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In this article, the second-harmonic generation (SHG) from gold split-ring resonators is investigated using differ-
ent theoretical methods, namely, Miller’s rule, the nonlinear effective susceptibility method, and full-wave com-
putation based on a surface integral equation method. The results confirm that Miller’s rule is, in general, not well
suited for the description of SHG from plasmonic metasurfaces. On the other hand, the comparison of the non-
linear effective susceptibility method with full-wave computations shows that this method permits us to evaluate
second-harmonic (SH) emission patterns from noncentrosymmetric nanoparticles with good accuracy. However,
the nonlinear effective susceptibility method fails to reproduce the multipolar nature of the SH emission from
centrosymmetric nanoparticles. This shortcoming is attributed to the intrinsic nature of the nonlinear effective
susceptibility method, which neglects the exact positions of the nonlinear sources. The numerical implementa-
tions of these two methods are also discussed in detail, revealing that the main limitation of the nonlinear
effective susceptibility method, aside from the inaccuracy observed in specific cases, is its higher numerical
requirements when several emitting directions need to be considered. This limitation stands for most of the
numerical methods used for solving Maxwell’s equations at the nanoscale. This work provides clear insight
into the limitations and advantages of the different methods available for evaluation of SHG from plasmonic
metasurfaces. © 2015 Optical Society of America

OCIS codes: (160.3918) Metamaterials; (160.4330) Nonlinear optical materials; (190.2620) Harmonic generation and mixing.

http://dx.doi.org/10.1364/JOSAB.33.0000A8

1. INTRODUCTION

Metasurfaces consist of collections of metamolecules, that is,
subwavelength nanostructures such as plasmonic nanoantennas,
with unusual electromagnetic properties [1–4].Metasurfaces are
able to control the phase, amplitude, and polarization of light
despite their thickness, which is shorter than the wavelength
[1–4]. Control of the light properties enables the design of
new flat optical components, such as planar lenses [5],
Gaussian-to-Bessel beam transformers [6], broadband filters
[7], and quarter-wave plates [8], to name a few typical examples
of the new possibilities they offer. However, some of the most
common optical components, such as optical isolators [9], are
based on the nonlinearity of their response; thus, it is important
to extend the current understanding of metasurfaces to their
nonlinear properties [10]. Optical nonlinearity results in a broad
variety of nonlinear processes, ranging from frequency conver-
sion (an electromagnetic wave oscillating at a new, harmonic,
frequency is generated from the fundamental wave [11–16])

to the Kerr effect, which results in an intensity-dependent
response [17].

In order to design optical components based on the nonlin-
ear response of metasurfaces, the development of analysis meth-
ods appropriate for the nonlinear regime is mandatory. In this
context, the validity of Miller’s rules [18] for the description of
nonlinear metasurfaces was recently investigated [19]. Indeed,
Miller observed in various piezoelectric crystals that the ratio
between the nonlinear susceptibility and the product of the lin-
ear susceptibility of the same material at the pump and gener-
ated wavelengths is almost constant [18]. This phenomenal rule
was subsequently explained using an anharmonic oscillator
model [20]. In the framework of plasmonics, several attempts
have been made to relate the nonlinear conversion yield of a
plasmonic system to its linear far-field properties (scattering
or reflectance) at the fundamental and generated wavelengths
[Fig. 1(a)]. The anharmonic oscillator model has been success-
fully applied for the determination of the third-order nonlinear
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response, i.e., the third-harmonic generation, for plasmonic
nanoantennas [21] and metamolecules supporting Fano reso-
nances [22]. In the case of the second-harmonic generation
(SHG), Miller’s rule is not always fulfilled and seems to stand
only for plasmonic nanostructures resonant at the second har-
monic (SH) wavelength only, with no resonant behavior at the

fundamental wavelength [23,24]. For example, Miller’s rule is
not able to reproduce either the influence of the metallic split-
ring resonators (SRRs) morphology on the SHG [19,25,26] or
SH emission pattern from complex coupled plasmonic nano-
structures [27]. Although these results seem contradictory at
first sight, the differences in the selection rules for second-
and third-order nonlinear optical processes explain this discrep-
ancy [28,29]. Indeed, SHG in plasmonic nanostructures
involves high-order modes (electric quadrupole [30], electric
octupole [31], and magnetic dipole [32], for example), the con-
tributions of which are not considered in Miller’s rule because
they barely contribute to the linear response. Miller’s rule (and
the anharmonic oscillator model) has a limited range of appli-
cation, and other descriptions of the nonlinear response need to
be considered.

A linear-nonlinear hybrid method, the so-called nonlinear
effective susceptibility method, has thus been proposed as
an alternative to Miller’s rules in order to bridge the gap
between the linear and the second-order nonlinear responses
of plasmonic metasurfaces [19,33]. This method is based on
Lorentz’s reciprocity and attempts to make a direct link
between the linear and the nonlinear responses of a scatterer
[19]. When far-field properties are considered in Miller’s rule,
the nonlinear effective susceptibility method attempts to relate
the nonlinear conversion yield of a plasmonic system to its lin-
ear near-field properties at the fundamental and generated
wavelengths. The nonlinear effective susceptibility method ex-
ploits the equality between the overlap integral of the field
emitted by the nonlinear polarization and a current source
located at the detector position and the overlap integral of
the field emitted by the current source at the detector position
with the nonlinear polarization [33]. This is illustrated in the
case of a SRR in Fig. 1(b), where the red and green arrows re-
present the fundamental excitation and the plane wave propa-
gating from the detector position and oscillating at the SH
frequency, respectively. In other words, the evaluation of the
nonlinear effective susceptibility involves the computation of
the fundamental electric field and the nonlinear surface polari-
zation, and then the evaluation of the overlap integral between
the nonlinear surface polarization and the electric field induced
by a second incoming plane wave propagating along the SRR-
detector axis with a wavelength equal to half the wavelength of
the pump wave [Fig. 1(b)]. It worth noting that the nonlinear
effective susceptibility method involves the evaluation of the
SH surface polarization, the time derivative of which gives
the SH currents flowing at the metal surface. This method
includes the evaluation of a nonlinear quantity and cannot
be considered as a method permitting us to understand the
nonlinear properties of metasurfaces directly from the linear
ones. It seems fair to classify it as a linear-nonlinear hybrid
method. Although the nonlinear effective susceptibility has
proved itself to be helpful for the interpretation of experimental
results in nonlinear molecular scattering of light [34] and for
the description of the nonlinear response of hybrid semicon-
ductor-plasmonic metasurfaces [35], the limitations of this
approach for the description of the nonlinear response of
pure plasmonic systems have not been discussed in detail
so far, although this discussion is important for the future

Fig. 1. Different methods used for evaluation of the nonlinear re-
sponse of plasmonic systems. (a) Miller’s rule requires the evaluation of
the linear properties at the fundamental and harmonic wavelengths.
Plane wave excitations are generally used. (b) Evaluation of the effec-
tive nonlinear polarization is composed of three steps: (1) the excita-
tion by the fundamental wave; (2) the computation of the nonlinear
polarization; and (3) the evaluation of the overlap integral between the
near field driven by a plane wave propagating from the detector and
oscillating at the harmonic frequency and the nonlinear polarization.
(c) The first two steps for the full-wave computation are the same as in
(b), but the last step consists in the direct evaluation of the emission
pattern of the nonlinear sources applying the required boundary con-
ditions for the nonlinear electromagnetic wave. The surface mesh is the
one used for the SIE simulation reported in this work (R � 0.30).
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development of nonlinear plasmonics. Indeed, the evaluation of
the effective nonlinear susceptibility can be performed with any
numerical method suitable for the computation of the linear
response of plasmonic nanoparticles. As a consequence, the
implementation of this approach in commercially available
electromagnetic solvers (as Comsol Multiphysics, for example)
is possible, making it flexible and accessible to researchers
who are not experts in numerical methods for solving the
Maxwell equations.

In this article, we compare Miller’s rule and the nonlinear
effective susceptibility method with full-wave computations for
the SHG from gold SRRs. All these methods are implemented
using a surface integral equation (SIE) formalism [36,37]. The
aim is to provide clear insight into which nonlinear properties
of metasurfaces can be effectively deduced from these two
methods. In particular, we confirm that the nonlinear effective
susceptibility method permits us to optimize the SRR geometry
for maximal SHG propagating along the incident beam direc-
tion [19]. In the present work, we emphasize the suitability
of the nonlinear effective susceptibility method and investigate
its suitability to reproduce the SHG scattered in different
directions.

2. NUMERICAL METHODS

The linear optical responses of the SRRs have been calculated
using a surface integral formulation [38]. A plane wave
propagating along the z axis is considered in all the computa-
tions. The incident wavelength is λ � 1305 nm. All the nano-
structures are considered in a homogeneous refractive index
n � 1.3, mimicking the presence of a substrate and a 2 nm
ITO layer [19]. The dielectric constants for gold are taken
from experimental data at the fundamental and SH wave-
lengths [39].

In Miller’s rule, the SH intensity is then given by

I SHG ∝ I2x;Scat�ω�I y;Scat�2ω�; (1)

where the subscripts x and y denote an incident wave polarized
along the x and y axes, respectively. A plane wave polarized
along the y axis is chosen at the SH frequency because
SHG polarized along the x axis is forbidden in the forward di-
rection (see below). For the implementation of Miller’s rule, the
scattered electric field is evaluated 50 μm away from the gold
SRRs in the forward direction. Note that the scattered intensity
is used here, instead of the total extinction. Indeed, the extinc-
tion cross section is the sum of the scattering cross section and
of the absorption cross section, meaning that the implementa-
tion of Miller’s rule based on the extinction at the fundamental
and SH frequencies also contains information about the near-
field properties.

In the nonlinear effective susceptibility method, the SH
electric field is given by the following surface integral [19]:

ESHG ∝

ZZ
χsurf ;nnnE

2
n�ω�En�2ω�dS; (2)

where the integration is performed over the SRR surface.
For the sake of simplicity, only the component χsurf ;nnn of
the surface tensor is considered, where n denotes the compo-
nent normal to the surface. Indeed, recent experimental results

indicate that this term dominates the surface response of
metallic nanoparticles [40,41]. The electric fields considered
correspond to the near field for the excitation by the fundamen-
tal wave (E2

n�ω�) and the near field driven by a plane wave
propagating from the detector (En�2ω�). The electric near-field
is evaluated 1 nm away from the metal surface. The SH inten-
sity is obtained by multiplying ESHG by its complex conjugate.

For the full-wave computations of SHG, the magnetic and
electric linear surface currents are used for the evaluation of the
fundamental electric fields just below the gold surfaces and then
utilized for the calculation of the surface SH polarization
[36,37]. The SH surface currents are obtained solving the
SIE formulation, taking into account the nonlinear polarization
and enforcing the boundary conditions at the nanostructure
surfaces [42]. With this method, the SH electric field can
be accurately evaluated in the near- and far-field regions
(Fig. 2). All these methods have been implemented in the un-
depleted pump approximation. The relative computation time
for the effective nonlinear susceptibility method using SIE
to compute the linear response at the fundamental and SH
wavelengths and complete computation of the SHG with

Fig. 2. (a) SH near-field close to two split-ring resonators with
asymmetry ratio R � 0 (top) and R � 0.15 (bottom). The asymmetry
ratio R is defined as the ratio between the length of the side arms Larm
and the effective length Leff . (b) SH intensity from SRRs with asym-
metry ratio R ranging from 0 to 0.30 evaluated using Miller’s rule, the
nonlinear effective susceptibility, and full-wave computations based on
SIE. See the main text for details on the implementation of each
method.
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SIE becomes an important issue for researchers. Note that
the evaluation of the effective nonlinear susceptibility with
other numerical methods based on volume discretization,
such as the finite element method, for example, is even more
time-consuming.

For both methods, the first step is the evaluation of the lin-
ear response at the fundamental frequency. The surface mesh
used for describing the SRRs studied in this work are composed
of approximately 2100 triangles and 3300 edges, resulting in a
N × N linear SIE matrix with N � 6600. The resolution of
the linear equation system with LU decomposition requires
approximately 1.5 N 3 operations. In the effective nonlinear
susceptibility evaluation, a second linear computation, involv-
ing the plane wave coming from the detector and oscillating at
the SH frequency, must be performed and needs the same
number of operations. Note that, in the SIE formalism, the
LU decomposition needs to be done only one time for a given
frequency, whatever the number of excitation conditions [37].
This is benefic for the evaluation of the effective nonlinear sus-
ceptibility, for which it is necessary to consider a new excitation
(at the SH wavelength) for each position of the detector. In the
complete computation of SHG with SIE, the matrix is slightly
larger (N � 9900 in this case) due to the specific formulation
resulting from the boundary conditions, taking into account
the nonlinear surface polarization [35,36]. This means that
the resolution of the new linear system of equations requires
three times more operation than for the linear response. The
full-wave method permits us to evaluate the SH field at any
point of space without the solution for any additional system
of equations [36,37]. As a consequence, the effective nonlinear
susceptibility method using SIE to compute the linear response
is two times faster than the complete computation of the SHG
with SIE.

Note that the lower computation time of the former method
is due to the specificity of SIE, which avoids the LU decom-
position for each excitation condition. If we neglect this
possibility, as is the case for other standard numerical methods
in plasmonics, but still consider that the time computation is
limited by the LU decomposition, the full-wave computation of
SHG would be more efficient than the effective nonlinear
susceptibility method for more than three experimental con-
figurations. Furthermore, to generate the results plotted in
one panel of Fig. 3 with 1 deg accuracy, the effective nonlinear
susceptibility method would be approximately 200 times more
time-consuming than the full-wave SIE method.

3. RESULTS AND DISCUSSION

The SRRs considered in this work are defined by two impor-
tant geometry parameters (see Fig. 1). The first important
parameter is the effective length Leff corresponding to the total
length of the SRR. The length Leff is fixed to 300 nm, and all
the SRRs have the same volume and surface area. The second
important parameter is the asymmetry ratio R, which is defined
as the ratio between the length of the side arms Larm and the
effective length Leff . For example, SRRs with asymmetry ratio
R � 0 and 0.15 are shown in Fig. 2. All of the SRRs have a
40 nm × 40 nm section. The SHG from SRRs with asymmetry
ratios R ranging from 0 to 0.30 has been evaluated in the far

field, 50 μm away from the plasmonic nanostructures, on the
z axis in the forward direction using full-wave computations
[see Fig. 2(b)]. The obtained dependence is in good agreement
with the experimental results reported in [19]: the maximum
SHG is obtained for an asymmetry ratio R slightly smaller than
R � 0.20, as experimentally observed {see Fig. 2(c) in
Ref. [19]}. This first result confirms that full-wave SIE is able
to accurately compute the SHG from plasmonic nanostruc-
tures. Now, we compare these results to the prediction of
Miller’s rule and of the nonlinear effective susceptibility based

Fig. 3. Far-field SH intensity scattered in the �O; x; z� plane as a
function of the scattering angle for split-ring resonators with asymme-
try ratios (a) R � 0.00, (b) R � 0.15, and (c) R � 0.30 evaluated
using the full-wave method (full lines) and the nonlinear effective sus-
ceptibility method (dots). The total SH intensity is shown in black and
the contributions of the SH waves polarized into and perpendicular to
this plane are shown in blue and red, respectively. In panel (a), the
dashed line shows a pure quadrupolar emission.
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on an SIE electromagnetic solver. As reported in [19], Miller’s
rule is not able to predict the optimal SRR geometry. Indeed,
Miller’s rule indicates that the SHG is maximal for an asym-
metry ratio R � 0.10, far from the experimental observations
[19] and the value obtained with full-wave computations.
Contrary to Miller’s rule, the nonlinear effective susceptibility
method is able to determine the asymmetry ratio resulting in
the highest SH intensity (R ∼ 0.20). However, the use of the
nonlinear effective susceptibility method for the determination
of the SH emission pattern has not been discussed so far.

To do so, the SH emission patterns have been first
computed using full-wave computations. Figure 3 shows the
SH intensity as a function of the scattering angle in the
�O; x; z� plane for three different gold SRRs. The asymmetry
ratio R ranges from 0.00 to 0.30. For the smallest asymmetry
ratio, the SH wave polarized perpendicular to the scattering
plane (along the y axis) vanishes for any scattering angle.
This behavior is due to the nanostructure symmetry. Indeed,
the SH sources standing on the top and bottom surfaces of
the nanorods perfectly cancel each other in this configuration.
On the contrary, the SH wave polarized into the scattering
plane is maximal at �45° and �135°. Indeed, for
R � 0.00, the gold nanostructure corresponds to a straight
bar with a length L � 300 nm and is therefore centrosymmet-
ric. In this case, the SH electric field must be contained in the
symmetry plane, i.e., the �O; x; z� plane in this case. For an
incident wave polarized along the x axis, the SH intensity must
vanish in the forward and backward directions [43,44],
irrespective of the polarization of the SH wave, and the SH
intensity is maximal in an arbitrary scattering direction, which
depends on the nanostructure properties at the fundamental
and SH wavelengths (see Figs. 4–7). It is also interesting to note
that the SH intensity at �45° and �135° differs from that at
225° and 315°. The same behavior has been experimentally ob-
served in angle-resolved SH scattering patterns from centro-
symmetric silver nanospheres [45]. For SRRs with higher
asymmetry ratio (R � 0.15 or 0.30), the SH wave is mainly
polarized perpendicular to the �O; x; z� plane. This is due to
the noncentrosymmetric shapes of these SRRs [see Fig. 2].
Due to the �O; x; z� symmetry plane for the SH field, the de-
scription of the SH wave must involve even modes, in the sense
of the parity and relative to the �O; x; z� plane, corresponding
to two dipoles pointing along the y axis and supported by each
SRR arm, producing a strong SH signal [46,47]. These results
demonstrate that the polarization of the SH wave depends on
the nanoparticle geometry and that its polarization varies with
the scattering angle.

In general, the direction of the maximal SH intensity results
from the interference between multipoles. Indeed, as men-
tioned in the introduction, SHG from centrosymmetric
nano-objects is forbidden in the electric dipole approximation,
and the inclusion of higher multipoles is, in general, required to
accurately describe it. The transition from a dipolar SH emis-
sion from small plasmonic nanospheres induced by shape
effects to a quadrupolar SH emission induced by retardation
is a good example of the link between the geometry of the
nanostructure and the properties of the electromagnetic fields
at the fundamental and SH frequencies [48,49]. In order to

determine its ability to probe the multipolar nature of the
SH emission from gold SRRs resulting from shape and retar-
dation effects, the nonlinear effective susceptibility method was
applied considering “probing” plane waves with various angles
and polarization states. The case of the noncentrosymmetric
SRRs (R � 0.15 and R � 0.30) is discussed first [see
Figs. 3(b) and 3(c)]. For example, plane waves with incident
angles of 45°, 135°, 225°, and 315° and z polarization imping-
ing on gold SRRs with asymmetry ratios R � 0.15 and
R � 0.30 have been considered. The results are independent
of the propagation directions, as expected from symmetry
considerations and confirming the validity of our numerical im-
plementation of the nonlinear effective susceptibility method.
The ratio between the SH intensity at these scattering angles
and that in the forward direction is 0.54 for R � 0.15 and
0.86 for R � 0.30. These values are in very good agreement
with the full-wave computations (0.58 for R � 0.15 and
0.91 for R � 0.30), confirming that the nonlinear effective

Fig. 4. Fundamental near-field intensity in the vicinity of split ring
resonator with asymmetry ratios (a) R � 0, (b) R � 0.15, and
(c) R � 0.30. The incident wavelength is λ � 1305 nm.
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susceptibility method is able to reproduce with good accuracy
the SH emission resulting from shape effects. Now, we turn
our attention to centrosymmetric nanoparticles, the SRR for
which the asymmetry ratio vanishes (i.e., a gold nanorod).
In this case, the effective nonlinear susceptibility methods pre-
dict that the SH intensities scattered at 45°, 135°, 225°, and
315° are identical. This is not the case for the full-wave com-
putations, which reveal a stronger SH intensity at 45° and 135°.
This discrepancy can be explained as follows: It is now estab-
lished that the parity of the SH modes differs, in general, from
that of the fundamental modes [28,29,50,51]. The parity of the
mode is conveniently revealed by the real part of the x com-
ponent of the electric field as previously used: For the funda-
mental field driven by an incoming plane wave propagating
along the z axis, the �O; x; z� plane is an antisymmetry plane,
and the excited mode is odd (see Fig. 5). In contrast, the
�O; x; z� plane is a symmetry plane for the SH electromagnetic

fields and the excited SH mode is even (see Fig. 7). However,
the use of “probing” plane waves with oblique incidence breaks
the symmetry such that even and odd modes are simultane-
ously excited [52]. The modes involved in the description of
the SH wave are then filtered through Eq. (2). The discrepancy
between the predictions of the nonlinear effective susceptibility
method and those of full-wave computations may be related to
the fact that the positions of the nonlinear sources are not
considered in the nonlinear effective susceptibility method.
This approximation modifies the relative weights of the
different multipolar moments in the nonlinear response and
the SH emission patterns resulting from the interferences be-
tween multipoles [31]. These results demonstrate that the non-
linear effective susceptibility method is not an efficient method
in the case of centrosymmetric plasmonic metamolecules.
Furthermore, the link between the linear and the nonlinear re-
sponses is not straightforward because the multipolar nature of
the scattered field is weakly expressed in the linear regime.

Fig. 5. Real part of the x component of the fundamental field in the
vicinity of split ring resonator with asymmetry ratios (a) R � 0,
(b) R � 0.15, and (c) R � 0.30. The incident wavelength is
λ � 1305 nm.

Fig. 6. SH near-field intensity in the vicinity of split ring resonator
with asymmetry ratios (a) R � 0, (b) R � 0.15, and (c) R � 0.30.
The fundamental wavelength is λ � 1305 nm.
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4. CONCLUSION

In conclusion, we have performed a comparison based on an
SIE formalism between full-wave computations, Miller’s rule,
and the nonlinear effective susceptibility method for the de-
scription of the SHG from gold SRRs. First, this comparison
confirms that Miller’s rule is not able to determine the optimal
geometry resulting in the highest SH signal [19]. The corre-
sponding discrepancy can be quite important, meaning that
this rule cannot be blindly applied for arbitrary plasmonic sys-
tems, despite its successful utilizations for specific cases [23,24].
On the other hand, the comparison between the predictions
from full-wave computations and those from the nonlinear
effective susceptibility method reveals good agreement for
noncentrosymmetric metallic nanoparticles. Indeed, this com-
parison shows, for the first time, that the nonlinear effective
susceptibility method is able to reproduce the SH emissions
from noncentrosymmetric gold SRRs with good accuracy.
However, this method fails to reproduce the multipolar nature

of the SH emission from centrosymmetric nanoparticles, in-
duced by retardation effects. The nonlinear effective suscep-
tibility method is thus a plausible alternative to full-wave
computations, which are difficult to implement for researchers
not involved in the numerical modeling of nanosystems; it
must, however, be used with care, as demonstrated in this work.
Due to its simple implementation, which is possible in com-
mercially available solvers, the nonlinear effective susceptibility
will undoubtedly be part of future developments of nonlinear
plasmonic metamolecules with noncentrosymmetric shapes.

Funding. Swiss National Science Foundation (SNSF)
(200020_153662).
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