of x(t). Hence, x(t)

can be retrieved from ST by:

x(t) =

+∞
∫

−∞

⎧

⎨

⎩

+∞
∫

−∞

S(t, f )dt

⎫

⎬

⎭

ej2π ftdf (9)

This relationship shows that the concept of the ST is

different from both the wavelet transform and QTFDs.

The concept of recovering back the signal from the ST

time-frequency plane is due to the fact that the phase is

referenced at the origin, which means that the phase

information given by the ST refers to the argument of

the cosinusoid at zero time as it is the case for Fourier

transform. In contrast, The phase spectrum of the signal

can be extracted from its wavelet transform CWT, as a

convolution of the signal with a complex wavelet, where

the phase of the CWT is relative to the center (in time)

of the analyzing wavelet (the mother wavelet). Thus as

the wavelet translates, the reference point of the phase

translates giving a locally referenced phase which is dis-

tinguishable from the phase properties of the ST and

the signal can’t be recovered from the time-scale plane.

On the other hand, the fact that QTFDs are bilinear and

real valued energy distributions describing the energy of

the signal over time and frequency, simultaneously, they

cannot be used for estimating the phase of an individual

signal and the phase synchrony between two signals.

Moreover, the inverse process also is not straightfor-

ward, as it requires some initial conditions.

The relation between the ST and the signal spectrum

X(f) is given in [7] and can be written as

S(t, f ) =

+∞
∫

−∞

X(ν + f )e
− 2π2ν2

f 2
ej2πνtdν, f �= 0 (10)

The equivalent discrete version of Equation (10) can

be used to compute the discrete ST by taking advantage

of the computational efficiency of the fast Fourier trans-

form (FFT) and the convolution theorem.

2.3 Comparison of ST, CWT, and QTFDs

The similarities and differences between the ST, CWT,

and QTFDs are reviewed below.

(1) ST and Morlet wavelet: Although the differences

between the ST and Morlet wavelet are suitable, the

only difference between ST and Morlet wavelet decom-

position is that the ST time-frequency function is scaled

by the carrier frequency f. Additionally, the amplitude

modulation term f smoothes the ST spectrum, but may

cause computational artifacts in the Morlet spectrum at

low frequencies. Furthermore, the phase correction term

in ST enable the ST to preserve absolute referenced

phase information of a signal. Also, ST approach has

advantages over the Morlet wavelet approach in terms

of easy interpretation and fast computation.

(2) Sampling frequency: The discrete Fourier trans-

form (DFT) has a very well defined sampling of the

frequencies, in order to be both complete and ortho-

normal. The discrete ST has the identical sampling of

the frequency space and retains the sampling of the

signal in the time domain, Similar to a STFT this is

redundant. On the other hand, CWT normally employs

an octave scaling for frequencies, which results in an

oversam-pled representation at the low frequencies

and an under sampled representation at the higher fre-

quencies. QTFDs have a sampling that is similar to the

DFT.
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(3) Invertibility and recoverable signal parameters: As

the ST output is complex, we can read the amplitude A

(t) = abs(S(t, f)), the frequency f, and the phase informa-

tion φ(t) = atan

(

Im (S(t, f ))

Re (S(t, f ))

)

for each time step from

the ST. This allows us to extract the corresponding sig-

nal by reproducing it in the time domain as follows: sig-

nal(t) = A(t)cos(2πf(t)t + j(t)). The signal parameters

were recoverable due to the combination of absolutely

referenced phase information and frequency invariant

amplitude of the ST, and such direct extraction cannot

be done with CWT-based method. Moreover, the direct

measurement of phase information makes the ST a

potential candidate to estimate the phase synchrony

between two signals.

For QTFDs, a signal x(t) can be recovered exactly,

apart from a complex scaling factor [1, p. 61].

(4) ST phase: The ST retains the absolute phase

information, where as the phase information is lost in

the CWT. The absolutely referenced (at time t = 0)

phase of the ST leads to a generalization of the instan-

taneous frequency to broadband signals and can be

used as a local peak-finding algorithm [16,17], for

example. In contrast, in the wavelet approach; the

phase is relative to the center (in time) of the analyz-

ing wavelet, and as the wavelet translates, the reference

point of the phase translates, hence the relative phase

becomes meaningless. With the ST, the sinusoidal

component of the basis function remains stationary,

while the Gaussian envelope translates in time. Thus,

the reference point for the phase remains stationary

and the phase has the same meaning as in the Fourier

domain [18]. For QTFDs, the phase information is

linked to the time delay or instantaneous frequency

[12]. The phase information can be extracted using the

cross-WVD or related methods [19].

(5) ST amplitude: The time domain localizing window

(the Gaussian function) in Equation (7) is normalized by

the factor |f |
2π

to the unit area. In contrast to the CWT,

this makes the amplitude response of the ST invariant

to the frequency, which means that for a sinusoid with

an amplitude A (x(t) = A cos(2π ft)), the ST returns an

amplitude A regardless of the frequency f in a similar

concept as the amplitude of the Fourier transform. On

the other hand, the amplitude of the CWT is large for

the lower frequencies and diminishes at the higher fre-

quency components. This lower amplitude estimation at

the high frequencies is mainly due to the normalization

of the CWT [18]. For QTFDs, it is the signal energy

that is distributed in t and f, not the signal amplitude.

Hence, the interpretation is different. The spectrogram

is the square modulus of the STFT; and as the QTFDS

are a 2D convolution of the spectrogram, the spectrum

X(f) can also be recovered subject to the initial complex

constant X(f = 0).

(6) Cross-ST analysis: As the ST is complex and its

phase characteristic is referenced at the origin, it can be

employed in a cross spectrum analysis in a local manner

to estimate the phase synchrony between two signals.

Consider two signals measured by two receivers (trans-

ducers) separated by a known distance. Let a sinusoidal

wave propagate through the medium of view of both

receivers. What we will get is the same signal in both

sensors with an additive noise (assuming a controlled

environment conditions), but also with a time shift

between the two signals. Since the ST is a linear opera-

tion on the signal and localizes spectral components in

time, the cross correlation of specific events on two spa-

tially separated STs will give the phase difference, hence

the time delay between the two signals can be measured

[18]. This concept is also found in cross-TFDs using

quadratic methods, where the signal and its complex

conjugate are used to calculate the cross-spectrum [19].

(7) Co-ST and quadrature-ST: As the local phase

information can be extracted from the ST, we can use

the cross-ST function to analyze the in-phase and the

out-of-phase components in time-frequency space. This

is a very useful characteristic for cross-spectral and

phase synchrony. This property is exploited later for an

array of EEG signals to estimate the phase synchrony

between signals recorded from different electrodes and

assess the source location of the brain activities. The

cross-ST phase can be used to analyze this synchrony or

asynchrony, thus providing a significant discriminating

feature for potential abnormal brain activity. As with

classical co-spectrum analysis, the real part of the cross-

ST function gives the in-phase components of the local

spectra. The imaginary part of the cross-ST function

gives the in-quadrature components. This property is

discussed in detail in Section 3.

The above paragraphs indicate that, unlike the

QTFDs, the ST is linear with progressive resolution (see

Section 3.3.2 for more details). Unlike the CWT and

STFT, the ST has a variable analysis window and an

absolute phase reference. These useful properties of the

ST make it a natural candidate to study the phase syn-

chrony between two different spatially recorded signals.

2.4 Limitations of the ST

The ST was defined with two unnecessary restrictions

on the window function detailed below.

• Firstly, only a Gaussian window g(t, s) is

considered.

• Secondly, frequency dependence of the analyzing

window of the ST has been through horizontal and

vertical dilations of the Gaussian window.
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• Also, that window has no parameters to allow its

width in time or frequency to be adjusted, as shown

in Equation (2).

The resolution, on the ST, of the onset times of events

can be improved by using a narrower window, for

example, using a better controlled parameters of the

Gaussian window. However, when a window is nar-

rowed in the time domain, it inevitably widens in the

frequency domain, with consequent loss of resolution in

the frequency direction on the ST compromising the

identification of the whole event. One way of addressing

this problem is to use extra parameters controlling the

scale and the shape of the analyzing window rather than

just only making the frequency inversely proportional to

the standard deviation s.

3 Extension of the ST for resolution improvement
3.1 Concept and definition

To remedy the limitations discussed in the previous sec-

tion, a variant of the original ST, introduced by Man-

sinha et al. [20], replaces f with f
γ
in Equation (7). By

doing this, one standard deviation of the Gaussian win-

dow contains g wavelengths of the Fourier sinusoid at

all frequencies. This allows a better control of the time

and frequency resolution of the ST on the time-fre-

quency plane. More recently, McFadden et al. [21] pre-

sented a generalized ST which includes windows which

are asymmetrical. They applied an asymmetrical window

to analyze gearbox vibration signals. Later on, Pinnegar

and Mansinha [22] have extended the generalization

idea in [21] of the ST to include windows which have

complicated scaling properties, including frequency-

dependent shape and applied this approach to a broad-

band earthquake seismogram contaminated by noise.

This generalized form retains the property of invertibil-

ity of the original S-transform [7] and its relation to the

Fourier spectrum. The generalized ST is parameterized

by a width control adjustment coefficient g; it is given by

S(t, f , γ ) =

+∞
∫

−∞

x(τ )g(t − τ , f , γ )e−j2π f τ dτ (11)

where g(t - τ, f, g) is the generalized window function

of the ST and g denotes the set of parameters that

determine the shape and the properties of the window

function, and the parameter t controls the position of

the generalized window on the time axis. The Gaussian

window is given by

g(t − τ , f , γ ) =

∣

∣f
∣

∣

γ
√

2π
e

−f 2(t−τ)2

2γ 2 (12)

Note that, as in Equation (10), the generalized ST can

also be obtained from the signal spectrum as shown

below.

S(t, f , γ ) =

+∞
∫

−∞

X(ν + f )G(ν, f , γ )ej2πνtdν (13)

3.2 Key properties

The generalized window g(t - τ, f, g) satisfies the follow-

ing normalization criteria,

+∞
∫

−∞
g(t − τ , f , γ )dt = 1 (14)

This ensures that the time averaging of the ST spec-

trum S(t, f, g) yields the spectrum X(f), as shown in (15)

below

+∞
∫

−∞

S(t, f , γ )dt =

+∞
∫

−∞

+∞
∫

−∞

x(τ )g(t − τ , f , γ )e−j2π f τ dτdt (15)

=

+∞
∫

−∞

x(τ )e−j2π f τ

+∞
∫

−∞

g(t − τ , f , γ )dtdτ (16)

=

+∞
∫

−∞

x(τ )e−j2π f τ dτ = X(f ) (17)

where X(f) is the Fourier transform of the signal x(t).

3.3 Modified ST

3.3.1 Formulation of the modified ST

Based on this generalized form, we can examine the

Gaussian window at a different scaling rule [23,24]. This

can be achieved by getting the scaling parameter g

defined above to vary linearly with the frequency to get

better progressive control of the window width as fol-

lows

γ (f ) = mf + k (18)

where m is the slope and k is the intercept for a lin-

ear change in frequency. Hence, the resolution in time

and in frequency will be tuned depending on both the

parameters m and k. These parameters will be able to

control the Gaussian window length and variance to

be appropriate for localizing the low and high frequen-

cies. Figure 1 shows the Gaussian windows with a dif-

ferent value of g obtained by varying the two

parameters m and k. Using this new formulation, the

ST becomes
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MST(t, f , m, k) =

+∞
∫

−∞

x(τ )g(t − τ , f , m, k)e−j2π f τ dτ (19)

where g(t - τ, f, m, k) denotes the window function of

the modified ST (MST), given as follows

g(t − τ , f , m, k) =

∣

∣f
∣

∣

(mf + k)
√

2π
e

−f 2(t − τ )2

2(mf + k)2 (20)

Using Equations (19) and (20), the modified ST is

given by:

MST(t, f , m, k) =

+∞
∫

−∞

x(τ )

∣

∣f
∣

∣

(mf + k)
√

2π
e

−f 2(t − τ )2

2(mf + k)2
e−j2π f τ dτ (21)

The MST also satisfies the normalization condition for

ST window defined in Equation (14) and hence is

invertible.

+∞
∫

−∞

∣

∣f
∣

∣

(mf + k)
√

2π
e

−f 2(t − τ )2

2(mf + k)2
dτ = 1 (22)

3.3.2 Improved resolution of the MST

In a similar concept to [20], The parameter f
γ
represents

the number of cycles (periods) of a frequency that can

be contained within one standard deviation s of the

Gaussian window given by Equation (2). Hence, we have

a progressive improved resolution in this case. When

too small, the Gaussian window retains very few cycles

of the sinusoid and the frequency resolution degrades at

low frequencies. In contrast, if it is too large, the win-

dow retains more cycles within it and in consequence,

the time resolution degrades at high frequencies. This

trade-off between time and frequency resolution is
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Figure 1 The Gaussian window varying with the parameter g for frequency f = 10Hz.
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governed by the “Heisenberg” uncertainty principle in a

similar way as in the FT, ST or the CWT.

The value of m and k need to be selected properly to

get better resolution depending on the properties of the

signal under consideration. Selected values of k equals

to 1
N
and m equals to four times the variance of the sig-

nal were found empirically to be appropriate; where N is

the length of the signal in samples. The method is

therefore data dependent or adaptive. As an example for

illustration, let’s consider a three components signal

composed of: a low frequency (100Hz), medium fre-

quency (200Hz) and a high frequency burst (400Hz) as

shown in Figure 2a. Figure 2b,c represent the ST and

the MST, respectively, of the signal in Figure 2a.

Figure 2b,c show clearly the difference in time-fre-

quency resolution when the ST and the MST are

applied. Using the MST leads to an improvement of

almost twofold in resolution over the ST.

3.3.3 Simulated results, discussion and interpretation

In the previous example, the values of m and k were

chosen depending on the length and the variance of

the signal to get a better resolution (see Appendix 1

for more details). This indicates that as is the case

with power spectral estimation, the approach is not

restricted to a Gaussian window and any relevant win-

dow or apodising function may be employed to

improve resolution. The method is not restricted to a

Gaussian window and can be generalized in a similar

concept to the CWT for which different windows can

be used. Hence, the ST can be seen as a special case of

the CWT using a Morlet-type wavelet, with a phase

and amplitude correction. This generalized form of ST

is more flexible, as it uses two added parameters for

varying the frequency in a linear way, resulting in

adjustable windows for improved time or frequency

resolution. Similar ideas led to the development of

transforms based on groups generated by translations,

modulations, and dilation of a mother wavelet [25]. All

of these approaches give a more versatile choice of

transform suitable to particular cases and applications.

However, the particular characteristic of absolute

phase, make the MST more attractive than wavelet
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Figure 2 ST and MST comparaison. (a) Time plot of a three-component signal. (b) The ST of the signal in (a). (c) The MST of the signal in (a).
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when phase need to be estimated (e.g., in coherence

analysis and cross-spectral analysis). It can simulta-

neously estimate the local amplitude spectrum and the

local phase spectrum, whereas a wavelet approach is

only capable of probing the local amplitude/power

spectrum. The MST fully estimates the amplitude of

the signal, in contrast to the CWT which attenuates

high frequencies. The MST can be further improved

by dealing with issues such as fast algorithms, redun-

dancy of representations, Hilbert space properties,

resolution of the identity, among others [7].

4 Cross-MST and phase synchrony
4.1 Motivation and illustration

As mentioned above, the MST phase preservation

characteristic is an advantage that allows a cross spec-

trum analysis in a local manner. Let’s consider two sig-

nals measured by two sensors separated by a known

distance. What these two sensors see is the same sig-

nal, but with a time shift in the arrivals as well as

noise. Since the MST localizes spectral components in

time, the cross correlation of specific events on two

spatially separated MSTs gives the phase difference

and hence the phase synchrony can be estimated. The

amplitude of the cross-MST indicates coincident or

partly overlapped signals. The phase of the cross-MST

at local maxima indicates the phase difference between

them. The cross-MST of two signal x(t) and y(t) is

defined as follows [18]

crossMST(t, f ) = MSTx(t, f ).MSTy(t, f )∗ (23)

where ()* denotes the complex conjugate.

The phase of the cross-MST is given by

arg(crossMST) = φx(t, f ) − φy(t, f ) (24)

Three key properties of the MST that make the cross-

MST useful are detailed below.

(1) The MST translation property in time and fre-

quency: As mentioned in [18], the ST (or MST) time

translation property is similar to what Fourier transform

states that is: if

x(t) ⇔ MST(t, f ) (25)

As MST preserve the same translation property as

Fourier transform, if we translate x(t) by an amount r

we obtain

x(t − r) ⇔ MST(t − r, f )e−j2π fr (26)

The above equation shows that the phase difference

between two signals is equivalent to the cross-power

spectrum. By Taking the inverse MST transform of the

representation in the frequency domain, the

displacement between two signals can be easily obtained

(phase correlation technique).

(2) The MST phase shift: According to [18], if we con-

sider a sinusoidal signal x(t)

x(t) = ej2π f0t (27)

with a spectrum

X(ν) =
1

2
δ(ν − f0) (28)

Using Equation (13), The MST of x(t), is given by

MSTx(t)(t, f ) =

∫

δ(ν + f − f0)e

−2π2ν2

f 2
ej2πνtdν

(29)

which results in:

MSTx(t)(t, f ) =
1

2
e

−(f − f0)2

(

f
2π

)2

ej2π(f−f0)t
(30)

(3) Phase in the cross-MST: if we introduce a constant

phase shift into x(t), we get

y(t) = x(t)ejφ = ej2π f0t+jφ (31)

with a resulting spectrum

Y(ν) =
1

2
δ(ν − f0)ejφ (32)

this will also introduce a phase shift in the modified

ST

MSTy(t)(t, f ) =
1

2
e

−(mf + k − f0)2

(

mf+k
2π

)

ej2π(mf+k−f0)tejφ
(33)

The three above properties indicate that we can per-

form a cross spectral analysis between x(t) and y(t) by

multiplying the MST of x(t) with the complex conjugate

of the modified ST of y(t) as follows

crossMST(t, f ) =
1

2
e

−(mf + k − f0)2

(

mf+k
2π

)2

ej2π(mf+k−f0)t

1

2
e

(mf+k−f0)2

⎛

⎝

mf + k

2π

⎞

⎠

2

e−j2π(mf+k−f0)te−jφ

(34)

Which simplifies to:

crossMST(t, f ) =
1

4
e−jφ (35)
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hence, the phase of cross-MST is clearly given by

Phase{MSTxMST∗
y } = −φ (36)

The above derivation shows that we can use the cross

spectral property to detect a time lag between the two

signal as a function of t and f. A similar attempt was

made in [26,27] by using the cross-WVD for represent-

ing non-stationary processes.

4.2 Illustration on simulated signals
Let’s consider the signal x(t) given in Figure 2 with

1,000 samples length and sampled at 1 kHz; it includes

three lower (100Hz), medium (200Hz), and high fre-

quency (400Hz) components; consider also another sig-

nal y(t) with similar three components except that the

higher component is translated and partly overlaps in

time with the higher component of x(t) (see Figure 2a).

The higher components are out of phase (the x(t) com-

ponent is a cosine function, the y(t) component is a sine

function). The lower and medium components of the

two signals are in phase. Figure 3 shows the two signals

x(t) and y(t) and their related MSTs. Figure 4 shows the

cross-MST of the signals x(t) and y(t) corresponding to

the two MSTs in Figure 3c,d. The figure indicates that,

for the higher component, only the overlapped part in

time is detected, as expected.

In a similar way to co-spectrum analysis, the real

part of the cross-MST gives the in-phase components

of the local spectra and the imaginary part of the

cross-MST gives the in-quadrature components. Fig-

ures 5a,b show the Co-MST and the Quadrature-

MST amplitudes corresponding to the two signals x

(t) and y(t), respectively. In the co-MST (Figure 5a),

only the features that are in phase are present–those

being the low and the medium frequency compo-

nents. The higher frequency (which is out of phase)

does not appear. In the quadrature-MST plot, only

the out-of-phase components appear, which is the

higher frequency component. As the example above

was only for illustration, where the used signals have
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straight and linear IF components and there is no

noise; these results show that it is possible to study

the coherence with sufficient high resolution using

the cross-MST, whether for amplitude or phase cou-

pling between two different spatially recorded com-

ponents or signals.

5 Application to EEG seizure prediction
5.1 Phase synchrony information

The nonlinear interdependencies between fluctuations of

brain physiological activities EEG-based recordings were

intensively studied in pairs, and the synchrony flow differ-

ences were compared [28]. It was shown in [29] that a

neurological disorder in the brain can be detected by the

random occurrence of its clinical manifestations, i.e., the

seizure. There is also evidence that the nonseizure (inter-

ictal) to seizure (ictal) transition is not an abrupt phenom-

enon [29]. Hence, to provide a valuable insight into such

mechanism, identification of early changes in EEG signals

[28] can be used for prediction, prevention, and control of

upcoming seizures. Different approaches have been

employed for seizure prediction in the past. Some limited

techniques based on visual inspection of the EEG signals

or on linear methods have failed to detect specific and

sustained changes preceding seizures [28]. Other methods

reported some changes based on the spectral contents

[29], complexity [30], or spatio-temporal patterns of spikes

[31]. Other recent approaches applied to newborn EEG-

based seizure detection have been proposed such as time-

frequency signal processing [32,33], and nonlinear signal

processing [34,35].

Neuroscientists claim that when a focal seizure is gen-

erated, synchronized brain activity is initially observed

only in a small area of the brain; and, from this focus,

the activity spreads spatially out to other brain areas in

the temporal lobe over time [29]. Involving the seizure

focus spread into its surrounding, a hyper-synchronous

state happens and neighboring areas lose their synchro-

nization with the other cortical regions around them

[36]. In consequence, the seizure focus becomes isolated

from the rest of the brain dynamics, making the consid-

ered population of neurons inactive. Methods to track

these changes using coherence and synchronization are

being explored using EEG, for the purpose of predicting

an impending seizure [36]. Phase synchronization was

also shown to be a sensitive indicator of coupling

between signals and as an important factor in the gen-

esis of epileptic phenomenon [36]. Many studies suggest
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Figure 4 Cross-MST of the two signals x(t) and y(t) MSTs given in Figure 3c,d, respectively.
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an underlying correlation between neuronal synchroni-

zation and seizure development and onset [36,37]. Thus,

the concept of phase synchrony helped to measure the

synchrony evolution while the amplitude of the signals

remained uncorrelated. In contrast with cross-correla-

tion that measures linear relationships only, a phase

coupling approach is able to show the presence of non-

linear coupling [38]. Moreover, phase synchrony can be

used for non-periodic and for chaotic signals such as

EEG [8,39]. Some authors used HT to measure phase

synchrony between two signals [37,38,40]. However, the

use of the HT assumes the signals have a narrow fre-

quency band [1, p. 14], and it is not straightforward to

extend the same analysis for broadband data. This

assumption is usually seen to be ignored in the context

of biomedical signals like the EEG [41]. As EEG signals

are sometimes broadband (1-100 Hz) [41], the HT may

not be able to correctly estimate the instantaneous

phase of broadband signals. This raises the concern that

the broadband phase synchronization analysis may lead

to a misinterpretation of the results [41]. Therefore,

when the signal is broadband it is necessary to pre-filter

it in the frequency band of interest before applying the

HT, in order to get an better estimate of the phase [42].

Some authors used wavelet-based approach to analyze

phase synchrony between pairs of EEG signals

[13,43-45]. These time-varying measures of phase syn-

chrony using wavelet or HTs are similar in their results.

Both give a sharper phase synchrony estimates over

time and frequency, especially at the low frequency

range [46]. Although the wavelet and Hilbert based

phase synchrony estimates address the issue of non-sta-

tionarity of EEG signals, they suffer from limited time-

scale resolution due to the limited number of available

scales in the case of wavelets and the narrowband

assumption in the case of HT. Moreover, the role of

phase in wavelet analysis is not as well understood as it

is for the Fourier transform, especially for orthonormal

wavelet representations. Current complex wavelets such

as Daubechies, dual tree, and Shannon wavelets do not

have a direct relationship to the signal spectrum [18].

For these reasons, this article proposes to use the MST

and the cross-MST to analyze the phase synchrony with

the required resolution and with meaning, as the phase

in the ST is meaningful and has the same concept as in

the Fourier transform approach.
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Figure 5 co-MST and quadrature-MST. (a) The extracted in-phase components of x(t) and y(t). (b) The extracted out-of-phase components of

x(t) and y(t).
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5.2 Coherence analysis using cross-MST for simulated EEG

seizure

Due to its non-stationarity characteristic, the newborn

EEG seizure was modelled in the time-frequency

domain [47-49]. using time-frequency characteristics

previously identified in the newborn EEG seizure. Three

models of newborn EEG seizure simulation were pre-

viously proposed. One model is based on some physio-

logical parameters of the brain and utilises a stationary

sawtooth waveform [50]. This approach is extended in

[47] to incorporate a single linear frequency modulation

(LFM) signal. Another piecewise LFM model was

defined for seizure based on non-stationary inputs to a

nonlinear model [51]. We propose here a method of

newborn EEG seizure analysis using the piecewise LFM

pattern outlined in [47-50] to simulate the nonstationary

behavior of the newborn EEG seizures.

The simulated signal is composed of several piecewise

LFM components with different LFM slope parameters.

Figure 6a represents three LFM piecewise signal with

added Gaussian noise simulating the EEG seizure and

the corresponding MST analysis. Figure 6b represents

another three LFM piecewise signal with its MST, simi-

lar to the one in Figure 5a except that the last compo-

nent is out of phase compared to the two other

components which are in phase in the two signals

(More details are given in Appendix 2).

Key parts of the commented Matlab® code written to

implement this method are given in Appendix 2.

Figure 7a represents the real part of the cross-MST of

the two MSTs in Figure 6. We can see clearly that only

the in-phase components are detected. However, in

Figure 7b, only the out-of-phase component is detected

(the third component). Key parts of the commented

Matlab® code written to implement this method are

given in Appendix 1. Cross-MST of the Simulated EEG

seizure showing the in-phase components (a) and the

out-of-phase component (b).

5.3 Coherence Analysis using cross-MST for newborn EEG

data

5.3.1 Background and analysis

The data was acquired using a 20-channel Medelec Pro-

file system (Medelec, Oxford Instruments, Old Woking,

UK) at 256Hz sampling rate and marked by a pediatric

neurologist from the Royal Children’s Hospital, Bris-

bane, Australia. The experiment was conducted as part

of a long term collaboration between Prof. Boashash,

Director of the SPRC and Prof. Paul Colditz, Director of

the Perinatal Research Centre at the University of

Queensland. Measurements were made from a number

of sick babies and this work was previously reported in

[52]. Five monopolar channels (O1, O2, P3, P4, Cz) out

of the 14 recorded signals according to the 10-20 stan-

dard [53] modified for newborn subjects were selected

from newborn EEG dataset. The data were analysed to

investigate the coherence and phase coupling interhemi-

spheric and intrahemispheric interactions during an

EEG seizure period. Figure 8a shows the 10-20 standard

map of the 20-channel EEG recorder.

To study the phase coupling between the five chan-

nels; we apply the MST to the five signals recorded

from the five channels corresponding to P3, P4, O1, O2,

and Cz, respectively. The location of the electrodes for

Figure 6 Simulated EEG seizure and its MST analysis. The third component in (a) is a cosine function, the third component in (b) is a sine

function, the meeting points are shown by arrows in the signal time plot around 10 and 15s.
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the five channels is shown in Figure 8a. Then, we apply

the cross-MST function to analyze the in-phase and

out-of-phase components in time-frequency space

between the five channels. As mentioned previously, the

real part of the cross-MST function gives the in-phase

components of the local spectra; and the imaginary part

of the cross-MST function gives the in-quadrature com-

ponents. Figure 8 show the in-phase components for the

connectivity between channels. From the all 25 possible

connectivities shown, Figure 9 indicates that a strong

phase synchrony exist in the last few seconds of the

recording. This is shown by a peak in the real cross-

MST images around 90s. This is in agreement with the

recorded signals shown in the time domain (see Figure

8b) as at the corresponding time (90 s) a peak with high

amplitude is appearing in the signals. This may explain

that at this time (around 90s) the pulses coming from

different group of neurone are in phase and when they

are added together, the sum results in high peak ampli-

tude. This interpretation will not be possible if we just

look at the signals amplitude from Figure 8b. The time

signals recorded amplitude does not give a phase infor-

mation to justify the synchrony; however, the cross-

MST shows clearly this phase synchrony by a high peak

amplitude in the real part present in the connectivity

images (Figure 9).

Figure 7 Cross-MST EEG. Cross-MST of the simulated EEG seizure showing the in-phase components (a) and the out-of-phase component (b).

Figure 8 EEG 5 channels. (a) The 10-20 standard map for 20-channel EEG recorder (taken from: http://faculty.washington.edu/chudler/1020.

html), (b) the recorded signals from the five channels.
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Figure 10 represents the imaginary part of the cross-

STs which reveal the out-phase behavior between the

five channels. Note that there is no activity in the diago-

nal images of Figure 10. This is because the diagonal

represents the self-coherence between the five channels,

hence there is no out-of-phase in this case; which is

consistent as a signal can’t be out-of-phase with itself.

From the off-diagonal images, we can see that most of

the channels exhibit an out of phase behavior mostly in

the period 40-80 s corresponding probably to the

important duration of the appearance of the seizure.

Some out-of-phase components are also present before

this 40-80 s period in some channels, which can be

explained by the fact that the seizure is not appearing in

the same time and with the same way in the spatially

different parts of the brain from where the EEG signals

are recorded. The end of seizure can be explained by

the disappearance of the out-of-phase components and

the appearance of the out-of-phase components.

5.3.2 Results, discussion and interpretation

The results on the real newborn EEG data show that the

cross-ST can be used as a effective tool to study the

phase coupling between channels. These results suggest

that during the seizure period, all the components lose

synchrony and are out of phase. This can be seen like a

disorder in the neuronal activity during the seizure

interval. This observed irregularity in the time-frequency

patterns during the seizure period (40-80 s) between

two hemispheres in the posterior area suggest that dif-

ferent regions and not only one specific region may be

causing the seizure. In contrast, the components (neural

activity) became synchronized again after the seizure

activity vanishes. This EEG seizure application demon-

strates that the time-frequency coherence is an appro-

priate tool to study the phase coupling between

different signals recorded from different spatially sepa-

rated electrodes. This study is performed by the cross-

MST which has a referenced phase at the origin, a prop-

erty that allows the study of phase coupling and time-

frequency coherence between the neuronal activities.

Although the cross-MST represent a good candidate

tool to analyze such coupling behavior, this methodol-

ogy can be extended to other cross-time-frequency

methods with high time-frequency resolution such as

the QTFDs. In particular, the time-frequency coherence

using the cross-WVD has a useful property for cross

spectral analysis, and can be interpreted as a time and

frequency dependent correlation coefficients [26].

6 Conclusions and perspectives
This article applies the concept of time-frequency

coherence using the cross-MST which is a time-

Ch1−−−>Ch1

0 0.2 0.4
0

20
40
60
80

Ch1−−−>Ch2

0 0.2 0.4
0

20
40
60
80

Ch1−−−>Ch3

0 0.2 0.4
0

20
40
60
80

Ch1−−−>Ch4

0 0.2 0.4
0

20
40
60
80

Ch1−−−>Ch5

0 0.2 0.4
0

20
40
60
80

Ch2−−−>Ch1

0 0.2 0.4
0

20
40
60
80

Ch2−Ch2

0 0.2 0.4
0

20
40
60
80

Ch2−−−>Ch3

0 0.2 0.4
0

20
40
60
80

Ch2−−−>Ch4

0 0.2 0.4
0

20
40
60
80

Ch2−−−>Ch5

0 0.2 0.4
0

20
40
60
80

T
im

e
 (

s
e

c
)

Ch3−−−>Ch1

0 0.2 0.4
0

20
40
60
80

Ch3−−−>Ch2

0 0.2 0.4
0

20
40
60
80

Ch3−−−>Ch3

0 0.2 0.4
0

20
40
60
80

Ch3−−−>Ch4

0 0.2 0.4
0

20
40
60
80

Ch3−−−>Ch5

0 0.2 0.4
0

20
40
60
80

Ch4−−−>Ch1

0 0.2 0.4
0

20
40
60
80

Ch4−−−>Ch2

0 0.2 0.4
0

20
40
60
80

Ch4−−−>Ch3

0 0.2 0.4
0

20
40
60
80

Ch4−−−>Ch4

0 0.2 0.4
0

20
40
60
80

Ch4−−−>Ch5

0 0.2 0.4
0

20
40
60
80

Ch5−−−>Ch1

0 0.2 0.4
0

20
40
60
80

Ch5−−−>Ch2

0 0.2 0.4
0

20
40
60
80

Normalised Frequency (Hz)

Ch5−−−>Ch3

0 0.2 0.4
0

20
40
60
80

Ch5−−−>Ch4

0 0.2 0.4
0

20
40
60
80

Ch5−−−>Ch5

0 0.2 0.4
0

20
40
60
80

Figure 9 The phase synchrony between the five channels using the real part of the cross-MST.
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varying cross-spectral analysis method obtained by

extending the S-transform. The article demonstrates

the ability of this time-frequency coherence using the

cross-MST to study the functional neuronal phase syn-

chrony between channels. The performance of the

phase synchrony estimation using the cross-MST are

evaluated both by simulated EEG seizure using a piece-

wise LFM signal to extract the in and out-of-phase

components, and through the analysis of seizure EEG

abnormalities in the newborn, where the dynamics of

brain changes rapidly and the neurones lose their syn-

chrony during seizure. Both the simulated and new-

born results show cross-MST phase and synchrony

estimation to be more robust to noise. The resolution

obtained by the MST shows almost twofold improve-

ment over the standard ST approach. Future work will

concentrate on a comparison study between the pro-

posed method and other existing time-frequency tech-

niques such as Wigner-Ville and QTFDs based

methods, for both simulated and real EEG data to

develop more efficient time-varying phase and syn-

chrony estimation for nonstationary signals, and such

results will appear elsewhere. The proposed method

can be extended to other physiological problems where

the phase coupling is relevant, such in cardio-respira-

tory relationship, for example, where the coupling can

be affected by cardio-vascular diseases.
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Appendix
1 Computing the MST

% Compute the MST
[M,N]=size(sig); % get the

length of the signal
N2=fix(N/2); j = 1;
if N2*2==N; j = 0;end
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Figure 10 The out-off-phase (asynchrony) between the five channels using the imaginary part of the cross-MST.
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f=[0:N2 -N2+1-j:-1]/N; %frequency
MST=zeros(N2+1,N); %allocate mem-

ory for positive frequencies of MST.
SIG=fft(sig,N); %compute the sig-

nal spectrum
g=(1/N)*f+4*var(sig); %parameter

gamma
for i = 2:N2

SIGs=circshift(SIG,[0,-(i-1)]); %
circshift the spectrum SIG

W=(g(i)/f(i))*2*pi*f; %
Scale Gaussian

G=exp((-W.^2)/2); %W in
Fourier domain

MST(i,:)=ifft(SIGs.*G); %Com-
pute the complex values of MST

end
imagesc(abs(MST)’);
set(gca,’Ydir’,’Normal’); %default Y

axis in imagesc is inverted.
2 Generation of piece-wise LFM

%Piecewise LFM chirp generation for EEG
Seizure simulation
fs = 50; %Sampling frequency
t1=(-5:1/50:5); t2=(-2.5:1/50:2.5); t3=

(-5:1/50:5); % time for the first,
% the second and the

% third segment
t=[t1 t2 t3]; % total time

for the Piecewise LFM.
f00 = 2.626; f01 = 1.83; f10 = 1.751; %

start frequencies
a1=-0.7; a2=-0.6; a3 = 0.2; % chirp

rates or slope
ph1 = 2*pi*f00*t1+0.5*a1*t1.*t1; %

quadratic phase of piecewise LFM1
ph2 = 2*pi*f01*t2+0.5*a2*t2.*t2; %

quadratic phase of piecewise LFM2
ph3 = 2*pi*f10*t3+0.5*a3*t3.*t3; %

quadratic phase of piecewise LFM3
lfm1=exp(1i*ph1);lfm2=exp(1i*ph2);

lfm3=exp(1i*ph3); %generate piecewise
LFMs
lfm=[real(lfm1) real(lfm2) imag(lfm3)];

% put all in one signal LFM.
sig=lfm+0.2*randn(length(lfm),1)’; %

add gaussian noise
3 Computing the cross-MST

%The cross-MST, co-MST and quadrature-
MST
%Computing the Cross-MST of two signal x

(t) and y(t)
%having as modified ST: MST1 and MST2,

respectively.

% 1.Compute MST1 and MST2 using the
related code in appendix A.
% 2.Compute the cross-MST between MST1

and MST2
cross MST = MST1.*conj(MST2); %Get the

cross-MST.
% 3. Get the out-of-phase components
imagesc(imag(cross_MST)); set

(gca,’Ydir’,’Normal’)
% 4. Get the in-phase components
imagesc(real(cross_MST)); set

(gca,’Ydir’,’Normal’)
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