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Abstract. Meta-Heuristics (MH) are the most used optimization techniques to 
approach Complex Combinatorial Problems (COPs). Their ability to move 
beyond the local optimums make them an especially attractive choice to solve 
complex computational problems, such as most scheduling problems. However, 
the knowledge of what Meta-Heuristics perform better in certain problems is 
based on experiments. Classic MH, as the Simulated Annealing (SA) has been 
deeply studied, but newer MH, as the Discrete Artificial Bee Colony (DABC) 
still need to be examined in more detail. In this paper DABC has been 
compared with SA in 30 academic benchmark instances of the weighted 
tardiness problem (1||ΣwjTj). Both MH parameters were fine-tuned with 
Taguchi Experiments. In the computational study DABC performed better and 
the subsequent statistical study demonstrated that DABC is more prone to find 
near-optimum solutions. On the other hand SA appeared to be more efficient.  

Keywords: Complex Combinatorial Problems; Simulated Annealing, Discrete 
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1   Introduction 

Complex Combinatorial Problems (COPs) due to of their exceptional complex nature 
have been the focus of much research, in search of techniques that could address them 
efficiently and effectively. Operational Scheduling Problems (OSPs) given the 
number of constrains and the number of variables makes the problem extremely hard 
to approach with exact methods. Even if some OSPs can be addressed by simple 
heuristic rules, MHs have become the most used technique and have achieved the best 
results in the resolution of these problems [1,2].  
Even with the development and study of several Meta-Heuristics, including the 
Simulated Annealing (SA) and the Discrete Artificial Bee Colony (DABC), there is 
still uncertainty on what makes certain MH more efficient, without a computational 
comparative analysis, since it is impossible to determine a priori, which parameters 
will be more efficient or even which MH will preform better.  



This paper is structured as follows: section 2 overviews Operations Scheduling 
Problems (OSPs) and presents in detail the problem used in the computational study. 
Section 3 overviews Meta-Heuristics, and presents the inspiration and algorithms for 
the two MH implemented in the computational study: Simulated Annealing (SA) and 
Discrete Artificial Bee Colony (DABC). Section 4 presents the parameterization 
procedure for both meta-heuristics in detailed, which is conducted with Taguchi 
Experiments whose results are showed in this section. In section 5 the computational 
results and the statistical study are described. Section 6 summarizes the paper results 
and presents the conclusions 

2   Operational Scheduling Problems 

Operational Scheduling Problems (OSPs) are decision problems that distribute the 
operations over the available resources and disperse the operations in time, or 
sequence them, in each resource [3]. In other words, it is the process that determines 
which resources will be used in each operation and in which sequence the operations 
should be processed.  

2.1   Single Machine Weighted Tardiness Problem 

In the computational study the single machine weighted tardiness problem (1||ΣwjTj) 
will be used. It is a classical benchmark problem that sequences operations in order to 
minimize the tardiness, weighted by importance criterion. Given the pure sequence 
nature of the problem, most models of the problem use binary variables that can 
indicate the position of the operation in the production sequence, where xjk=1 
indicates that operation j occupies position k on the sequence, the relative position of 
the operation, where xjk=1 indicates that operation j should be executed after 
operation I or the moment in which the operation should start to be executed, where 
xjt=1 indicates that operation j should start to be executed in t. One model can be 
examined bellow [4,5]: 
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If tk is the tardiness of the operation in the k position of the sequence, wj the weight of 
operation j and dj the due date of operation j, (1) is the objective function, which is the 
minimization of the weighted tardiness. Equation (2) defines that each operation can 
only be assigned to one position in the sequence and (2) that each position can only 
have one operation assigned to it. Equation (4) defines the tardiness of the operation 
in position k. It is also important to mention that the problem deals with tardiness and, 
as such, the tk can be defined as max(Lk,0) or tardiness. 

3   Meta-Heuristics 

Meta-Heuristics can be described as iterative procedures that conduct a heuristic in 
the exploration of the solution space [6]. Like all heuristic techniques, meta-heuristics 
cannot assure the optimum, but they usually produce suitable solutions within the 
available computational time and outperform other approximation methods.  

3.1   Simulated Annealing 

Simulated Annealing (SA) is one of the best-known MH, proposed by Kirkpatrick et 
al. [7] and Cerny [8], and inspired by the thermic treatment of metals, which are 
heated and cooled down repeatedly. It modifies the basic neighborhood search 
procedure with the introduction of a mechanism that allows SA to overcome local-
optimums, which controls the likelihood of solutions, worse than the current one, 
beeing accepted. SA selects one solution per-iteration, between the solutions in the 
vicinity of the current solution, but, unlike neighbourhood search techniques, it also 
accepts solutions that are worse than the current solution. Worse solutions are 
accepted as the current solution with a predetermined probability that decreases with 
the evolution of the search procedure. At the start almost all solutions are accepted as 
the new solution, but with the advance of the search procedure SA becomes more 
selective. The most common SA algorithm can be examined in [9]. 

3.2   Discrete Artificial Bee Colony 

Discrete Artificial Bee Colony (DABC) is one of the most recent Meta-Heuristics 
based on the Artificial Bee Colony (ABC), which was proposed by Karaboga [10] and 
Pham et al. [11], adapted for discrete problems [12]. It works through the interaction 
of three phases, until the interruption criterion is met: the phase of the worker bees, 
the phase of opportunistic bees and the phase of the scout bees. Initially it is 
determined a food source (xi) for each working bee. In the phase of working bees, 
each one will explore a solution in the neighbourhood (vi) of its food source. In the 
opportunistic bees phases, the bee’s wait for the performance of each food source to 
determine which food source they will explore. Once a food source is abandoned, the 
working bee will become a scout bee and starts to search for a new food source. The 
details about the DABC algorithm can be examined in [12].  



4   Computational Study 

SA and DABC were studied in 30 academic benchmark instances of the weighted 
tardiness problem (1||ΣwjTj) [1]. 1||ΣwjTj corresponds to the minimization of the 
weighted tardiness for n task. All the instances of the problem are available in the 
ORLibrary website [13] that also provides the optimum for each instance.  
All computational trials were performed on a MacBook Pro with a 3GHz Intel® Core 
i7 processor, 16GB of RAM and Windows 10 64-bit. SA would conclude after 10,000 
iterations while DABC would conclude after it explored the same number of 
solutions. All the parameters were define by analogy [14] and tuned with Taguchi 
Experiments [15] in the first instance of the problem used in the computational study 
not to over-fit the MH for each instance. Taguchi approach to Design of Experiments 
reduces the full factorial experiment with Orthogonal Arrays. For example, the full 
factorial experiment with 4 parameters and 3 levels would require 81 experiments, but 
with a L9 Orthogonal Array it requires only 9 experiments. Unlike full factorial 
experiments that seek the parameters that improve the mean outcome, Taguchi 
Experiments search for the parameters that improve the mean outcome and reduce the 
variance. Each parameter is evaluated in its Sign to Noise Ratio (S/N), which can be 
seen in [15]. One example of Taguchi Experiments in MH tuning can be seen in [16]. 

4.1   Simulated Annealing Parameterization  

SA does not need an exhaustive parameterization procedure, since with enough time 
the MH performs well even with carefully determined parameters [17,18]. However, 
since the computational study is limited to 10,000 iterations the parameters need to be 
carefully set to maximize its performance. SA parameters are the Initial Temperature 
(Ti), the Cooling Ratio (CR), the Epoch Length (EL), the Neighborhood Structure 
(NS) and the Stoppage Condition (SC), which is set to 10,000 iterations. All the other 
parameters will be set into three levels and fine-tuned with Taguchi Experiments. 
Kirkpatrick et al. [19] states that the Initial Temperature (Ti) should accept all new 
solutions. Other authors refer Initial Temperature in Pi between [0.7, 0.8] [20]. 
Several metrics to determine the Initial Temperature are presented in [21,22]. In order 
to determine this parameter, 20 random new solutions from the initial solutions with a 
Pi of 0.70, 0.75 and 0.80 which resulted in the rounded initial temperatures of 750, 
1,000 and 1,250. Rose et al [22] state that the Geometric Cooling Ratio should result 
in a slow decrease of temperature, with α between [0.80, 0.99]. One metric to 
calculate the α is presented in [17]. Since the smallest Initial Temperature considered 
was of 750 and that the procedure will stop after 10,000 iterations the Cooling Ratio 
should be 0.97, 0,98 and 0,99. In terms of the Epoch Length, it should be identical to 
the size of the problem, in this case 50, as such, the Epoch Length was set in 50, 75 or 
100. In this paper three simple NS were selected: Insert which consists of the 
solutions that can be obtained by removing one element of the solutions and inserting 
it into another position, Swap which consists of the solutions that can be obtained by 
interchanging two elements of the solution and Transpose, which consists of the 
solutions that are obtained by interchanging two adjacent elements of the solution. In 
[23,24] there are studies on the impact of the NS in SA. 



The S/N for each parameter level can be examined in figure 1, which resulted in an 
Initial Temperature of 1,250, a Cooling Ratio (α) of 0.97, an Epoch Length of 100 
and Swap as the Neighborhood Structure. 

Figure 1.  Simulated Annealing Parameters 

4.2   Discrete Artificial Bee Colony Parameterization  

ABC and DABC are MHs with less parameters [25], but unlike SA, which does not 
require an exhaustive parameterization procedure; the DABC Meta-Heuristic requires 
a meticulous parameterization to perform well. In [24] it is showed how the SA scales 
with the available time, without a rectification of the parameters, while DABC does 
not. DABC parameters are the Colony Size (L), the Limit (l), the Neighborhood 
Structure (NS) and the Stoppage Condition. Since SA was limited to 10,000 
iterations, the number of iterations of the DABC would be limited to either 10,000/10, 
10,000/20 or 10,000/3 iterations, in order to ensure that both MH explored a similar 
number of solutions. DABC will explore, at least, one solution per-bee per-iteration 
and, as such, depends as much on the stoppage condition as it does on the colony size. 
It is important to notice that DABC will explore extra solutions since whenever a food 
source is abandoned another solution will be explore in the same iteration, however 
the number of solutions explored by scout bees cannot be estimated. One extra 
parameter was considered, which was the proportion of worker/scout and 
opportunistic bees, which is usually fixed at 50%, however the increasing the number 
of worker/scout bees should increases the diversity of the MH and the increase of the 
opportunistic bees will increase the intensity of the MH.  



Kockanat & Karagoba [26] studied the influence of the Colony Size (L) and 
concluded that the performance of the MH is not overly dependent on the Colony 
Size, which can be balanced with Stoppage Condition. Other authors refer that the L 
should be related to the size of the problem [27], but also concluded that it did not 
require detail tuning since its impact on the performance is limited. In the Taguchi 
Experiments, L of 10, 20 and 30 will be tested with the number of iterations 
previously mentioned to ensure that both MH explored the same number of solutions. 
For the Limit (l) number, which determines the number of iterations without 
improvement before a food source is abandoned, numerous authors [26-28] concluded 
it required to be meticulously established for larger L. Liu & Liu in [29] present a 
method to calculate the l, based on the L and the dimension of the problem. In the 
Taguchi Experiments the l tested will be 500, 550 and 600, determined with the Liu & 
Liu method [29] in a problem with 50 tasks and L of 10, 20 or 30. In the case of the 
Bees Proportional, which as previously mentioned is not a usual parameter, but can be 
similar to the set of locked scout-bees. Usually this is fixed at 50%/50%, however 
40%/60%, 60%/40% and the usual 50%/50% will also be tested. Finally the 
Neighborhood Structure (NS) is almost a ubiquitous parameter, which can have an 
impact on the performance of all MH. For DABC the same three Neighborhood NS 
used in SA, which are Insert, Swap and Transpose. 
 The S/N for each parameter level can be examined in figure 2, which resulted in a 
Colony Size of 10 and consequentially 10,000/10 iterations, a Limit of 600, a Bees 
Proportion of 100 and Swap as the NS.  

Figure 2.  Discrete Artificial Bee Colony Parameters 



5   Computational Results 

SA and DABC were run 3 times for each of the 30 iterations of the problem with the 
solution from the best test-run being used in the statistical analyses. Overall both MH 
performed well, but it appears that the DABC performed better than SA, as can be 
seen in fig. 3, which shows the best solution. SA found the optimum solution in 5 
instances, 16.(6)%, while DABC found the optimum in 11 instances of the 30 
instances, 36.(6)%. If DABC performed better than SA, it also took more 
computational time in almost all instances. SA took less than 0.001s in 24 of the 30 
instances and up to 0.031s in the other 6 instances. DABC took more computational 
time, less than 0.001s in 7 of the instances and up to 0.032s in the other. 

Figure 3.  SA and DABC Computational Results 

SA achieved better results, in the computational study, than DABC, however to better 
evaluate this performance variance it is necessary to statistically examine the obtained 
results. Both MH solutions were normalized around the best-known solution for each 
instance, available in the ORLibrary, and measured using the mean percent deviation 
from those solutions, which Silberholz & Golden [30] state is the best metric to 
compare MH across several instances of one problem. It is preferable to use the mean 
percent deviation from the optimum, or in this case the best-known solution, over the 
absolute difference, since it allows MH to be compared across all the different 
instances. For example, a 10 units difference, in whatever metric is used, cannot 
represent the same in an instance with an optimum solution of 10 and an optimum of 
1000. 
Once both MH solutions were normalized around the best-known solution, the 
superior performance of the DABC becomes evident. DABC obtained 28 near-
optimal solutions, or solutions with deviation from the best-known solution of less 
than 1%, while SA obtained 16, which means that DABC found near-optimums in 



almost all instances, 93.(3)%, while SA found near-optimums solutions in half of the 
instances, 53.(3)%. SA also found 5 solutions with substantial difference from the 
optimum, or solutions with deviation from the best-known solution of over 5%. 
DABC achieved a mean deviation from the best-know solution of 0.22% while SA 
mean deviation was of 1.54%. DABC performance also appeared constant, with 
standard deviation of 0.30 and 1.91 for SA. In fig. 4 the boxplot of the mean deviation 
from best-known solution, of SA and DABC can be examined.  

Figure 4.  Boxplot of the Deviation from the Best-Known Solution 

In the computational study DABC appeared to have achieved the best results, but to 
determine if the meta-heuristics have the same probability of achieving near optimum 
solutions (>1% from the best-known solution) a statistical inference test needs to be 
used, in this case the Chi-Square to determine if the probability to find near-optimum 
solutions is independent of the MH. In table I the results can be examined.  

Table 5.  Chi-Square Results 

 Value df Asym. Sig. (2-Sidded) 
Pearson Chi-Square 12.273 1 0.000 

Continuity Correction 10.313 1 0.001 
Likelihood Ratio 13.439 1 0.000 
N. of Valid Cases 60   

Results from the Chi-Square test demonstrate that the likelihood of near optimum 
solutions is not identical for both meta-heuristics (P-Value 0.001). It is also possible 
to conclude that DABC is more likely to find a solution closer to the optimum than 
SA (p-value 0.001/2), which reinforces what was apparent in the computational study. 
 



6   Conclusions 

In this paper the performance of SA and DABC were studied in the weighted tardiness 
problem (1||ΣwjTj). SA is a well known meta-heuristic, but DABC, which is a discreet 
version of ABC, is more recent and its behavior has not been examined with the 
required detail. SA and DABC were studied in 30 instances available in the 
ORLibrary. Both MH parameters were tuned with Taguchi Experiments, which 
simplified the often-extensive parameterization procedure. SA search procedure 
concluded after 10,000 iterations while DABC after 10,000/10 iterations. 
In the computational study DABC appeared to perform better than SA in most 
instances. SA found the optimum solution in 5 instances, 16.(6)%, while DABC 
found the optimum in 11 instances of the 30 instances, 36.(6)%. Once the MH 
solutions were normalized, DABC found near-optimums in 93.(3)% of the instances, 
while SA found near-optimums solutions in around half of the instances, 53.(3)%. In 
order to determine if both have the same probability of achieving near-optimums the 
Chi-Square was used. It demonstrated that DABC is more likely to find near-optimum 
solutions than SA. On the other hand, DABC took more time than SA to explore the 
same number of solutions. SA took less than 0.001s in 24 of the 30 instances and up 
to 0.031s in the other 6 instances. DABC took more computational time, less than 
0.001s in 7 of the instances and up to 0.032s in the other. 
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