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ABSTRACT

We analysed the performance and timeliness of the Standardized
Precipitation Index (SPI) in anticipating deviations from mean
seasonal vegetation productivity in the Sahel. Gridded rainfall
estimates are used to compute the SPI for 1–6-month timescales,
whereas the Z-score of the cumulative value of the Fraction of
Absorbed Photosynthetically Active Radiation over the growing
season (zCFAPAR) is used as a proxy of seasonal productivity.
Results show that the strength of the link varies in space as a
function of both the SPI timescale and the timing of the SPI
calculation with respect to the vegetative season’s progress. For
productivity forecasting, we propose an operational strategy to
select per grid cell the SPI timescale and computation time with
the highest correlation with zCFAPAR at different moments of the
season. The linear relationship between SPI and zCFAPAR is sig-
nificant for 32–66% of the study area, depending on the timing at
which SPI is considered (at 0% and 75% of the seasonal progress,
respectively). For these areas, the selected SPI explains on average
about 40% of the variance of zCFAPAR and may thus assist in the
earlier identification of agricultural drought.
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1. Introduction

Drought, with its negative effects on agro-pastoral production, is one of the main causes

of food insecurity worldwide. Mitigating drought impacts requires timely and location-

specific information on drought occurrence to ensure appropriate responses (Rembold

et al. 2016).

Vegetation status can be efficiently monitored at the regional scale in near-real time

using satellite data (Brown 2008). This is typically achieved with vegetation indexes or

biophysical variables such as the fraction of absorbed photosynthetically active radiation

(FAPAR). Despite being useful and objective, such assessments can only be performed

when vegetation development has already been affected by drought.
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Rainfall deficit is the main trigger for agricultural drought, even though other factors

such as air temperature, humidity, wind speed, and soil properties also play a role. For

this reason, various early warning monitoring systems (e.g., the US Famine Early Warning

Systems Network; the Global Information and Early Warning System of the Food and

Agriculture Organization) monitor rainfall to anticipate crop and rangeland performance.

In this study, we evaluate the performance and timeliness of the Standardized

Precipitation Index (SPI, World Meteorological Organization 2012; McKee et al. 1993),

an index widely used to characterize meteorological drought at a range of timescales, in

anticipating deviations from mean seasonal vegetation productivity in the Sahel. We

computed the SPI at various timescales from two sources of satellite-derived rainfall

estimates (RFE), that is, the Tropical Applications of Meteorology Using Satellite Data and

Ground-Based Observations (TAMSAT), and the Climate Hazards Group Infrared

Precipitation with Station (CHIRPS). We calculated a proxy of the seasonal primary

productivity by the phenology-based seasonal sum of FAPAR (CFAPAR) obtained from

the SPOT (Satellite Pour l’Observation de la Terre) VEGETATION mission (e.g., Meroni,

et al. 2014a; Prince 1991). Product characteristics are reported in Table 1. Although

retrospective studies investigating the relationship between annual rainfall and vegeta-

tion productivity exist (e.g., Fensholt and Rasmussen 2011; Kattelus et al. 2016; Pei et al.

2013), the linkage between anomalies of seasonal productivity and precipitation at

various stages of the growing cycle has not been investigated previously.

2. Data and case study description

We investigated the link between RFE-derived SPI and FAPAR-derived anomalies of

seasonal productivity for the period 1999–2013 in the Sahel. We limited the analysis

to cropland and rangeland areas, according to GLC2000 global land cover at 1 km spatial

resolution (Bartholomé and Belward 2005), and to the five main ecoregions of the Sahel

(Olson et al. 2001) between 8° and 20°N. Mean annual precipitation increases from

340 mm in the north to 710 mm in the south. A more elaborate description of the

study area can be found in Meroni, et al. (2014a). Remotely sensed data used in this

study are listed in Table 1.

Although the relationship between rainfall and biomass development is expected to

be weakened for irrigated croplands, we did not exclude them from the analysis because

reliable mapping of irrigated areas is difficult due to their dynamic character (Thenkabail

et al. 2009), while existing land cover data sets show that they constitute only a minor

fraction (1.6%) of the total crop area (Vancutsem et al., 2013). Moreover, we found

Table 1. Remote sensing-derived data products used. RFE stands for rainfall estimates.

Resolution

Variable Source
Spatial
(km)

Temporal
(days)

Start
year Reference and web link

RFE TAMSAT 4 10 1983 Tarnavsky et al. 2014;
tamsat.org.uk/cgi-bin/data

RFE CHIRPS 6 10 1981 Funk et al. 2015;
chg.geog.ucsb.edu/data/chirps

FAPAR JRC 1 10 1999 Weiss et al. 2010; available upon request to authors, most recent
algorithm version at land.copernicus.eu/global
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results to be largely insensitive to the inclusion/exclusion of irrigated land (using

Vancutsem et al., 2013) from the analysis (data not shown).

3. Methods

The SPI is a probability index that expresses the observed cumulative precipitation for

a given timescale (i.e., the period during which precipitation is accumulated) as the

standardized departure from the rainfall probability distribution function. The fre-

quency distribution of historical rainfall data for a given grid cell and timescale is

fitted to a gamma distribution and then transformed into a standard normal distribu-

tion. It is suggested that a minimum of 30 years of precipitation data should be used

to fit the parametric distribution (McKee et al. 1993). To keep the time frame

consistent for the two RFE sources, we computed the SPI using data for the

1983–2013 period, using the SPIRITS software (Rembold et al., 2015). Six rainfall

accumulation periods, from 1 to 6 months (m), are used to generate SPIm series for

every 10 days during the entire 30-year period. That is, we used an accumulation

window of fixed length m and then computed the SPIm series by moving this window

over the time series in 10-day steps. It is noted that the window is not centred but

extends backwards in time from each data point. Thus, for instance, SPI1 for the 10-

day period 11–20 February is computed using the rainfall accumulated over the

previous month (21 January–20 February).

The proxy of biomass production (CFAPAR) is computed as the cumulative FAPAR

value over the average growing season period. This period is defined for each grid cell

using the average timing of the start and end of season (SOS, EOS). SOS and EOS were

estimated from the FAPAR time series by iterative fitting of a double hyperbolic tangent

model per grid cell and per season within the time series as described in Meroni, et al.

(2014b) and modifications (Vrieling et al., 2016). Different spatial resolutions are matched

by assigning the mean CFAPAR within each cell of the two coarser-resolution SPI

sources. Standard scores of the 15-year long time series of CFAPAR are then computed

(further referred to as zCFAPAR). Modal resampling was used for the GLC2000 land cover

layer. CFAPAR and land cover information were thus rescaled to 4 and 6 km for the

analysis with TAMSAT and CHIRPS data, respectively.

To evaluate the potential and timeliness of SPI as an early indicator of seasonal

vegetation productivity, we calculated the coefficient of determination (R2) of the linear

regression between zCFAPAR (dependent variable) and the various SPIm,t (independent

variables) computed for different accumulation periods (m), and different progress

stages of season, denoted by subscript t. Five progress stages, expressed as percentage

of the season period, were considered, that is, from the season’s beginning (t = 0%,

corresponding to SOS) to its end (t = 100%, corresponding to EOS) in incremental steps

of 25%. As mentioned above, the SPIm values are available for the entire time series at a

10-day time step. With the use of t we aim to select, per grid cell, the SPIm time

observation that is available when a percentage t of the growing season has elapsed.

For instance, SPI1,25 is the SPI value computed with an accumulation period of 1 month

and referring to the time of the year for which 25% of the growing season period has

completed (i.e., time of year = SOS + 0.25 × (EOS-SOS)). Note that the seasonal progress

value corresponds to different times of the year for different grid cells. In summary, for
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each grid cell we consider the 30 SPIm,t originating from the combination of six rainfall

accumulation periods m and five computation times corresponding to progresses t.

The R2 was computed independently for each grid cell using 15 data points (i.e., years).

To summarize our findings, we first assessed the mean R2 resulting from the selection of a

single optimal SPIm,t for the entire study area. This strategy represents the typical use of SPI

in operational monitoring. Tukey’s honest significant difference (HSD) test was employed

to test significant differences among such R2 spatial averages over the study area. Then we

assessed per grid cell which combination of m and t provided the largest R2. This assess-

ment can only be applied retrospectively, and is performed here to study the variability of

SPI timescales as a function of seasonal progress. Finally, we explored an operational

strategy for early warning purposes that selects per grid cell the optimal accumulation

period m and observation time, expressed in terms of season progress t.

4. Results and discussion

The R2 values between zCFAPAR and the various SPIm,t were larger when using CHIRPS in

the SPI computation (Table 2). Nevertheless, the ranking of the various SPIs was similar

for CHIRPS- and TAMSAT-based SPIs. For conciseness and clarity, the following discus-

sion will focus on CHIRPS-derived indexes only.

4.1. Selecting a single SPI

Table 2 shows that the largest mean R2 (0.22) are found for SPIs computed half-way

through the season and with long accumulation periods (4–6 months, thus detecting

the more severe droughts). The growing season length varies in the study area between

1–6 months from north to south (for details see Meroni, et al., 2014a). Thus, such SPIs

cover roughly the season experienced so far plus an additional preseason period of

variable length. Ji and Peters (2003) also found the strongest correlations between SPI

and NDVI to occur during the middle of the growing season in the central US Great

Plains, but using a shorter accumulation period for SPI (3 months).

For a large fraction of the grid cells (e.g., 63% for SPI6,50) there is no significant linear

relationship (p-value = 0.05) between the two variables. According to the HSD test, all

the SPIm,t denoted by the same letters (e.g., a and ab) are equally effective (i.e., not

significantly different). SPI6,100, computed at the EOS, is not ranked among the largest R2

and belongs to the fourth HSD group (d), indicating that rainfall in the final period of the

season, when vegetation is in the senescence phase, is less important. This is corrobo-

rated by the fact that short SPI timescales (e.g., m = 1 or 2) show the smallest R2 when

computed around the EOS (t = 75% and 100%). Compared to half-way through the

season, earlier SPIs (25% progress) show slightly smaller R2 (0.2) and area covered by a

significant regression (31%). At the SOS (0% progress), SPI2,0 has the largest R2 (0.17) and

is significantly different from other SPIs. Thus, the rainfall during a relatively short

preseason period may contribute to the prediction of seasonal vegetation productivity.

The R2 for rangelands is in all cases larger than for croplands, which corroborates the

findings of Pei et al. (2013) who analysed the spatial correlation of SPI and net primary

production during drought years in China. This likely reflects the fact that rangeland
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productivity has a stronger direct dependency on rainfall, while cropland productivity is

strongly affected by management practices such as ploughing, weeding, and irrigation.

4.2. Selecting SPI at the grid cell level

The mean R2 over the study area is larger if m and t are selected at the grid cell level. In

such conditions, the mean overall R2 is 0.36 (0.34 and 0.37 for croplands and rangelands,

respectively). Figure 1 shows the spatial distribution of m and t that provides the largest

R2. The fraction of grid cells with a statistically significant linear regression (p-value = 0.05)

is 68%. Large spatial variability in R2, as well as in optimal SPI timescale and time of

computation, is present in the study area, similar to results of Kattelus et al. (2016)

studying the correlation of SPI and rice yield in South Asia.

Table 2. Fraction of total number of pixels having a significant regression at p-value = 0.05.

RFE

SPI
accumulation
period, m
(months)

Progress of
the

season, t
(%)

Fraction with
significant

regression (p = 0.05)
(%)

R2

Overall Cropland Rangeland

Avg SD Min Max
HSD
group AVG AVG

CHIRPS 6 50 36.60 0.221 0.17 0.00 0.88 a 0.197 0.249
5 50 36.55 0.221 0.17 0.00 0.88 ab 0.197 0.249
4 50 36.32 0.220 0.17 0.00 0.87 ab 0.195 0.249
6 75 36.35 0.219 0.17 0.00 0.89 b 0.198 0.242
5 75 35.46 0.215 0.17 0.00 0.89 c 0.192 0.241
6 100 34.48 0.210 0.17 0.00 0.85 d 0.186 0.237
3 50 33.10 0.207 0.17 0.00 0.90 e 0.174 0.244
4 75 32.30 0.201 0.16 0.00 0.88 f 0.171 0.235
5 100 31.59 0.198 0.16 0.00 0.88 g 0.168 0.231
3 25 30.83 0.197 0.17 0.00 0.87 g 0.180 0.217
6 25 30.78 0.197 0.17 0.00 0.88 g 0.181 0.215
4 25 30.80 0.197 0.17 0.00 0.88 g 0.180 0.215
5 25 30.76 0.196 0.17 0.00 0.88 g 0.180 0.215
2 25 27.90 0.185 0.16 0.00 0.90 h 0.160 0.212
4 100 28.20 0.183 0.16 0.00 0.85 h 0.149 0.222
3 75 27.68 0.181 0.16 0.00 0.87 i 0.145 0.220
2 50 25.64 0.173 0.15 0.00 0.86 j 0.137 0.214
2 0 24.54 0.169 0.15 0.00 0.86 k 0.151 0.188
6 0 23.81 0.165 0.15 0.00 0.89 l 0.150 0.182
5 0 23.78 0.165 0.15 0.00 0.89 l 0.150 0.182
4 0 23.77 0.165 0.15 0.00 0.89 l 0.149 0.182
3 0 23.80 0.165 0.15 0.00 0.90 l 0.150 0.182
1 0 23.31 0.162 0.15 0.00 0.89 m 0.150 0.175
3 100 20.36 0.149 0.14 0.00 0.86 n 0.114 0.189
2 75 19.25 0.144 0.14 0.00 0.86 o 0.114 0.177
1 25 17.63 0.135 0.14 0.00 0.87 p 0.111 0.163
1 50 14.94 0.127 0.13 0.00 0.83 q 0.108 0.148
2 100 12.24 0.109 0.12 0.00 0.88 r 0.093 0.127
1 75 10.07 0.096 0.11 0.00 0.84 s 0.083 0.110
1 100 5.49 0.074 0.09 0.00 0.86 t 0.069 0.077

TAMSAT 4 50 29.58 0.190 0.17 0.00 0.93 a 0.166 0.218
6 75 28.83 0.189 0.17 0.00 0.88 ab 0.171 0.209
6 50 28.92 0.188 0.17 0.00 0.93 b 0.163 0.216
5 50 28.90 0.188 0.17 0.00 0.93 b 0.164 0.215

Average (Avg) and standard deviation (SD) of R2 between SPIm,t and zCFAPAR for the entire study area (overall),
croplands and rangelands. SPI indicators are listed in descending order of average R2. Significant differences among
means are denoted by different letters (Tukey’s HSD test, p = 0.05). Only the first two HSD groups are reported for
TAMSAT (with separate grouping from CHIRPS).
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Table 3 shows that, in the majority of the cases (69%), the largest R2 is found when

using an accumulation period of 1–3 months. For 66% of the grid cells, the strongest

linear link is found during the first half of the season (0–50% progress).

4.3. Selecting SPI at the grid cell level by time of analysis

In our last analysis we are interested in determining, when the progress of the grid cell

varies from 0% to 100%, what is, on average, the R2 achievable using the best SPI

indicator available. This explores the potential of an operational use of SPI as an early

indicator of seasonal vegetation productivity. Each grid cell is characterized by its own

Figure 1. (a): Coefficient of determination of the linear regression between zCFAPAR and SPI m.t, m
and t are selected at the pixel level as the pair providing the largest R2 value. n.s. stands for not
significant at p-value = 0.05. (b) and (c): progress of the season (t) and accumulation period (m) of
the selected SPI. Data shown for rangeland and cropland land cover (other classes in white) and the
five main ecoregions of the Sahel (other areas in grey). The thick black simplified polygons represent
the rangeland (in the North) and cropland (in the South) bands.

Table 3. Percentage of pixels selected (over the total pixels with a significant relationship) by
progress of the season and SPI accumulation period as a result of the maximum R2 selection of
Figure 2. Min. (white)–max. (green) colour coding is applied to percentages.

Progress of the season, t (%)

SPI accumulation period, m (months) 0 25 50 75 100 Row total

1 12 5 5 5 2 28
2 6 6 4 4 4 24
3 3 4 4 3 3 17
4 2 2 4 2 3 13
5 1 2 3 2 1 9
6 0 1 3 3 2 9

Column total 24 20 22 19 15
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phenology and, at a given time during which the analysis is performed, by its specific

progress of the season. We further refer to this cell-specific actual progress of the season

at the time of analysis as capital T. Per grid cell, we thus select the SPI accumulation

period (m) and its available progress stage t (with t ≤ T) that provides the largest R2 in

explaining zCFAPAR at the actual (and current) progress stage T. Clearly, not all m,t-

combinations are available when the vegetative season progress has not yet reached the

100% progress for a given grid cell. For instance, if T = 50% for a given grid cell, only SPI

computed at t = 0%, 25% and 50% can be calculated. We note that results gathered at

the end of the season (T = 100%) would give the same results as the one presented in

detail in the previous section. Statistics of the linear regression between CFAPAR and the

various SPIs computed at each step of the seasonal progress are reported in Table 4.

For the same actual progress of the season, the average R2 and the fraction of grid

cells having a statistically significant regression presented in Table 4 (grid cell-based

selection of the accumulation period and timing of SPI computation) is greater than that

in Table 2, which refers to a unique accumulation period for all grid cells.

At the beginning of the season (T = 0%), we observe a significant linear relationship

for about one-third of the grid cells. For such grid cells, the average R2 is 0.4 and the

shortest accumulation periods are used for SPI computation. Thus, when using SPI as a

predictor of the coming growing season, we should mask out regions with non-sig-

nificant relationships, and we should be aware that the variance of zCFAPAR explained

by SPI is limited to 40%.

When the actual season progresses up to 25% and 50% the fraction of the area

showing a significant relationship increases (to 49% and 60%, respectively), and longer

Table 4. Statistics of linear regression SPIm,t vs. zCFAPAR obtained by selecting for each actual
seasonal progress T, the accumulation period m and the optimal timing of SPI computation t (t ≤ T)
that maximize the R2.

Actual progress of the season, T (%)

0 25 50 75 100

Average R2

Overall 0.20 0.28 0.32 0.35 0.36
Cropland 0.19 0.26 0.31 0.33 0.34
Rangeland 0.22 0.30 0.34 0.36 0.37

Fraction of pixels with significant regression (p = 0.05)
32.09 49.22 60.18 65.57 68.18

Average R2 for pixels with significant regression (p = 0.05)
0.40 0.42 0.43 0.44 0.44

Percentage of pixels selected by SPI accumulation period
1 month 46 34 30 29 28
2 months 27 27 24 23 24
3 months 12 18 17 17 17
4 months 11 12 15 12 13
5 months 3 7 8 9 9
6 months 2 3 6 9 9

Percentage of pixels selected by time of SPI computation time
t = 0% 100 42 29 25 24
t = 25% – 58 27 22 20
t = 50% – – 44 25 22
t = 75% – – – 28 19
t = 100% – – – – 15

For each actual progress of the season, the percentage of pixels by the selected SPI accumulation period and by the
time of SPI computation is shown with min. (white)–max. (green) colour coding.
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SPI accumulation periods are selected (Table 4). Figure 2 shows the R2 spatial patterns

for 50% progress of the season.

5. Comparison of SPI selection methods

The limits to the usability of SPI to provide information about seasonal vegetation

productivity were identified by selecting, for each location, the best combination of

accumulation period and progress of the season for computing SPI (mean overall spatial

R2 = 0.36). Obviously, a method that selects each optimal stage of seasonal progress for

calculating the SPI cannot be used for operational drought prediction within the season

as it requires the full seasonal information. At the same time, we found that the

traditional use of SPI as a drought indicator, that is, the selection of a single period for

the SPI computation regardless location and seasonal progress, is not the most effective

approach for the purpose (best R2 ranging from 0.17 to 0.22 depending on season

progress). We showed that a better operational strategy is a per-grid cell selection of the

most appropriate accumulation period (m) and timing of SPI computation (t) for the

actual seasonal progress (T) (R2 = 0.20– 0.37 depending upon progress). Due to the time

lag between rainfall and vegetation response, SPIs computed at early season stages can

still be selected when performing the analysis at later stages. For instance, at 75% actual

seasonal progress, SPIs computed for earlier stages (from 0% to 50%) are selected for

72% of the grid cells.

Several factors may play a role in weakening the link between the meteorological

drought indicator (SPI) and the agricultural drought indicator (zCFAPAR). First, a

confounding factor may be the uncertainty in RFE affecting the accuracy of the

drought indicator (Naumann et al. 2014). Second, reduced functional dependence is

expected in areas where precipitation is not a strong limiting factor or in areas with

little inter-annual variability of precipitation. In fact, the strength of such dependence

(R2 of SPI6,50 as an example) is significantly and negatively correlated with the mean

annual precipitation (correlation coefficient r = −0.26), while positively and signifi-

cantly correlated with the coefficient of variation of the annual precipitation (r = 0.26).

Third, deviation from a linear relation is expected in areas where the amount of water

that is available to plants differs substantially from cumulative rainfall because of

processes such as direct evaporation and water run-off/on. Hence, improving the

relationship of precipitation with zCFAPAR may require modelling the soil-available

water using soil water balance models (e.g., Frere and Popov 1986). Fourth, a

Figure 2. Coefficient of determination of the linear regression between zCFAPAR and SPIm,t that can
be computed half-way through the season (T = 50%) by selecting best accumulation period m and
timing for SPI computation t. n.s. stands for not significant at p-value = 0.05.
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precipitation feature that is not captured in SPI, the temporal rainfall distribution, is

also expected to add noise as the same amount of cumulative rainfall may result in

different production levels depending on their temporal distribution (Hiernaux et al.

2009). For example, uniformly distributed rainfall across the season will result in less

vegetation stress compared with heavy rainfall events separated by dry intervals

(Zhang et al. 2013). Finally, areas subjected to flooding may present an inverse

relationship.

6. Conclusions

This study shows that the most effective approach for using SPI as an operational early

indicator of vegetation productivity anomalies is to consider vegetation phenology and

select the SPI accumulation period and time of computation separately for each grid cell

at each time of analysis.
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