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In this paper the challenges in building good search engines are discussed. Many 

of the search engines use well-known information retrieval algorithms and tech-

niques. They use Web crawlers to maintain their index databases amortizing the cost 

of crawling and indexing over the millions of queries received by them. Web crawl-

ers are programs that exploit the graph structure of the Web to move from page to 

page. Paper analyses the PageRank algorithm one of these Web crawlers. The results 

of the impact of the PageRank parameter value on the effectiveness of determining 

the so-called PageRank vector are considered in the paper. Investigations are illus-

trated by means of the results of a some simulation experiments to analyze the Pag-

eRank algorithm efficiency for different density graph (representing analyzed part of 

www) coefficient values. 
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1. Introduction 

One of the most popular services offered by modern Internet is www. Access 

to the Web resources is implemented mostly through search engines , whose func-

tionality is growing. Users of the search engine form queries resulting in a list of 

websites containing the following keywords. Most of the search engines uses fa-

miliar, traditional algorithms and information retrieval techniques developed for 

searching a relatively small and thematically coherent collection, such as catalogs 

of books in the library. These methods are not effective enough for the needs of 



74 
 

Web search, which is a huge, much less consistent, very often changing its content 

and structure, and is spread over geographically distributed computers. For the 

purpose of searching the Internet is therefore required to improve the traditional in-

formation retrieval techniques or develop new ones. The research carried out in or-

der to estimate the size of modern Internet shows that it consists of over one billion 

pages. Given that the average web page size is approximately 5-10 kilobytes size of 

the Internet can be estimated at tens of terabytes. The Internet is characterized by a 

very high dynamics of change in its size and structure. The research conducted by 

Lawrence and Giles [10] shows that the size of the Web has doubled in the last two 

years. Large is the dynamics of Internet content . In addition to the newly created 

pages, existing pages are constantly updated. Research carried out by Cho and Gar-

cia -Molina [4 ] shows that about 23% of all the pages available on the Web is up-

dated daily. Knowledge of the structure and size of the Internet and development of 

methods for Internet structure modeling is a number of ongoing studies [4]. 

There are two main reasons why the traditional information retrieval tech-

niques may not be sufficiently effective in the exploration of the modern Internet. 

The first reason stems from the mentioned above very large size of the Internet and 

the very large dynamic changes in its structure and content. The second reason has 

to do with the existence of multiple systems describing the contents of individual 

Web pages, which can significantly impede analysis of their contents. A qualitative 

change in the efficiency of search algorithms on the Web was the result of the use 

of the results in their design analysis of the structure of links in the network. In par-

ticular, a link from page A to page B can be considered as a recommendation of the 

page B by the author of the page A. In recent years some new algorithms have been 

proposed based on the knowledge of the structure of Internet links. Practice shows 

that the effect of information retrieval algorithms of this class gives qualitatively 

better results than the results of the algorithms that implement the traditional meth-

ods and techniques of information retrieval. 

Internet search engines use a variety of algorithms to sort Web pages based on 

their text content or on the hyperlink structure of the Web. This paper describes al-

gorithms that use the hyperlink structure, called link-based algorithms: PageRank 

[12] and HITS [8]. The basic notion for these algorithms is the Web graph, which 

is a digraph with a node for each Web page and an arc between pages i and j if 

there is a hyperlink from page i to page j. Given a collection of Web pages linking 

to each other, the HITS and PageRank algorithms construct a matrix capturing the 

Web hyperlink structure and compute a measures of pages popularity (ranks) using 

linear algebra methods. 
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2. The PageRank algorithm 

In well-known study Brin and Page [3] have proposed an algorithm for de-

termining the ranking of Web pages called PageRank , which uses the term "weight 

of  page". According to this proposal the weight of page depends on the number of 

others Web pages that point to it. The value of the weight can be used to rank the 

results of the query. This page rank, however, would be little resistance to a phe-

nomenon known as spam, because it is quite easy to artificially create multiple 

pages pointing to the page [1]. To counteract such practices PageRank algorithm 

extends the basic idea of citations, taking into account the importance of each page 

that point to the  analyzed page. This means that the definition of page weights 

(PageRank) is cyclic: the importance of page depends on the weight of pages point-

ing to it and at the same time affect the validity of the pages to which she points. 

Web model proposed in the work of Brin and Page [3 ] uses the link structure of 

Web site to the construction of a Markov chain with transition matrix P, whose el-

ements are the probabilities pij of random events  such that the user  of page i indi-

cates a link to the page j. The irreducibility of the chain guarantees that the long-

run stationary vector r, known as the PageRank vector, exists. Mathematically, we 

can think of this network as a graph, where each page is a vertex, and a link from 

one page to another is a graph edge. In the language of PageRank, vertices are 

nodes (Web pages), the edges from a node are forward links, and the edges into 

a node are backlinks. 

2.1. The idea of PageRank model 

We first present a simple definition of PageRank that captures the above intui-

tion before describing a practical variant. 

Let the pages on the Web be denoted by 1, 2, . . . , m. Let N(i) denote the 

number of forward (outgoing) links from page i. Let B(i) denote the set of pages 

that point to page i. For now, assume that the Web pages form a strongly connected 

graph (every page can be reached from any other page). The basic PageRank of 

page i, denoted by ri, is nonnegative real number given by 

m ...,  2,1,i    ,/N(j)rr
B(i)j

ji ====∑∑∑∑====
∈∈∈ ∈

.                               (1) 

The division by N(j) captures the intuition that pages that point to page i evenly 

distribute their rank boost to all of the pages they point to. According to this defini-

tion, the PageRank of some page depends not only on the number of pages pointing 

to it, but also on their importance. The row vector r is called a PageRank vector 

and the value ri is the PageRank of page i.  

Effective, practical way to find PageRank vector r is using the language and 

methods of linear algebra. Using the linear algebra the PageRank vector r can be 

found by solving either the homogeneous linear system 
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TTT 0rI)(A ====−−−− ,                                              (2) 

or by solving the eigenvector problem 

Arr ⋅⋅⋅⋅==== ,                                                     (3) 

where rT is a column transposed vector to the row vector r, I is the identity matrix 

of order m, 
T0 is the column vector of all 0’s, and AT

 is a transposed matrix of 

a square matrix mmijaA ××××==== ][  which elements aij are defined as follows 







====

.otherwise

jpage  to points ipage  if

0

,
N(i)

1
aij                              (4) 

Both formulations are subject to an additional equation, the normalization equation 

11r T ====⋅⋅⋅⋅ , where T1  is the column vector of all 1’s. 

Simple PageRank is well defined only if the link graph is strongly connected, 

where a graph is strongly connected when for each pair of nodes (i, j) there is a se-

quence of directed edges leading from i to j. One problem with solely using the 

Web’s hyperlink structure to build the Markov matrix is apparent. Some rows of 

the matrix may contain all zeros. Thus, such a matrix is not stochastic. This occurs 

whenever a node contains no outlinks. Many such nodes exist on the Web. In par-

ticular, there are two related problems that arise on the real Web: rank sinks and 

rank leaks [1]. A group of pages pointing to each other could have some links go-

ing to the group but no links going out forms a rank sink. An individual page that 

does not have any outlinks constitutes a rank leak. Although, technically, a rank 

leak is a special case of rank sink, a rank leak causes a different kind of problem. In 

the case of a rank sink, nodes not in a sink receive a zero rank, which means we 

cannot distinguish the importance of such nodes.  

Page et al. [12] suggest eliminating these problems in two ways. First, they 

remove all the leak nodes with out-degree 0. Second, in order to solve the problem 

of sinks, they introduce a decay coefficient αααα, 0 < αααα < 1, in the PageRank defini-

tion (1). In this modified definition, only a fraction αααα of the rank of a page is dis-

tributed among the nodes that it points to. The remaining rank is distributed equally 

among all the pages on the Web. Thus, the modified PageRank is [1]: 

 m ...,  2,1,i    /m,α)(1/N(j)rαr
B(i)j

ji ====−−−−++++==== ∑∑∑∑
∈∈∈ ∈

                      (5) 

where m is the total number of nodes in the graph. Note that basic PageRank (1) is 

a special case of (5) that occurs when we take αααα = 1. 

Using the matrix A, defined by (4), is insufficient for the PageRank algorithm 

because the iteration using A alone might not converge properly. It can cycle or the 

limit may be dependent on the starting vector. Part of the explanation for this is that 
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the matrix A is not yet necessarily stochastic [6]. For example, if some page is a 

leak node than corresponding row of the matrix A contains all zeros (0). 

Thus, to ensure that matrix A is stochastic, we must ensure that every row 

sums to 1. It can be proved that from matrix A, we can obtain the stochastic matrix 

S as follows [6]: 

/m1)(bAS T ⋅⋅⋅⋅++++==== ,                                                 (6) 

where bT is a column vector such that  






 ======== ∑∑∑∑
====

.0

,,0a  1
b

otherwise

node leaka  is ipage  .,e.iif
m

1j
ij

i                         (7) 

where i=1, 2, …, m and 1 is a row vector of all 1’s. 

Given any stochastic matrix S we can obtain irreducible matrix G as follows [6]: 
 

Eα)(1αSG −−−−++++==== ,                                                 (8) 

where 0<αααα<1, /n1)(1=E T ⋅⋅⋅⋅  and T1 , 1 are, respectively, the column and row 

vectors of all 1’s. 

Because G is stochastic (i.e., the entries in each column sum to 1), the domi-

nant eigenvalue of G is 1 [11]. Notice, also, that matrix G is completely positive, 

i.e. all elements of G are positive, although the probability of transitioning may be 

very small in some cases, it is always nonzero. The irreducibility adjustment in-

sures that matrix G is primitive, where a nonnegative, irreducible matrix is primi-

tive if it has only one eigenvalue on its spectral circle [10]. The matrix irreducibil-

ity implies that the power method will converge to the stationary PageRank vector 

r. It can be shown that  

Grr ⋅⋅⋅⋅==== .                                                          (9) 

2.2. Computational aspects of PageRank 

Although PageRank can be described using equation (1), the summation 

method is neither the most interesting nor the most illustrative of the algorithm’s 

properties [1]. The preferable method is to compute the principal eigenvector of the 

stochastic and irreducible matrix G defined by (8). 

One of the simplest methods for computing the principal eigenvector of a ma-

trix is called power iteration. In power iteration, an arbitrary initial vector is multi-

plied repeatedly with the given matrix, until it converges to the principal eigenvec-

tor [6]. The idea of power iteration algorithm to compute the PageRank vector r is 

given below [1]: 

1) s ← initial vector; 

2) r ← s⋅⋅⋅⋅G; 
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3) if ε<− sr  then end; r is the PageRank vector; 

4) s ← r; 

5) goto 2, 

where ⋅  is the measure of difference of successive iterates and ε is predetermined 

tolerance level (computational accuracy). 

In order for the power iteration to be practical, it is not only necessary that it 

converge to the PageRank, but that it does so in a few iterations [1]. Theoretically, 

the convergence of the power iteration for a matrix depends on the eigenvalue gap, 

which is defined as the difference between the modulus of the two largest eigen-

values of the given matrix. Page et al. [12] claim that this is indeed the case, and 

that the power iteration converges reasonably fast (practically in no more than in 

100 iterations). It is worth noting that in practice we are more interested in the rela-

tive ordering of the pages induced by the PageRank (since this is used to rank the 

pages) than the actual PageRank values themselves [1]. Thus, we can terminate the 

power iteration once the ordering of the pages becomes reasonably stable. Experi-

ments [7] indicate that the ordering induced by the PageRank converges much fast-

er than the actual PageRank. 

When dealing with data sets as large as Google uses (more than eight billion 

web pages [5]), it is unrealistic to form a matrix G and find its dominant eigenvec-

tor. It is more efficient to compute the PageRank vector using the power method 

variant, where we can compute the PageRank vector r in k iteratations, k = 1, 2, …, 

with the matrix A which elements are defined by (4) instead matrix G [6]:  

 1./mα))(1br(αAαrr T1)(k1)(k(k) ⋅⋅⋅⋅−−−−++++++++==== −−−−−−−− ][                      (10) 

One of the benefits of using the above power method variant to compute the Pag-

eRank vector is the speed with which it converges. Specifically, the power method 

on matrix G converges at the rate at which a quantity k
α  goes to zero. This gives 

the ability to estimate the number of iterations required to reach a tolerance level 

measured by 
1)(k(k) rr −−−−−−−− . The number of needed iterations k is approximately 

log εεεε / log αααα , where εεεε  the tolerance level [9]. 

It is worth noting that the founders of Google, Lawrence Page and Sergey 

Brin, use αααα = 0.85 and find success with only 50 to 100 power iterations [9]. 



79 
 

3. Test the effectiveness of the PageRank algorithm 

3.1. General assumptions 

Using an iterative algorithm, in practice, according to the formula (7) is condi-

tioned to its efficiency, which in this case is measured by the number of iterations 

to be done to accuracy that is required for elements of r vector for a fixed value of 

the αααα coefficient. The independent parameters of simulation experiments were the 

number of Web pages and their links and the density of these links. In accordance 

with what has been said, a network of websites is mapped in the form of a directed 

graph without loops, where the arc shows the indication (the link) from one page to 

another, such as a linked thematically. As a measure of the density of links between 

Web pages for the simulation experiments the λλλλ coefficient is assumed, hereafter 

referred to as the density coefficient adjacency matrix of the Web pages graph 

comprising m websites, determined from the following relationship: 

.
mm

N(i)
λ

2

m

1i

−−−−

∑∑∑∑
==== ====                                                               (11) 

Experiments were performed on randomly generated adjacency matrix with a pre-

determined value λλλλ coefficient. Due to the limited possibility of presentation of the 

results of experiments will be based at most 20 Web pages networks (20 dimen-

sional adjacency matrix), which does not detract from the generality of observa-

tions and conclusions. 

Experiments conducted to evaluate the effectiveness of an iterative algorithm 

of determining the r vector were aimed at: 

• assessment of the number of iterations of the algorithm and the clarity of the re-

sulting r vector  depending αααα values at a fixed value of the λλλλ coefficient for the 

Web with a fixed number of pages, 

• assessment of the number of iterations of the algorithm, depending on the val-

ues of the coefficients αααα and λλλλ for the Web with a fixed number of pages, 

• assessment of the impact of coefficients αααα and λλλλ for the Web fixed number of 

pages on the number of iterations of the algorithm required to achieve of r vec-

tor of highest distinctness, 

• assessment of the impact the accuracy of determining the elements of the r vec-

tor on the number of iterations of the algorithm. 
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3.2. Assessment of the number of iterations of the algorithm and the clarity  

of the resulting r vector depending α values at a fixed value of the λ coefficient  

for the Web with a fixed number of pages 

The research was conducted with the following assumptions: 

• 20 Web pages were considered, 

• for considered Web the adjacency matrix is a description of a graph without 

loops, with the density values λλλλ = 0.1. 

Fig. 1 shows graphs of the PageRank coordinates of r vector for three values of the 

coefficient αααα, equal to 0.1, 0.5 and 0.99, respectively. 

 

 
Figure 1. Graphs coordinate values of the PageRank vector r for values  

α = 0.1, 0.5 and 0.99 

 

Analysis of the results of the research confirm the supposition any increased 

expressiveness assessment  of  Web pages by PageRank algorithm with increasing 

αααα coefficient, wherein the assessments expressiveness was measured using well-

known in statistics, the coefficient of variation (ratio of the standard deviation of 

the coordinate vector r to their mean value), as: 

.
r
s

V r
r ====                                                      (12) 

The values of the variation coefficient of r vector depending on the value of the αααα 
coefficient shows the table 1. 

 
Table 1. The values of the coefficient of variation of PageRank r vector depending  

on the value of the αααα coefficient 

α 0,1 0,5 0,99 

Vr 0,0816 0,3768 0,7528 
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The desired increase of expressiveness coefficient of the r vector by increas-

ing the value of the αααα coefficient results in undesirable exponential increase of the 

number of iterations of the algorithm of calculating the r vector, as shown in Fig. 2. 

 

 
Figure 2. Plot of the number of iterations of the PageRank algorithm in the process  

of determining the r vector for αααα values  

Source: own preparation 

 

For the experiment, the number L of iterations PageRank algorithm depending 

on αααα values can be estimated with high accuracy by using the following relation-

ship: 
α0,107e5,6815L ⋅⋅⋅⋅====                                       (13) 

3.3. Assessment of the number of iterations of the algorithm, depending  

on the values of the coefficients α and λ for the Web with  

a fixed number of pages 

Experiments were performed for adjacency matrices of fixed dimensions 

(20 × 20) and changing values of λλλλ coefficient ranging from 0.1 to 0.9 in steps of 

0.1 and for fixed values of αααα coefficient. The number of iterations needed to de-

termine the r vector for the assumed accuracy of its coordinates have been meas-

ured. The results are shown in Table 2. 

Table 2 shows that the increase in the value of λλλλ coefficient of the adjacency 

matrix  (increasing the number of links between the pages) will reduce the number 

of iterations of the PageRank algorithm to determine the r vector desired accuracy 

for fixed αααα coefficient. Number of iterations of the algorithm varies exponentially 

for rare adjacency matrix (λλλλ = 0.1) by changing the linear for the adjacency matrix 
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of λλλλ  = 0.5, up to by parabola negative coefficient directional  - for a dense matrix, 

i.e. for λλλλ  = 0.9. However, it seems that the actual Web networks are rather rare, 

characterized by the values of the coefficient λλλλ < 0.5, therefore, to be expected in 

such cases, the exponential increase in the number of iterations of the PageRank 

algorithm to achieve the desired r vector with increasing αααα values. 

 
Table 2. Number of iterations of the PageRank algorithm as a function  

of the αααα and λλλλ coefficients 

α 
λ coefficient 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 6 5 5 5 4 4 4 4 3 

0.2 8 6 6 5 5 5 5 4 4 

0.3 10 8 7 6 6 6 5 5 4 

0.4 12 9 8 7 7 7 6 5 5 

0.5 14 11 9 8 7 7 6 6 5 

0.6 18 12 10 9 8 8 7 6 5 

0.7 21 15 11 10 9 9 7 7 6 

0.8 26 17 12 11 9 9 8 7 6 

0.9 34 20 14 12 10 10 8 7 6 

0.99 44 24 15 12 11 11 9 8 6 

 

3.4. Assessment of the impact of coefficients α and λ for the Web fixed  

number of pages on the number of iterations of the algorithm  

required to achieve of r vector of highest distinctness 

Evaluation of the impact speed for obtaining the highest expressiveness of the 

r vector by the algorithm based on the change both the value of the αααα and λλλλ coeffi-

cients  was made indirectly through the distances analysis of r vectors obtained for 

different values of the αααα coefficient from the vector which is characterized by the 

greatest expressiveness, i.e. the vector obtained for αααα = 0.99. Among the known dis-

tance measures between numerical vectors in experiment selected 7 following, the 

most frequently used in practice: Euclidean, Chebyshev, Manhattan, Pearson, tan-

gents, angular and exponential module. The research was conducted for the adja-

cency matrix of fixed dimensions (20 × 20) and selected values of λλλλ coefficient. Fig. 

3 shows the changes in the Euclidean distances between the r vectors and the vector 

with the highest expressiveness (for αααα = 0.99) as a function of the αααα coefficient for 

the adjacency matrix of values with λλλλ coefficient equals to 0.1, 0.5 and 0.9. 
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Figure 3. Changes of the Euclidean distance of r vectors to the vector with the greatest  

distinctness (for α = 0.99) as a function of the α coefficient for the adjacency matrix  

with λ coefficient equals to 0.1, 0.5 and 0.9 

 

The waveforms similar to shown in Fig. 3 was also observed if the distance 

between r vectors was measured by using the other distance measures. Thus justi-

fied hypothesis that for the rare adjacency matrix (λλλλ = 0.1) the approximation of 

the r vectors (decreasing distances), calculated for increasing values of αααα coeffi-

cient from the reference vector is much faster than for the denser of adjacency ma-

trix. Based on the results of the experiment can be concluded that the dense adja-

cency matrix (λλλλ = 0.9) the r vector (for small values of αααα obtained using a small 

number of iterations of the investigated algorithm) will be a good approximation of 

the high expressiveness r vector, obtained for the high value of αααα coefficient, but at 

the expense of a larger number of iterations. This conclusion may have important 

practical significance when examined pages ranking algorithm would be used in 

large networks with highly dynamic changes in the density of the relationship be-

tween the Web pages. 

4. Conclusions 

Many of today’s search engines use a two-step process to retrieve pages relat-

ed to a user’s query. In the first step, traditional text processing is done to find all 

documents using the query terms, or related to the query terms by semantic mean-

ing. This can be done by a lookup into an inverted file, with a vector space method, 

or with a query expander that uses a thesaurus. With the massive size of the Web, 

this first step can result in thousands of retrieved pages related to the query.  
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To make this list manageable for a user, many search engines sort this list by some 

ranking criterion. One popular way to create this ranking is to exploit the additional 

information inherent in the Web due to its hyperlinking structure. Thus, link analy-

sis has become the means to ranking. One successful and well-publicized link-

based ranking system is PageRank, the ranking system used by the Google search 

engine [2]. 

From the foregoing considerations, it follows that there is possibility of 

practical achieve time savings associated with the ranking Web pages, by 

substituting the result (page ranking), obtained through the implementation of the 

PageRank algorithm, by the approximate ranking of these pages, based on the 

analysis of their input stages, i.e., the number of appeals from other pages. 
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