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We propose an approximate method for evaluating the importance of non-Born–Oppenheimer
effects on the quantum dynamics of nuclei. The method uses a generalization of the dephasing
representation �DR� of quantum fidelity to several diabatic potential energy surfaces and its
computational cost is the cost of dynamics of a classical phase space distribution. It can be
implemented easily into any molecular dynamics program and also can utilize on-the-fly ab initio
electronic structure information. We test the methodology on three model problems introduced by
Tully and on the photodissociation of NaI. The results show that for dynamics close to the diabatic
limit, the decay of fidelity due to nondiabatic effects is described accurately by the DR. In this
regime, unlike the mixed quantum-classical methods such as surface hopping or Ehrenfest
dynamics, the DR can capture more subtle quantum effects than the population transfer between
potential energy surfaces. Hence we propose using the DR to estimate the dynamical importance of
diabatic, spin-orbit, or other couplings between potential energy surfaces. The acquired information
can help reduce the complexity of a studied system without affecting the accuracy of the quantum
simulation. © 2010 American Institute of Physics. �doi:10.1063/1.3451266�

Introduction. The nonadiabatic effects play an important
role in many chemical phenomena and often must be taken
into account in accurate calculations of molecular properties
such as spectra or reaction rates.1 Many nonadiabatic quan-
tum �QM� simulations are performed in the diabatic �or qua-
sidiabatic� basis, which offers several computational advan-
tages, especially in the vicinity of conical intersections of
adiabatic potential energy surfaces �PESs�. Usually, more
PESs must be included to describe a system of interest accu-
rately. One may ask: Which diabatic surfaces are important?
How much is the result affected by neglecting the less im-
portant surfaces? The method we propose below quantifies
the importance of couplings between PESs and thus can help
in answering these questions.

A direct way to determine whether the coupling of di-
abatic PESs affects the result of a simulation is to compute
the desired quantity by running QM dynamics for both the
uncoupled and coupled systems and to compare the results.
Here, we propose a more general approach, which can give
the information about the importance of couplings for all
observables at the same time. It consists in comparing the
wave functions by computing the QM fidelity, defined as2

FQM�t� = �f�t��2 = ���0�t���p�t���2. �1�

In the general setting, �0�t� and �p�t� are wave functions
evolved in the unperturbed and perturbed systems, respec-
tively. In our case, the “unperturbed” represents the un-
coupled system, “perturbed” the coupled system, and � de-
notes the full molecular wave function, i.e., it includes both
nuclear and electronic degrees of freedom. Values of FQM�t�

close to unity imply that the perturbation is not important:
The uncoupled Hamiltonian can be used in quantitative
simulations. Values significantly below unity imply that the
perturbation is important: The affected PESs and couplings
should be included in the simulation.

Instead of computing fidelity directly from the definition
�1�, one can use the dephasing representation �DR�,3–5 which
is an efficient semiclassical approximation of fidelity.6,7 Re-
cently, the DR was used successfully to evaluate the accu-
racy of QM dynamics on a single but approximate PES.8,9

Below, we generalize this method to several surfaces and use
it to evaluate how the dynamics is affected by couplings
between the diabatic PESs.

Unlike the computational cost of a direct QM calcula-
tion, the cost of the DR does not grow exponentially with the
number D of degrees of freedom.5,8 Hence, the DR can be
used for many-dimensional systems inaccessible to current
methods of QM dynamics. An advantage of the DR in com-
parison with mixed QM-classical methods for nonadiabatic
dynamics, such as the Ehrenfest dynamics, various surface
hopping methods,10,11 or methods in which the classical limit
is obtained by the linearization of the QM propagator,12 is
that the DR, being a semiclassical method, takes the nuclear
coherence effects into account at least approximately. Other
semiclassical approaches to nonadiabatic dynamics exist, in-
cluding, among others, the multiple-spawning methods13 or
methods14 based on the Miller–Meyer–Stock–Thoss classical
electron model. The advantage of the DR is that unlike the
majority of semiclassical approaches, the DR does not re-
quire the Hessian of the potential energy, which is the most
expensive element of first-principles semiclassical dynamics
methods �see, e.g., Ref. 15�.a�Electronic mail: jiri.vanicek@epfl.ch.
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Clearly, the above-mentioned advantages do not come
for free. First, unlike most other approaches noted above, the
DR is not a general dynamical method. It can only describe
properties expressible in terms of fidelity. Second, the DR in
the diabatic basis is expected to work accurately mainly
when the coupling is relatively weak or the nuclear velocities
are large, i.e., when the dynamics is close to the diabatic
limit. Nevertheless, in many cases, the DR works very well
even for strong perturbations that lead to completely differ-
ent classical phase space distributions for uncoupled and
coupled Hamiltonians.

Applications for which the DR method is particularly
well suited include the chemical reactions which proceed
near the diabatic limit. The photodissociation of bromopro-
pionyl chloride or bromoacetyl chloride16 serve as examples.
Another possible application would be to quantify the rela-
tive importance of Hamiltonian coupling terms of various
origins, e.g., of the spin-orbit versus diabatic couplings. For
instance, in the Cl�2P�+H2 reaction, the spin-orbit coupling
terms clearly dominate over diabatic couplings, which can
therefore be neglected in a simulation.17

Theory. The starting point is the Hamiltonian describing
nuclear motion in a molecule, expressed in the diabatic basis.
To compute the decay of fidelity due to the coupling between
n PESs, the Hamiltonian n�n matrix is split into the un-

coupled �i.e., diagonal� part Ĥdiag and the coupling �i.e., off-

diagonal� part �V̂,

Ĥ = Ĥdiag + �V̂ , �2�

Ĥdiag = T̂ + V̂diag and �V̂ = V̂offdiag. �3�

In Eq. �3�, T̂ is the diagonal nuclear kinetic energy matrix

and V̂diag contains the diabatic PESs, which are uncoupled in

Ĥdiag and coupled in Ĥ by the elements of V̂offdiag. �Bold face

denotes n�n matrices; hat ˆ denotes operators.�
To derive the DR, one starts from the expression for QM

fidelity amplitude, applicable to both pure and mixed states5

and generalized to the multi-PES setting

fQM�t� = Tr�e−iĤdiagt/��̂e+iĤt/�� , �4�

where �̂ is the density operator of the initial state. General-
izing the derivation from Ref. 18, fidelity amplitude can be
written exactly as

fQM�t� = Tr� dx�W�x� · �e+iĤt/�e−iĤdiagt/��W�x� , �5�

where �W is the Wigner transform of the initial state �̂

��W�ij�x� = h−D� d�	q −
�

2

�̂
q +

�

2
�exp�i

� · p

�

 ,

and x denotes the point �q , p� in the 2�D-dimensional phase
space. Approximating the Wigner transform of the product of
the time-evolution operators, one arrives at the DR expres-
sion

fDR�t� = Tr�� dx0�W�x0� · e−i�S�x0,t�/�� , �6�

�S�x0,t� = �
0

t

d��VW�x��x0�� , �7�

where �S�x0 , t� is the action at time t due to Wigner repre-

sentation �VW of �V̂ along the trajectory x� of Hdiag. Note

that �VW, �S, and �W are matrix quantities. If �V̂ contains

only diabatic coupling elements, then �V̂��V�q̂� and
�VW�x�=�V�q�. For initial Gaussian wave packets, the
Wigner function equals the classical phase space density
which is strictly a probability distribution.

Since Tr�dx0�W�x0�=1, it follows from Eq. �6� that
fDR can be computed as a Monte Carlo average
�exp�−i�S�x0 , t� /����W�x0�, with initial conditions sampled
from the Wigner distribution �W�x0� of the initial state. How-
ever, as �S in Eq. �7� is much smaller than the action in
other semiclassical methods, the DR alleviates the notorious
“sign problem.”

If the initial state lies on a single surface n, i.e., if
��W�nj =0 and ��W� j j =0 for j�n, then no other elements of
V=Vdiag+Voffdiag than Vnn and Vnj , j�n enter the calcula-
tion. This means that no information about other diagonal
elements Vjj is used in the DR calculation. Thus, except for
special cases, FDR is expected to approximate FQM accu-
rately only when the detailed structure of the remaining PESs
does not significantly affect the dynamics on Vnn.

Results and Discussion: Tully’s model problems. First,
the method is tested on three one-dimensional model poten-
tials proposed by Tully11 to cover the most important char-
acteristics of nonadiabatic transitions. Diabatic and adiabatic
PESs as well as the coupling terms V12 for Tully’s problems
A and C are shown in Figs. 1 and 2; further details can be
found in Ref. 11.

In all cases, the initial wave packet was a Gaussian with
approximately 10% dispersion in momentum and located on
the lower �problems A and B� or upper �problem C� energy
diabatic PES in the asymptotic region without diabatic cou-
plings. The equations of motion were integrated until the
wave packet left the interaction region.

The simple avoided crossing model �problem A in the
original paper11� represents the most often encountered situ-
ation. As can be seen in Fig. 1, the survival probability
P1,QM=Tr�̂11�t� on the initial PES is nearly equal to the QM
fidelity, suggesting that the fidelity decay is caused almost
exclusively by the transition to the second diabatic PES.
Close to the diabatic limit, FDR accurately reproduces FQM.
In practice, the error of FDR comes from the intrinsic error of
the approximation and from the statistical error due to the
finite number of trajectories. In this case, the intrinsic rela-
tive error is �0.5% when fidelity decays by 10% to 0.9, and
even less for the wave packets with higher initial momentum
and hence fidelity. The relative statistical error remains be-
low 1% even when only a single trajectory is used, since
most of the fidelity decay is due to the transitions to the
second surface. For slower wave packets, fidelity decreases,
and the agreement between FQM and FDR stays qualitative,
with FDR always decaying faster than FQM. Finally, for a
fixed initial momentum, decreasing the coupling V12 results
in a slower decay of fidelity but the relative error of
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1−FDR, i.e. �FQM−FDR� / �1−FQM� is approximately inde-
pendent of the coupling. Conversely, if V12 is increased sub-
stantially, fidelity initially decays quickly to zero, which is
captured well by the DR. Subsequently, fidelity may rise
again, which is usually not well reflected by the DR.

In the dual avoided crossing model �problem B, not
shown�, the DR works best again for high energy wave pack-
ets. For those, the detailed structure of the second PES does
not significantly affect the motion on the first PES. At low
energies, where a significant transfer of probability density to
the diabatic surface V22 and back occurs, the DR fails to
reproduce the QM fidelity even qualitatively. Nevertheless,
in this case, both FDR and FQM initially decay almost to zero
�although they might rise again later�, correctly reflecting
that the coupling is important and should not be neglected.

A very interesting situation occurs in the extended cou-
pling model �problem C�, where the two diabatic PESs V11

and V22 are almost equal �they differ just by a small constant
shift� but the adiabatic surfaces are well separated due to the
coupling. At very low energies of the wave packet �Fig.
2�b��, fidelity F goes to zero despite that the survival prob-
ability P1 on the upper surface remains close to unity. There-
fore, in contrast to previously discussed cases, it is not pos-
sible to estimate the extent of the nondiabaticity of QM
dynamics on the basis of electronic transitions only. Unlike
survival probability, fidelity describes the nondiabaticity ef-
fects on the coherent nuclear dynamics correctly. It is re-
markable that the DR describes F so accurately despite that

the DR dynamics on the diabatic surface ignores the reflec-
tion of a large part of the QM wave packet from the upper
adiabatic surface. The decrease of fidelity is correctly cap-
tured by FDR for all energies of the wave packet. At higher
energies �Fig. 2�c��, fidelity converges to zero after several
oscillations, whereas the survival probability converges to
1/2. At very high energies �not shown�, two wave packets
moving on the two PESs interfere for a long time; FDR and
FQM agree and oscillate between zero and unity. Surface hop-
ping and Ehrenfest dynamics might predict P1 quite well, but
since V11�V22, surface hopping would incorrectly predict
that F� P1. While Ehrenfest dynamics would predict a decay
of F below P, it is unlikely that it would capture F quanti-
tatively since the QM wave packet splits into faster and
slower components, whereas Ehrenfest dynamics uses a
single mean-field surface. One of the reasons why the DR
performs so well in the extended coupling model is the simi-
larity of the diabatic PESs in the coupling region. If the
surfaces are different, e.g., when V22=cx, the fidelity decay
at low energies is still well approximated. However, at higher
energies, FDR oscillations slowly dephase from FQM, since
the DR neglects effects of V22.

Photodissociation of NaI. We also applied the methodol-
ogy to the photodissociation of NaI using a two-
surface model of Engel and Metiu19 �see Fig. 3�. In the
original experiment of Mokhtari et al.,20 the molecule was
excited by the light in the 310–390 nm range, which led to
only a weakly nonadiabatic motion of the wave packet
on the excited surface. In this regime �corresponding to
T0�0.07 a.u. at the plateau of the PES�, far from the diaba-
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FIG. 1. Fidelity in Tully’s problem A. �a� The diabatic and adiabatic PESs
and the diabatic coupling. ��b� and �c�� QM fidelity FQM, the QM survival
probability P1,QM on the initial PES, and FDR as functions of time for two
different values of initial kinetic energy T0.
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FIG. 2. Fidelity in Tully’s problem C.
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tic limit, FDR does not quantitatively reproduce FQM. How-
ever, when the momentum is approximately ten times higher
and the dissociation of NaI is almost diabatic, FDR repro-
duces FQM rather well �Fig. 3�b� and 3�c��.

Computational details. QM dynamics calculations used
the first-order split operator method. Classical trajectories
were computed using the first-order symplectic Euler algo-
rithm. The time step varied from 0.02 to 1 a.u., depending on
the system and initial momentum.

To guarantee convergence, 16 384 classical paths were
used to produce the DR plots. The statistical error of fDR for
a two-surface system due to a finite number N of paths is
given by

�stat
2 =

1

N
��cos2�	�� − �cos�	��2� , �8�

where 	=�S12�x0 , t� /� is the phase accumulated along a tra-
jectory and �cos�	��= fDR. As demonstrated on Tully’s model
A, where a single trajectory was sufficient, a much lower
number of trajectories than 16 384 is needed to obtain an
accurate estimate of fidelity in cases where fidelity stays
close to unity. Equation �8� implies that for a given value of
�stat and fDR, the number N of trajectories needed is approxi-
mately independent of dimensionality.

Conclusions. Presented results demonstrate the utility of
the DR in analyzing the molecular QM dynamics involving
multiple PESs. On one hand, in the nearly diabatic regime,
FDR accurately approximates FQM. On the other hand, in sys-
tems far from the diabatic limit, FDR decays quickly to zero

and thus detects the importance of nondiabatic couplings al-
though it may not reproduce FQM accurately. Hence, the
method can be used to establish the level of nondiabaticity of
QM dynamics, without the need for a QM dynamics simula-
tion. In fact, we propose the condition F�1 �instead of the
standard requirement of high survival probability� as the rig-
orous definition of the diabatic limit �see Fig. 2�. Neverthe-
less, for single avoided crossings, e.g., fidelity could be used
to estimate the survival probability and hence the branching
ratios �see Figs. 1 and 3�.

The DR calculation can be performed easily for all sys-
tems accessible to classical molecular dynamics and for
which coupling elements Vij , i� j are available. However, it
remains to be verified how the method will perform in
higher-dimensional systems and in systems with more than
two important surfaces. The first issue was partially ad-
dressed in Ref. 8 where the DR was applied to the two-
dimensional photodissociation of CO2, confirming that nei-
ther the accuracy nor the number of classical trajectories
needed are significantly affected by increased dimensional-
ity.

At the moment, we are exploring a related and comple-
mentary problem to that of the present paper, namely,
whether the DR in the adiabatic basis can estimate the level
of nonadiabaticity of QM dynamics near the adiabatic limit.
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FIG. 3. Fidelity in the photodissociation of NaI.

241101-4 T. Zimmermann and J. Vaníček J. Chem. Phys. 132, 241101 �2010�

Downloaded 08 Dec 2010 to 128.178.55.81. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1146/annurev.physchem.49.1.125
http://dx.doi.org/10.1146/annurev.physchem.55.091602.094335
http://dx.doi.org/10.1103/PhysRevA.30.1610
http://dx.doi.org/10.1103/PhysRevE.70.055201
http://dx.doi.org/10.1103/PhysRevE.73.046204
http://dx.doi.org/10.1103/PhysRevLett.88.054103
http://dx.doi.org/10.1103/PhysRevE.68.056208
http://dx.doi.org/10.1063/1.3187240
http://dx.doi.org/10.1063/1.1675788
http://dx.doi.org/10.1023/A:1026458004345
http://dx.doi.org/10.1021/jp0260548
http://dx.doi.org/10.1063/1.459170
http://dx.doi.org/10.1063/1.2976441
http://dx.doi.org/10.1021/jp953105a
http://dx.doi.org/10.1063/1.3103930
http://dx.doi.org/10.1021/jp809907p
http://dx.doi.org/10.1063/1.3155062
http://dx.doi.org/10.1063/1.3155062
http://dx.doi.org/10.1039/ft9949001581
http://dx.doi.org/10.1063/1.2363991
http://dx.doi.org/10.1039/b314189f
http://dx.doi.org/10.1063/1.432555
http://dx.doi.org/10.1016/0301-0104(81)85102-6
http://dx.doi.org/10.1063/1.456377
http://dx.doi.org/10.1038/348225a0

