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Abstract: Slab-column connections with FRPs fail suddenly without warning. Machine learning
(ML) models can model the behavior with high precision and reliability. Nineteen ML algorithms
were examined and compared. The comparisons showed that the ensembled boosted tree model
showed the best, most precise prediction with the highest coefficient of determination (R2) (0.98),
the lowest Root Mean Square Error (RMSE) (44.12 kN), and the lowest Mean Absolute Error (MAE)
(35.95 kN). The ensembled boosted model had an average of 0.99, a coefficient of variation of 12%,
and a lower 95% of 0.97 , respectively, in terms of the measured strength. Thus, it was found to be
more accurate and consistent compared to all implemented machine learning models and selected
traditional models. In addition, the significance of various parameters with respect to the predicted
strength was identified, where the effective depth was the most significant by a factor of 0.9, and the
concrete compressive strength was the lowest by a factor of 0.3.

Keywords: two-way shear; FRP; slab-column connection

1. Introduction

Vital infrastructures suffer from the risk of demolition due to a lack of maintenance,
severe environmental conditions due to steel corrosion, and the sudden nature of slab-
column connection failures. Thus, fiber-reinforced polymers (FRPs) are replacing steel to
avoid problems due to steel corrosion because of their excellent properties, which include,
but are not limited to, being non-corrosive in nature, having a high strength-to-weight ratio,
and performing well under fatigue [1–5]. It is worth noting that, back in the 90’s, FRPs
were used for strengthening structures and continue to be valuable in this field [6,7]. In
addition, most of the existing design models for slab-column connections lack a physical
sense, which is due to their being empirical or semi-empirical [4]. On the other hand,
machine learning (ML) models can model the behavior with a high level of precision and
consistency [8–10].

Although the punching shear failure has a sophisticated, complex behavior, other
innovative data-driven models are essential for improving prediction accuracy [11–15]. For
the last few decades, ML has shown significant improvements in various fields [16–19],
including structural engineering [20–23].

Some studies have tackled slab-column connections with FRP reinforcements. In [24],
Jumaa and Yousif examined three ML prediction models, Nonlinear Regression analysis
(NLR), an Artificial Neural Network model (ANN), and GEP to predict the punching shear
failure of FRPs. The models were trained on a dataset composed of 269 records. The results
showed that the ANN model outperformed the other two models regarding prediction
accuracy. In [20], two models were presented, one based on an ANN and one based on an
SVM; both models were trained using a dataset composed of 82 records. In [25], Metwally
employed a Levenberg–Marquardt Artificial Neural Network (LM-ANN) for the prediction
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of the punching shear strength of concrete slabs with various types of FRPs. His model was
trained on a small dataset composed of 59 records. His method showed promising results
when compared to the experimental results.

All previous ML models, used for the punching shear of FRP-reinforced slabs that
were examined, worked with a relatively small dataset. In our study, a comprehensive
study was performed for five main ML algorithms, and all of our models were trained
with a relatively large dataset, composed of 189 records. The dataset of the five ML
algorithms, used for the prediction of the punching shear of FRP slabs, was divided into
three subsets: training, validation, and testing. In addition, the effect of all input parameters
on prediction was examined, and all of our models were compared with each other with
respect to model efficiency and prediction accuracy. Several design models for slab-column
connection design models are shown in Table 1. Models were selected to represent well-
known simple design models, including, but not limited to, well-established design codes,
guides, and recently developed models, with both empirical and semi-empirical designs.
However, these models were developed using an old experimental database and thus lack
the consistency needed for reliable strength prediction. In addition, these models vary in
the variables considered and their patterns. Thus, there is a need for a machine learning
model capable of accurately predicting strength and identifying the inter-relationships
between variables. The selected models in Table 1 are being used for comparison with the
proposed model as evidence of its accuracy and consistency.

Table 1. Selected slab-column strength models.
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2. Analysis of the Dataset

An extensive dataset of 189 records representing the test results of slab-column capacity
with FRP slabs tested under punching shear was gathered from 37 research investigations,
which will be referred to hereinafter as the dataset, as shown in Figure 1 and Table 2,
where CFRP is carbon FRP, GFRP is glass FRP, N is the number of tested specimens, V
is the punching shear failure load, E is Young’s modulus, d is the effective depth, fc’ is
the concrete compressive strength, ρ is the flexure reinforcement ratio, b and c are the
column dimensions, and A and B are the slab dimensions. In Figure 1, the dataset is close
to normally distributed with respect to all variables. In Figure 1 and Table 2, the dataset
covered a range with respect to all significant variables, including, but not limited to,
the following:

1. Slab dimensions vary from 300 to 4000 mm.
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2. Effective depth varies from 45 to 284 mm, while there are very few specimens above
200 mm, which is not common for a flat slab; however, this could be because of the
lab testing facility.

3. Concrete compressive strength varies from 22 (conventional normal concrete) to
179 MPa (ultra-high-performance concrete), while there are very few specimens above
50 MPa. Thus, there is a need for more testing of high strength concrete and ultra high
strength concrete.

4. The flexure reinforcement ratio varies from 0.18% to 3.26%, which is a wide range
of ratios.

5. Young’s Modulus varies from 28 to 230 GPa, and the majority of values are between
40 and 60 MPa. However, the FRP industry is evolving with new products with much
higher Young’s modulus values. Thus, more testing of FRP reinforcements with a
Young’s modulus up to the maximum values offered by the market is needed.

6. The shear-span-to-depth ratio varies between 1.8 and 11.
7. The loading area dimensions vary from 25 to 635 mm.

FRP reinforcements have different diameters and configurations, where the diameter
varies between 6 to 24 mm and the configurations are bars or grids. However, the flexure
reinforcement ratio and Young’s modulus were implemented to consider the influence of
FRP material type, diameter, and configuration.
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Figure 1. Frequency spectrum of different Inputs.
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Table 2. Experimental database for FRP-reinforced concrete slab-column connections.

Reference n A B b c d fc’ ρ E V Type(mm) (mm) (mm) (mm) (mm) (MPa) (%) (GPa) (kN)

Ahmed et al. (1993) [31] 4 690 690 75–100 75 61 36–45 0.95 113 78–99 CFRP
Banthania et al. (1995) [32] 3 600 600 100 100 55 41–53 0.31 100 61–72 CFRP
Bank and Xi (1995) [33] 6 1800 1500 250 250 76 30 1.49–2.05 143–156 179–201 CFRP

Louka (1999) [34] 12 3000 1800 575 225 175 43–55 1 39–160 500–1183
GFRP,
and

CFRP

Matthys and Tarewe (2000) [35] 13 1000 1000 80–230 80–230 95–126 32–118 0.19–1.22 37–149 142–347
CFRP
and

GFRP
Rahman et al. (2000) [36] 5 2000 2500 250 150 162 42 0.28 85 534–698 GFRP
Hassan et al. (2000) [37] 3 1800 3000 575 225 165 59 0.57 147 1000–1328 CFRP
Khanna et al. (2000) [38] 1 2000 4000 500 250 138 35 2.4 42 756 GFRP

El–Ghandour et al. (2003) [39] 5 2000 2000 200 200 142 29–47 0.18–0.47 45–110 170–317
GFRP
and

CFRP
Ospina et al. (2003) [40] 3 2150 2150 250 250 120 29.5–37.5 0.73–1.46 28–34 206–260 GFRP

Zaghloul and Razapur (2003) [41] 1 1760 1760 250 250 75 45 1 100 234
CFRP
and

GFRP
Hussien et al. (2004) [42] 4 1830 1830 250 250 100 26–40 1.05–1.67 42 210–249 GFRP
Jacobson et al. (2005) [43] 5 2000–2300 2000 635 250 175 27.6 0.95–0.98 33 537–897 GFRP

El–Gamal et al. (2005) [44] 5 3000 2500 600 250 159 44–49.6 0.35–1.99 38–122 674–799
GFRP
and

CFRP
Zhang et al. (2005) [45] 2 1830 1830 250 250 100 35–71 1.05–1.18 42 218–275 GFRP
Zhang (2006) [46] 7 1900 1900 250 250 100 25–98 0.36–0.75 120 251–446 CFRP
Tom (2007) [47] 6 1900 1900 250 250 110 70 1–1.5 41 282–487 GFRP
Zaghloul (2007) [48] 7 1760 1000 250 250 120 25 0.94–1.48 100 97–211 CFRP
El–Gamal et al. (2007) [49] 2 3000 2500 600 250 156 44.1 1.2 44.5 707–735 GFRP
Ramzy et al. (2007) [50] 4 2000 2000 200 200 82–112 33–40 0.81–1.54 46 165–230 GFRP
Zaghloul et al. (2008) [51] 4 1760 1760 200 200 82–112 33–40 0.81–2.14 46 165–230 GFRP
Lee et al. (2009) [52] 4 2300 2300 225 225 110 36.3 1.17–3 48.2 222–330 GFRP
Zhu (2010) [53] 7 1500 1500 150 150 135 22–42 0.29–0.55 100 145–275 BFRP

Min (2010) [54] 7 300 300 25 25 45 47.8–179 0.78 76–230 39–98
GFRP
and

CFRP
Bouguerra et al. (2011) [55] 7 3000 2500 600 250 110–155 35–65 0.70–1.20 43 362–732 GFRP
Zhu et al. (2012) [56] 5 1500 1500 150 150 130 22–45 0.29–0.55 45.6 167–252 GFRP
Nguyen–Minh et al. (2013) [57] 3 2200 2200 200 200 130 48.8 0.48–0.92 48 180 GFRP
Hassan et al. (2013) [58] 19 2500 2500 300 300 131–284 32–75 0.30–1.61 48–57 329–1248 GFRP
El-Gendy et al. (2015) [59] 6 2800 1500 300 300 160 41 0.85–1.70 60.5 159–277 GFRP
Tharmarajah et al. (2015) [60] 4 1425 500 500 25 117–119 65–69 0.6 54–67.4 295–365 GFRP
Mostafa et al. (2016) [61] 3 2600 1450 300 300 160 80–85 0.87–1.70 60.5–69.3 251–288 GFRP
ELGABBAS (2016) [62] 6 3000 2000 600 250 160 42–48 0.40–1.20 69.3 436–716 BFRP
Gouda and El–Salakawy (2016) [63] 4 2600 2600 300 300 160 38–70 0.65–1.30 65–69 363–719 GFRP
Oskouei et al. (2017) [64] 1 800 800 250 250 176 59 0.7 68 719 GFRP
Hussein and El–Salakawy (2018)
[65] 3 2800 2800 300 300 160 80–87 0.98–1.93 65 461–604 GFRP

Hemzah et al. (2019) [29] 8 600 600 100 100 80 46–60 0.3–0.90 144 57–129 CFRP
Huang et al. (2020) [66] 1 1600 1600 200 200 125 24.97 0.89 123 262 CFRP

Mean 1961 1736 301 212 131 46 0.94 80 416
Minimum 300 300 25 25 45 22 0.18 28 39
Maximum 3000 4000 635 300 284 179 3.76 230 1600

3. Machine Learning Methods

Before the implementation phase of the five ML models, dividing the dataset into
two subsets, a training set with 80% of the dataset, with a handout validation of 15%, and
a testing set with the remaining 20%, is recommended in order to determine the best-fit
model. The testing dataset was not used in the training phase. The models were trained
with five input variables: the column dimension C, the effective depth d, the concrete
compressive strength f’c, the flexure reinforcement ratio ρ, and young’s modulus E. The
output of our models is the prediction of the slab-column strength of FRP V. The evaluation
of the five models was performed on the testing set.

3.1. Linear Regression Model

This model is defined as a linear fit regression that interprets the relationship between
the output and the influencing inputs. The key concept is to indicate the coefficient
parameters’ linearity. Different types of linear regression were examined, including normal,
interaction, robust, and step-wise.
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3.2. Regression Decision Tree

Decision trees subdivide data in a practical tree illustration using simple rules [67].
These rules are set through the decision tree, and the response prediction is performed in
an iterative segmentation manner. The tree is composed of roots, leaves, and branches. The
training dataset is arranged at the bottom of the tree. The training starts from the top-most
roots of the tree. Afterwards, a conditional test is performed in order to draw a path along
the tree branches for every node. Various judging conditions are applied to assess the
testing at each node, such as the Mean Square Error (MSE). The output of the tree is the
prediction that exists in the leaves of the tree, at the end of each path. Various types of
regression trees are examined, including complex trees, medium trees, and simple trees.
They all follow the same concept of prediction; however, they differ in the fixation of the
minimum size of the leaf.

3.3. Ensemble Trees

The ensemble method was introduced in [68] as a group of separate, inadequate
models that provide a powerful mathematical prediction. These types of trees can com-
bine similar or non-similar prediction algorithms. There are two types of ensemble trees:
bagged and boosted trees. The bagged trees create many models by implementing various
bootstraps in a single tree and then merging them into single decision tree by computing
the average between them. Boosted trees work as a two-step technique. In the first step,
a subset of data is used to obtain a sequence of average working models; in the second
step, the performance is boosted by joining the models with each other using a fixed cost
function. The boosted algorithm relies on an iterative approach, which means that the
parameters in the next step are updated using the residual computed from the previous
step in order to optimize the objective function, which is defined as

J(θ) = L(θ) + Ω(θ) (1)

L(θ) =
n

∑
i=1

L(yi, ŷi) (2)

Ω(θ) =
m

∑
k=1

Ω( fk) (3)

Ω( fk) = ΥT +
λ

2

T

∑
j=1

w2
j (4)

where θ is the trained parameters among the given data, J(θ) is the objective function,
L(θ) is the training loss function, which is computed through the comparison between
the predicted output ŷi and the real output yi to evaluate the accurate prediction of the
model, Ω(θ) is the regularization term, which is added to prevent model over-fitting by
controlling the complexity of the algorithm, n and m are the number of predictions and
trees, respectively, fk is the individual tree prediction function to evaluate the output in the
functional space F of all regression trees, Υ and λ are the regularization parameters terms,
also used in controlling the complexity of the boosted algorithm, T is the number of tree
leaf nodes, and wj is the weight of the ith leaf node.
The prediction result ŷi of the boosted algorithm is computed from the prediction of each
individual tree, defined as

ŷi =
m

∑
k=1

fk(xi), fk ∈ F (5)

where xi is the ith input variable.
The boosted algorithm constructs a tree and splits a leaf node into two sub-tresses/

branches, left and right. Afterwards, the gain is computed at each leaf node for the
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determination of the best node. The optimal branch gain is selected once the gain after the
splitting reaches its maximum value.

Gain =
1
2

 G2
R

HR + λ
+

G2
L

HL + λ
−

(G2
R + G2

L)
2

HR + HL + λ

− Υ (6)

where GR and GL are the gain of the new right and left branches, respectively, and HR and
HL are the original right and left branches, respectively.

The boosted algorithm showed the best fit model for the prediction for FRP capacity
with respect to the available dataset.

3.4. Support Vector Machine (SVM)

The concept of a SVM was first introduced in [69]. It is a method of implementing
kernel functions for transforming data into a high dimensional feature space through a
linear model. This model is utilized to remove any sophisticated nonlinear relationship.
The main concept underlying the SVM is the linear regression function calculations, where
the input data is mapped using a nonlinear function.

The training in the regression process can be defined as {(x1, y1), (x2, y2), . . . ., (xn, yn)},
where xi and yi are the input vector and predicted output value of the SVM models,
respectively, and n is the size of the sample. The aim is to find the function f (xi) that has
the maximum derivation ε of the real output yi for all samples in the training set. f (x) is
assumed to have a linear regression function that can be defined as

f (x) = 〈w, x〉+ b (7)

where the vector w is required to be minimized to allow the function f (x) to be as

flat as possible. This minimization is achieved by computing the norm ‖w‖2

2 subject to
|yi − 〈w, xi〉 − b| ≤ ε.

Some points in the training data may not satisfy the constraint condition. In this
case, a slack variable ϕi will be introduced for such a sample to be able to deal with the
constraint condition. This slack variable ϕi will measure the derivation of the training
points outside the ε supported points. Therefore, the SVM function will be computed to
minimize as follows:

‖w‖2

2
+ C

n

∑
i=1

εi :
{
d|yi − 〈w, xi〉 − b| ≤ εi + ϕie

ϕi ≥ 0
(8)

where C > 0 is the regularization parameter and is responsible for the determination of the
trade-off between the function f (x) and the calculated error.
The final estimation function for to minimize:SVM is recalculated to be

f (x) =
n

∑
i=1

σiK(X, xi) + b (9)

where σi is the Lagrange multiplier, K(X, xi) is the kernel function, and b is the bias term.
Many SVM approaches have been examined, including linear, quadratic, cubic, fine, medium,
and coarse SVMs. They all follow the same concept but have different kernel functions.

3.5. Gaussian Process Regression

Gaussian Regression (GPR) was introduced in [64]. It is a complex model that is
capable of solving sophisticated ML problems. The power of such a model is its flexible, non-
parametric models. GPR models are able to analysis the smoothness and noise parameters
from the training data. The models find a stochastic process in which random variables are
assumed to follow a Gaussian distribution. GPR models are non-parametric kernel-based
probabilistic supervised learning models used for generalizing a complex and nonlinear
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function mapping hidden in the datasets used in training. The power of GPR methods is
based on the use of kernel functions that improve efficiency when handling nonlinear data.
GPR models provide a reliable response to the input data. These models assume that the
output is computed as

y = f (x) + ε (10)

where ε is the noise representation of sample xi.
For a given training set, the main goal is to predict the output value y∗ of a new input

pattern. In order to be able to establish this goal, it is essential to establish three co-variance
matrices as follows:

K =


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

. . . · · · · · ·

. . . . . . . . .
k(xn, x1) k(xn, x2) . . . k(xn, xn)

 (11)

K∗ =
[

k(x∗, x1) k(x∗, x2) . . . k(x∗, xn)
]

(12)

K ∗ ∗ = k(x∗, x∗) (13)

where k(x1, x1) is the co-variance function, which maps the relation between one output
and the next.

Many GPR methods have been examined, including the squared Gaussian process,
the Marten 5/2 GPR, the exponential GPR, and the rational quadratic GPR.

4. Results and Discussion

To develop the used ML-based models, a grid search method with a 15-fold cross-
validation approach was used in the training phase to determine the optimal hyper-
parameters. In order to evaluate the effectiveness of our models, the following statistical
measures were reported:

• Correlation Coefficient (R2), defined in Equation (14);
• Root Mean Square Error (RMSE) measured in kN, defined in Equation (15);
• Mean Absolute Error (MAE) in kN, defined in Equation (16);
• the model’s training time, measured in seconds.

Models were trained using an Intel core i5, 8GB RAM, using the MATLAB 2021a
Machine Learning toolbox. In addition, the R2, RMSE, and MAE values were calculated for
each model as shown in Table 3, which will be discussed in this section.

R2 = 1− ∑m
i=1 (Yp −Yo)

2

∑m
i=1 Yo − 1

m ∑m
i=1 Yo

(14)

RMSE =

√
1
m

m

∑
i=1

(Yp −Yo)
2 (15)

MAE =
1
m

m

∑
i=1

∣∣Yp −Yo
∣∣ (16)
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Table 3. Experimental database for FRP-reinforced concrete slab-column connections.

Model R2 RMSE (kN) MAE (kN) Training
Time (secs)

Models Train Test Train Test Train Test
Linear
Normal 0.87 0.65 107.36 264.221 86.571 145.674 1.4376
Interaction 0.88 0.66 101.99 258.013 73.766 144.435 1.1043
Robust 0.9 0.63 95.409 240.48 76.542 116.275 0.97814
Stepwise 0.95 0.64 69.438 266.688 55.976 153.129 3.4838
Tree
Fine 0.94 0.84 75.741 85.3446 52.98 60.8346 0.76536
Medium 0.93 0.44 78.387 357.974 57.683 216.808 0.63219
Coarse 0.82 0.63 128.12 214.858 112.3 117.108 0.50711
Support Vector Machine
Linear 0.89 0.63 99.258 249.615 78.551 172.066 0.36803
Quadratic 0.88 0.71 104.89 214.858 62.374 109.986 1.7385
Cubic 0.77 0.49 143.89 341.117 97.009 219.475 1.6429
Fine Gaussian 0.79 0.59 137.11 250.681 102.54 169.551 1.5262
Medium Gaussian 0.96 0.69 57.815 236.587 46.092 109.372 1.4165
Coarse Gaussian 0.89 0.61 98.455 245.066 77.313 116.613 1.3137
Ensembled Trees
Boosted 0.98 0.97 44.12 71.963 35.95 43.452 1.1991
Bagged 0.93 0.87 76.359 113.902 59.326 63.891 2.8842
Gaussian Process Regression
Squared Exponential 0.95 0.93 68.981 150.097 53.354 77.068 0.95702
Marten 5/2 0.95 0.91 67.181 112.574 49.368 65.639 2.2757
Exponential 0.96 0.93 60.245 67.839 43.267 43.738 2.0637
Rational Quadratic 0.95 0.91 65.886 91.372 48.302 58.331 1.7053

4.1. Linear Regression

The stepwise model had the highest R2 and the lowest RMSE and MAE, with values of
0.95, 69.438, and 55.976, respectively, in training. However, the model produced the worst
values in testing. The stepwise model reported the lowest R2 and the highest RMSE and
MAE, with values 0.64, 266.688, and 153.129, respectively, among other linear regression
models. This could be because the testing set was not used in training and thus provided
value ranges for the input patterns that were different from the values used in training.
This means that this model was not able to produce accurate predictions.

4.2. Tree

Three different approaches were employed for solving the slab-column strength prob-
lem. The fine tree method performed best among the other tree methods in training and
testing. It reported the highest R2 and the lowest RMSE and MAE, with values of 0.94,
75.741, and 52.98, respectively, in training and 0.84, 85.3446, and 60.8346, respectively, in
testing. It also consumed the most training time among the different tree approaches. The
fine tree method could be used for prediction; however, it is not the optimal solution for
our problem. The worst tree method in training was the coarse tree, while the medium
tree reported the worst values in testing. This means that these tree methods may not be
reliable enough for solving such a problem.

4.3. Support Vector Machine

Several SVM methods were examined for the prediction of the punching shear. The
medium Gaussian SVM performed the best among the other tree methods in training and
testing. It reported the highest R2 and the lowest RMSE and MAE, with values of 0.96,
57.815, and 46.092, respectively, in training. I was not able to produce the same good results
for testing, reporting 0.69, 236.587, and 109.372, respectively. This means that this method
may not be able to produce accurate predictions for our problem.
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4.4. Ensembled Trees

The boosted model reported the most optimal values for R2, RMSE, and MAE in
both training and testing phases. It reported vales of 0.98, 44.12, and 39.95, respectively,
in training and 0.97, 71.963, and 43.452, respectively, in testing. This means that this is
the most optimal and powerful method that can capture all of the changes in the input
parameter patterns and provide accurate predictions of the punching shear. The bagged
methodology also gave good results in both training and testing, but it was not the most
optimal and consumed more training time.

4.5. Gaussian Process Regression

GPR methods performed well in both training and testing phases. They provided a
solution that was close to the optimum boosted ensembled tree solution but with double
training time. The exponential GPR reported the highest R2 and the lowest RMSE and
MAE, with values of 0.96, 60.245, and 43.738, respectively, in training and 0.93, 67.839, and
43.738, respectively, in testing, compared with the other GPR methods.

Figure 2 shows the predicted vs. actual values of the punching shear. This figure
shows how well each model produces predictions for different response values. A perfect
regression model has a predicted response equal to the actual response, where all of the
points lie in the diagonal model, but the vertical distance from the line to any point is the
error in the prediction of that point. Based on Figure 2, the best optimal solution of our
problem was Model 1.14—the boosted ensembled tree model. Almost all points either have
the smallest distance with respect to the vertical line or lie on the vertical line itself, i.e., a
zero error between the predicted and real output values, which is the best case. Figure 2
is generic, but further specifications regarding model performance are found in Table 3,
where the R2, RMSE, and MAE values are reported for all models. We also investigated the
effect of each of the five inputs on the most optimal model, the boosted ensembled tree. The
analysis showed that the effective depth d had the most important effect on the prediction
of the slab-column strength, i.e., it has highest R2 and the lowest RMSE and MAE, followed
by column dimension C, while Youngs’ modulus E had the least important effect, i.e., the
lowest R2 and the highest RMSE and MAE, as shown in Figure 3. The values are reported
with respect to R2, MAE, and RMSE.

For the optimal method, the boosted tree in our case, Figure 4 shows how the error
decreases as different combinations of hyper-parameters are evaluated. It also shows
the model behaviour with the hyper-parameters that are optimized best. The best model
converges in the 30th training iteration. It achieved the best performance in its 25th iteration.

Figure 2. Cont.
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Figure 2. Cont.
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Figure 2. Cont.
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Figure 2. SF calculated using various models versus the record number.
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Figure 3. Importance of input variables in the boosted model reported in R2, MAE, and RMSE.

Figure 4. Visualization of the most optimal method—the boosted tree.

5. Precision and Reliability of ML and Existing Models

In this section, the reliability and precision of the proposed mode will be compared to
the most recent models, including, but not limited to, the Ju model developed in 2021 and
the Hemzah developed in 2018. The precision and reliability of the capacity calculated using
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a model will be examined using the ratio between the experimentally observed capacity and
that determined using that model (SF). Applying statistical measures on the SF calculated
using the ML models and the existing ones could express the precision, reliability, and
safety of the model. The closer the average of the SF is to unity, the more precise the used
model is. The lower the coefficient of variation of the SF is, the more reliable and precise the
model is. If the lower 95% confidence limit is close to unity and larger than 0.85, the model
has acceptable safety. In addition, the SF can be plotted versus all effective parameters; thus,
the variation in model safety can be examined. Moreover, the ideal pattern is plotted using
a solid line, and a linear trendline for the SF is plotted using a dotted line. The inclination of
the trendline is an indication of variation and scattering, while the sign of that inclination
is indicative of an increase or decrease with the investigated parameter.

5.1. Overall Safety

Table 4 shows the statistical measures calculated for the existing models as well as
the proposed model. It is clear that, overall, the ML model captured the behavior with
a significantly lower RMSE, MAE, and coefficient of variation compared to all existing
models, with values of 64.23, 37.97, and 12%, respectively. In addition, the proposed ML
model is more precise, is more reliable, and is reasonably safe compared to the existing
design codes in terms of the mean, R2, and the lower 95%, which is close to unity, with
values of 0.96, 0.99, and 0.97, respectively. Excluding the ML model, the CSA, Hemzah, and
Ju models are more reliable and accurate compared to the ACI and JSCE. Figure 5 shows
the SF calculated using the JSCE, CSA, ACI, Hemzah, Ju, and ML models. In the figure,
the inclinations of the trend line for the JSCE, CSA, ACI, Hemzah, and Ju models were
−51× 10−4,−20× 10−4,−34× 10−4,−15× 10−4,−26× 10−4, and−3× 10−4, respectively.
It is clear that the ML model has less scattering compared to the selected existing models.

Table 4. Statistical measures for the SF calculated using the existing models and the ML model.

Statistical Meaaure JSCE CSA ACI Hemzah Ju ML

R2 0.74 0.77 0.74 0.77 0.75 0.96
RMSE 375.94 169.58 305.58 157.87 181.30 64.23
MAE 274.36 112.52 222.62 100.98 121.25 37.97
Mean 2.87 1.20 2.20 1.02 1.24 0.99
C.O.V 36% 37% 39% 43% 32% 12%

Lower 95% 2.72 1.14 2.08 0.96 1.18 0.97
Maximum 0.85 0.34 0.62 0.28 0.36 0.57
Minimum 8.08 3.00 5.86 3.54 2.41 1.35
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Figure 5. SF calculated using various models versus the record number.
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5.2. Safety versus Slab Size

Figure 6 shows the SF calculated using the JSCE, CSA, ACI, Hemzah, Ju, and ML
models versus the effective depth. In the figure, the inclinations of the trend line for the
JSCE, CSA, ACI, Hemzah, and Ju models was 0.8×10−4,−9× 10−4,−9× 10−4,−12× 10−4,
−6× 10−4, and −0.4× 10−4. For all models, the safety decreases with the depth increase,
except in the case of the JSCE and CSA models. The ML has less scattering compared to the
other models. The JSCE and Ju models have a small inclination, which might be due to the
size effect factor.

5.3. Safety versus Concrete Strength

Figure 7 shows the SF calculated using the JSCE, CSA, ACI, Hemzah, Ju, and ML
models versus the concrete strength. In the figure, the inclinations of the trend line for
the JSCE, CSA, ACI, Hemzah, and Ju models were 215 ×10−4, 45 ×10−4, 100 ×10−4,
−87 × 10−4, 18 ×10−4, and −1 × 10−4. For all models, the safety increases with the
concrete compressive strength increase, except in the case of ML. The ML model has less
scattering compared to the other models.

5.4. Safety versus the FRP Young’s Modulus

Figure 8 shows the SF calculated using the JSCE, CSA, ACI, Hemzah, Ju, and ML
models versus the concrete density. In the figure, the inclinations of the trend line for the
JSCE, CSA, ACI, Hemzah, and Ju models were 78 ×10−4, 22 ×10−4, 33 ×10−4, 35 ×10−4,
8 ×10−4, and −0.7× 10−4. For all models, the safety increases with the increase in Young’s
modulus, except in the case of the ML. The ML has less scattering compared to the other
models. The Ju model has a small inclination, which might be due to the use of a square
root relation, while other models use a cubic root relation.

5.5. Safety versus Column-Dimension-to-Depth Ratio

Figure 9 shows the SF calculated using the JSCE, CSA, ACI, Hemzah, Ju, and ML
models versus the column dimensions. In the figure, the inclinations of the trend line for the
JSCE, CSA, ACI, Hemzah, and Ju models were −1044× 10−4, −2292× 10−4, −4904× 10−4,
−2581× 10−4, 115 ×10−4, and 57 ×10−4. The ML has less scattering compared to the other
models. The Ju model has a small inclination with respect to column dimensions, which

might be due to the factor
(

d
b0.5d

)0.5
.

5.6. Safety versus Flexure Reinforcements

Figure 10 shows the SF calculated using the JSCE, CSA, ACI, Hemzah, Ju, and ML
models versus the flexure reinforcement ratio. In the figure, the inclinations of the trend
line for the JSCE, CSA, ACI, Hemzah, and Ju models were 1059 ×10−4, −2214× 10−4,
−5571× 10−4, −2766× 10−4, −1276× 10−4, and −6× 10−4. For all models, the safety
decreases with the flexure reinforcement’s increase, except in the case of the JSCE and ACI
models. The ML model has less scattering compared to the other models.
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Figure 6. SF calculated using various models versus d.
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Figure 7. SF calculated using various models versus d.
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Figure 8. SF calculated using various models versus Γ.
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Figure 10. SF calculated using various models versus ρ.
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6. Conclusions

Several machine learning models were developed and evaluated using an extensive
experimental database of 189 slab-column connections with FRP reinforcements. Although
concluding remarks are limited to the range of parameter values in the database, a problem
that can be solved with the testing of more slabs, the following can be concluded:

• A grid search with a 15-fold cross-validation was used to determine the optimal
hyper-parameters of ML-based models during the training process.

• The comparison to the experimental data showed that the five ML-based models with
the input variables and optimal hyper-parameters are fully capable of predicting the
punching shear strength of FRP-RC slabs.

• The ensembled boosted model was found to be the most reliable and accurate model
among all implemented machine learning models with the best accuracy: R2 = 0.97,
RMSE = 71.963 kN, and MAE = 43.452 kN for the testing dataset. In addition, the
boosted model predicted the actual strength more precisely and reliably compared to
the existing design models. It minimized the variability of the traditional models with
respect to the effective variables.

• For the most accurate model—the boosted ensemble—the effect of all input variables
on the predicted Shear capacity was examined. Variables can be arranged from most
to least influential as follows:

1. the effective depth;
2. the column dimensions;
3. the flexure reinforcements;
4. the longitudinal reinforcement modulus of elasticity;
5. the concrete compressive strength.

• The proposed model has high accuracy and consistency and thus provides a reliable
alternative to the existing strength models, which are inconsistent and have a high
coefficient of variation. In addition, the interpretation results of the model reflect
the importance and contribution of the parameters that influence the strength in the
proposed model. Moreover, these findings confirm findings from concurrent research
studies [70–72].
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