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Abstract. The identification of the rigid body properties of a structure is an important matter in various structural dynamic

applications, namely in structural modification (coupling/uncoupling), optimization and vibration control. In most situations, the

experimental route is the only via to obtain the desired dynamic properties. This goal is achieved by an inverse process which

starts from the measurement of Frequency Response Functions (FRFs) and ends on matrices describing the mass distribution of

a rigid body.

The objective of the present article is the evaluation and comparison of the performance of three different kinds of identification

methods that share a common characteristic – they all use FRFs as inputs to the inverse process. One of them, the Inertia Restraint

Method (IRM) makes use of the accelerance FRF (information condensed at zero frequency), while the other two methods

make use of receptance FRFs as inputs, although in different manners; in one of them the properties are evaluated directly from

the measurement data – Direct Physical Parameter Identification Method (DPPIM) – whereas the other type requires a modal

identification procedure as an intermediate step – Modal Method (MM). An actual experimental structure forms the case study to

illustrate the performance of the three different techniques.
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Nomenclature

{Cg} Vector of centre of mass co-ordinates

{f}j Excitation force acting on point j

fx j
, fy j

, fzj
Cartesian components of excitation force at point j

f0xn
, f0yn

, f0zn
Cartesian components of force acting at point n, when related to the origin of the system of co-ordinates

[Gm0] Co-ordinate transformation matrix

Jgxx , Jgyy , Jgzz Moments of inertia relatively to the centre of mass of the rigid body

Jgxy , Jgxz , Jgyz Products of inertia relatively to the centre of mass of the rigid body

{Jg} Vector containing the moments and inertia products
m Mass

[M0] Mass matrix relatively to the origin of the co-ordinate system

Mgxj
, Mgyj

, Mgzj
Moments due to an excitation force acting on point j and relative to the center of mass.

n Number of excitation forces applied to the rigid body
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[K0] Stiffness matrix relatively to the origin of co-ordinate system
[R0] Transformation matrix of the rigid body modes related to the n tri-axial accelerometers

[S1] , [S2] Diagonal matrices formed by the chosen frequencies taken before and after each natural rigid body frequency

{ẍ0} Vector of translational and rotational accelerations in the defined origin

{x0} Vector of displacements and rotations in the defined origin

{ẍm}k Vector of measured accelerations in three orthogonal directions with tri-axial accelerometer on measurement point

k

xg, yg , zg Center of mass coordinates

xf
j
, yf

j
, zf

j
Co-ordinates of point of application of force j

ẍm
ki

, ÿm
ki

, z̈m
ki

Translational accelerations measured by tri-axial accelerometer m on measured point ki

ẍ0, ÿ0, z̈0 Translational accelerations at the origin of the co-ordinates system

ẍg, ÿg, z̈g Translational accelerations obtained at the center of mass

[Y1] , [Y2] Matrices formed by the responses to the corresponding chosen frequencies before and after each natural rigid body

frequency

θ̈
0x

, θ̈
0y

, θ̈
0z

Angular accelerations at the origin of the co-ordinates system

θ̈gx
, θ̈gy

, θ̈gz
Angular accelerations obtained at the center of mass

[φ0] Mass-normalised mode shape matrix

[φ] Mode shape matrix with respect to the physical co-ordinates

ωi i-frequency
i imaginary number

[ ]−1 Inverse of a matrix

[ ]+ Pseudoinverse

[ ]T Transpose of a matrix

1. Introduction

The determination of the Rigid Body Inertia Properties (RBIP) of a given structure may reveal some difficulties

whenever its theoretical model does not exist, or when modifications are made to the original structure. In these

cases the establishment of an accurate theoretical model can be very time consuming. The alternative may reside on

the use of experimental data readily available from measurements.

The methods that use experimental data could be primary classified as static or dynamic methods [1]. The former

class of methods only allow, at most, the evaluation of four (mass and three co-ordinates of centre of mass) of the

ten inertia properties of the rigid body (the other six form the inertia tensor).

The dynamic methods are frequently separated into two main categories: Time Domain Methods (TDM) and

Frequency Domain Methods (FDM). The early TDM to mention are the classical pendulum methods. Most recently,

some authors [2,3] developed variations of the TDM, based on the evaluation of vibration test data. The advantage of

these methods is the direct evaluation of the test data in the time domain. A disadvantage is that, if the system under

observation does not behave like a rigid body in the excited frequency range, low pass filtering of the test data must

be performed. Frequency Domain Methods can circumvent this drawback because it is possible to separate the rigid

and elastic system behaviour, even if the first elastic natural frequency is very low. The FDM will be the main subject

of the present work. These methods can be divided into three groups: Inertia Restraint Methods (IRM), Modal

Methods (MM) and Direct Physical Parameter Identification Method (DPPIM). The IRM have been widely studied

and they stand on the principle that the dynamic response of freely supported structures is characterized in the low

frequency domain by a constant term designated as “mass line (ML)”. Additionally the IRM methods can be grouped

into two main categories: Iterative Methods (IM) [4,5] and Direct Methods (DM) [6–9,24], according to the way that

RBIP are obtained. The first group assumes the knowledge of one or several properties and, by an iterative process,

the remainders are calculated. The DM group use directly and solely the data extracted from measured FRFs. The

MM are based on the orthogonality relationship between the mass matrix and the rigid body modes [14–17]. The

main characteristic of these methods is that they also use the results from a modal identification of the FRFs obtained

from test on a quasi-free system. Some investigators refer that a disadvantage of these methods is that, in general, not

all the rigid body modes can be excited in an actual experimental test. A group of investigators [11,19] are devoting

the attention to the development of indicators that provide not only information about the number of rigid body

modes that are excited in an experimental test, but also to the level of excitation of each rigid body mode. Recently,

new methodologies [18,26] using the principles of MM and structural modification procedures have been presented.

Contrary to the IRM and MM the DPPIM use directly the measured FRFs, allowing for the determination of mass,
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stiffness of supports and damping parameters. Some authors have focused their attention on these methods [10,12,
13]. Some investigators [20], have used a similar approach to the DPPIM although incorporating separately the
acceleration and force date.

Some investigators have tested the effectiveness of various methods [21–24]. In this work a further evaluation is
carried out on the performance of three methods, all of them using the FRFs measured on an actual structure.

2. Theory

In the present work the determination of the ten inertia parameters follows closely, the IRM method presented by
Almeida [24], the MM methods developed by Conti and Bretl [14] and Toivola and Nuutila [15] and the DPPIM
method presented by Huang and Lallement [13].

2.1. Inertia Restraint Method (IRM)

In this work an IRM method proposed by Almeida [24] is discussed. This method uses as input the measured
accelerations or residual mass values collected at different locations due to artificial excitations produced at various
points in a softly supported structure. There is a similarity with other works [8,25], although these methods require a
previous knowledge of the mass value. In contrast to other methods [6,7,9] the ten rigid body properties are obtained
in two distinct steps; in a first step the mass and centre of mass co-ordinates are calculated and in a second step the
moments and inertia products are obtained.

2.1.1. First Step

Let us consider the acceleration at k points on the structure due to an excitation force. If the measurements at
these points are made using tri-axial accelerometers they all can be grouped in a response vector {ẍm}total that can
be related to the responses at an arbitrary origin {ẍ0} by the following equation:

{ẍm}total
(3k×1)

= [Gm0]
(3k×6)
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ẍ0

ÿ0
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where [Gm0] corresponds to a co-ordinate transformation matrix [24]. Therefore,

{ẍ0}
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+

(6×3k)
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+

=
(
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T
{ẍm}total

. (2)

The various response data at the origin due to the excitation forces applied at n points on the structure, can be
interrelated as;
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Where {vg} contains the four unknowns related to the force vector {f} by an acceleration matrix [G]. So the mass

and the centre of mass co-ordinates can be obtained through:

{vg}
(4×1)

= [G]+

(4×3n)

{f}
(3n×1)

=
(

[G]T [G]
)

−1

[G]T {f} (4)

After locating the centre of mass coordinates, it is possible to carry out a subsequent step that can lead to the

determination of the remaining six inertia properties, i.e, the moments and products of inertia.

2.1.2. Second step

The momentsMgxj
,Mgyj

,Mgzj
due to each excitation force, acting on point j, can be obtained as:
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where [L] is a transformation matrix. A final vector {Ug} can be built from various vectors
{

Mgj

}

and the following

relationship can be easily established:
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Where the vector {Jg} contains the three inertia moments and the three inertia products, which can be obtained

by calculating the pseudo-inverse (+) of the acceleration matrix [A]:

{Jg} = [A]
+
{Ug} =

(

[A]
T

[A]
)

−1

[A]
T
{Ug} (7)

The determination of all the ten inertia properties is only possible if some numerical conditions are observed on

the use of this type of methods; Lee et al. [8] have proven that at least three excitation forces should be applied on

the structure and that, at least, three tri-axial measured points have to be considered.

A priori it sounds logical that results should improve whenever the number of applied forces increases. However,

in this case, it is more important the way forces are applied, i.e., their position and direction, rather than the number

of forces itself, as this aspect has a direct consequence in a better excitation of the rigid body motion and therefore

in the quality of the results.

2.2. Modal Methods (MM)

The MM methods developed by Conti and Bretl [14] and Toivola and Nuutila [15] make use of the measured

receptance responses due to the excitation applied in various points and directions. These methods require as many

exciter locations/directions as needed to significantly excite all the six rigid body modes. In numerical terms, one

excitation may be enough, in contrast with the minimum three excitations required by the IRM methods. The

measured FRFs for each excitation condition are used to extract the modal properties (natural frequencies, damping

ratios and mode shapes), using appropriate identification methods. The mass matrix [M 0] related to the origin can

thus be obtained using the orhogonality properties of the mass-normalised mode shape matrix [φ 0].

[M0] = [φ0]
−T

[φ0]
−1

(8)
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These mode shapes can be obtained from the identified ones with respect to the physical co-ordinates [φ].

[φ0] =
(

[R0]
T

[R0]
)

−1

[R0]
T

[φ] (9)

where [R0] represents the transformation matrix of the rigid body modes related to the n tri-axial accelerome-

ters [24]. The works [8,24] proved that a minimum of three tri-axial measurement points are needed to evaluate
(

[R0]
T

[R0]
)

−1

and better results could be obtained when the three accelerometers formed a regular triangle. The

mass of the body can be calculated as the average of the first three diagonal terms of [M 0]. Equating the non-zero

elements of the upper right quadrant of [M0] matrix, to the same elements in mass matrix referred to the centre of
mass, six equations are obtained [15,24].

Conti and Bretl [14] state that all the six rigid body modes must be identified prior to the estimation of the mass

matrix. However, in practical situations there might be difficulties in exciting or identifying some of the rigid body
modes. Toivola and Nuutila [15] solve the problem, as only 21 independent orthogonality conditions are required

i.e., only four modes are needed. With this method only one mass value is obtained. The components of the inertia

tensor are referred to the origin of the system of co-ordinates and should be transformed to the centre of mass using
the co-ordinate transformation, as presented in [24].

2.3. Direct Physical Parameter Identification Method (DPPIM)

The DPPIM methods make use, like the previous, of the measured receptance responses due to the excitation

applied in various points and directions. Huang and Lallement [13] propose a method for independent identification
of the three types of parameters, mass, stiffness and damping matrices. Such a separation reduces the number of

unknown parameters and thus can improve the numerical conditioning of the system. The formulation of this method

leads to the following set of equations:

[Y1]
T [K0] [Y2] − [S1] [Y1]

T [M0] [Y2] [S2] = [αij ] (10)

[
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] [

Ȳ1
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[M0] [Y2] [S2] = [βij ] (11)

where [S1] = diag
(

iω
(1)
i

)

∈ Cm,mand [S2] = diag
(

iω
(2)
j

)

∈ Cn,n are diagonal matrices of the chosen

frequencies taken before (m) and after (n) each natural rigid body frequency, respectively. [Y 1] ∈ C6,m and
[Y2] ∈ C

6,n are formed by the responses of the first and second series frequencies. [α ij ] ∈ C
m,nand [βij ] ∈ C

m,n

are built as shown in [13]. Eliminating [K0] between Eqs (10) and (11) leads to:
(
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T

(

[

Ȳ1
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)+

[
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] [

Ȳ1
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− [S1] [Y1]

T

)

[M0] [Y2] [S2] = [αij ] − [Y1]
T

(

[

Ȳ1

]T
)+

[βij ] (12)

Separating Eq. (12) into its real and imaginary parts, a linear system of equations in the unknown ten inertia properties

is obtained.

3. Experimental case-study

3.1. Theoretical properties

The first experimental case study is illustrated in Fig. 1, with the corresponding origin of the system of co-ordinates

and the location of the tri-axial accelerometers. The theoretical inertia parameters of the actual tested structure were
obtained by the SolidWorks modulation software; these values are assumed as correct for the sake of comparison.

As it can be observed, the structure presents a high degree of symmetry that causes small values for the products of

inertia relative to the selected system of axes. With the objective of observing the influence of symmetry properties
on the obtained results the first structure was modified through the coupling of an additional sub-structure represented

in Fig. 2. The modified structure was also tested in order to assess the unsymmetrical distribution of mass over the

axes of reference.
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Fig. 1. Case study 1 (Structure I).

3.2. Experimental set-up and data assessment

3.2.1. Suspension set-up

Two different suspensions set-ups were implemented for each structure. For the IRM the suspension (Figs 3(a)

and (b)) tries to simulate the freely supported conditions, required by this method. This set-up will lead to the

concentration of all the rigid body modes at nearly zero Hz. The first flexible mode was observed to be distant

enough from the last rigid body mode. In the other two methods, the DPPIM and MM, the suspension was built-up

in order to allow the observation of a rigid body behaviour in the frequency range 0–12.5 Hz. This will enable the
observation of the rigid body modes of the suspended structure (a flexible response of the structure itself will occur

above 100 Hz). The set of springs was arranged in such a way to provide adequate axial and torsional stiffnesses

which, combined with the inertia properties, allows the occurrence of all the rigid body modes in the selected

frequency range 0–12.5 Hz. The application of these two methods requires that the modes are separated enough,

mainly in the case of DPPIM, where it is necessary to select two responses corresponding to two frequencies before

and after each resonance. The softly support conditions were the same in both structures (Figs 3(c) and (d)). The

stiffness of the used springs varies between 0.187 and 1.09 N/mm.

3.2.2. Applied forces and measurement points

Figure 4 shows the different applied forces on Structures I and II, used in IRM and DPPIM methods; these forces

can be grouped according to the sets shown in Fig. 4. The measurement points are the same for both structures and
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       (a)                                (b)                                                               (c)                                                      (d)

Fig. 3. Suspension set-ups used for the application of: IRM (a),(b) and MM and DPPIM methods (c),(d).

are presented in Fig. 1.

For the application of MM methods three measurement points have been selected and three excitation forces have

been applied; a necessary condition for the identification of the rigid body modal properties is that at least one of the

forces acts in one of the accelerometer directions. The origin of the co-ordinate system corresponds to the location

of accelerometer 2, according to the recommendation given in [11], Figs 5 and 6.

All the forces have been applied through an impact hammer, with a rubber tip to obtain the receptance FRFs in the

range of the rigid body modes (0–12.5 Hz) needed for the application of DPPIM and MM and with a hard plastic tip

to obtain the accelerance FRFs in the range of 0–200 Hz (that encompasses the first flexible modes), for the IRM.
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Fig. 4. Applied forces for the application of IRM and DPPIM methods, Structures I and II.

Accel. 2 (Origin of 

coordinate system)  

   Accel. 3  

Accel. 1

Fig. 5. Applied forces and chosen origin for the application of MM methods to Structure I.

4. Results

4.1. Application of IRM and DPPIM

The application of IRM required (for each set of applied forces) nine accelerance FRFs to be collected w.r.t the

measuring co-ordinate system. Subsequently, a modal identification was performed on all FRFs to obtain the mass

line values and then a co-ordinate transformation led to the six accelerations
(

ẍ0, ÿ0, z̈0, θ̈0x, θ̈0y, θ̈0z

)

at the origin.

For the application of DPPIM and for each set of applied forces, nine responses have been collected w.r.t the

measuring co-ordinate system. A subsequent transformation led to the six responses (x 0, y0, z0, θ0x, θ0y, θ0z) at

the origin. The Norm Indicator tool (NI) [11] was then applied as an auxiliary tool to identify the excitation level
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Fig. 6. Applied forces and chosen origin for the application of MM methods to Structure II.
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Fig. 7. Results obtained with the application of the (a) IRM and (b) DPPIM for each set of applied forces on Structure I.

of the rigid body modes and the corresponding natural frequencies. The values of the displacements and rotations

occurring at the two frequencies immediately before and after each rigid body natural frequency were then used.

The relative errors for the mass, vector of centre of mass co-ordinates {C g} and vector of moments and products of

inertia {Jg} as well as the summation of all the parameter errors were then obtained for both methods.

4.1.1. Remarks

It can be observed that, in general, the IRM method gives better results than the DPPIM. The only exceptions

happen with the sets of forces III and IV, as it can be observed in Figs 7–10. These sets were previously identified,

as critical sets, in the works [8,24]. In these works it is additionally demonstrated that a minimum of three forces

and three responses are necessary to obtain the numerical solution. The quality of the results obtained with the

application of both IRM and DPPIM methods decreases either when the FRFs present high levels of noise or when

the rigid body modes are not excited or low excited [24].

4.2. Application of MM methods

After obtaining all of the nine receptance FRFs, for each excitation force, the Norm Indicator (NI), developed by

the authors, was applied. This indicator provides information about the rigid body natural frequencies and about the
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Fig. 9. Results obtained with the application of the (a) IRM and (b) DPPIM for each set of applied forces on Structure II.
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Fig. 10. Total error for each set of applied forces on Structure II applying of the IRM and DPPIM.

level of excitation of each rigid body mode (Fig. 11). For the identification of the modal parameters, a Single Input

Multiple Output (SIMO) modal analysis was performed using MODENT [27].

From Fig. 11 it can be observed that there are situations where some forces excite more certain modes than others.

It was concluded in [11,18,24] that the accuracy of the results increases when the rigid body modes are better excited.

So, with the information given by the NI and the identified rigid body modal properties obtained with different

forces, a refined modal matrix can be constructed with all the best excited rigid body modes:

The relative errors for the mass, vector of centre of mass co-ordinates {C g}and vector of moments and products

of inertia {Jg} as well as the summation of all the parameter errors are presented in Figs 12 and 13, respectively:
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Fig. 11. Results obtained with the Norm Indicator (NI) for each applied force on: (a) structure I and (b) structure II.
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Fig. 12. Results obtained with Conti-Bretl and Toivola-Nuutila methods, using the refined modal matrices constructed with information given by

the NI.

4.2.1. Remarks

From Figs 12 and 13 it can be observed that Toivola-Nuutila method gives, in general, better results than Conti-

Bretl method, independently of the structure in study. The same conclusion was obtained in a previous work carried

out by the authors, using another structure [24, 26].
Another conclusion is that for rigid bodies that present high symmetry relatively to the chosen system of co-

ordinates, sometimes it is not easy to excite all the rigid body modes with only one force as it is shown in Fig. 11.

In this case it is advisable to use information resulting from several forces in conjunction with the Norm Indicator,

as it is proven in [11,18,24,26].

5. Conclusions

The three different types of methods studied to obtain the rigid body properties allow to obtain good results if the

restrictions of each method are observed and if the measured FRFs have good quality.

Within the MM methods, Toivola-Nuutila’s leads to better results than the Conti-Bretl method. These results can
be further improved by taking into account the best excited rigid body modes obtained from different sets of forces.

The Norm Indicator is a crucial tool for the construction of the refined modal matrix.

The DPPIM is easier to handle than the other two methods because it does not require the application of modal

identification techniques to the measured FRFs. It uses directly the raw available FRF data.

A definite conclusion on the best method is not possible, as it is always case dependent; it is advisable to use more

than one method to compare the results.
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