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ABSTRACT

Surface air temperature, precipitation, and insolation over the conterminous United States region from the

North American Regional Climate Change Assessment Program (NARCCAP) regional climate model

(RCM) hindcast study are evaluated using the Jet Propulsion Laboratory (JPL) Regional Climate Model

Evaluation System (RCMES). All RCMs reasonably simulate the observed climatology of these variables.

RCM skill varies more widely for the magnitude of spatial variability than the pattern. The multimodel

ensemble is among the best performers for all these variables. Systematic biases occur across these RCMs for

the annual means, with warm biases over theGreat Plains (GP) and cold biases in theAtlantic and theGulf of

Mexico (GM) coastal regions. Wet biases in the Pacific Northwest and dry biases in the GM/southern Great

Plains also occur inmost RCMs.All RCMs suffer problems in simulating summer rainfall in theArizona–New

Mexico region. RCMs generally overestimate surface insolation, especially in the eastern United States.

Negative correlation between the biases in insolation and precipitation suggest that these two fields are re-

lated, likely via clouds. Systematic variations in biases for regions, seasons, variables, and metrics suggest that

the bias correction in applying climate model data to assess the climate impact on various sectors must be

performed accordingly. Precipitation evaluation with multiple observations reveals that observational data

can be an important source of uncertainties inmodel evaluation; thus, cross examination of observational data

is important for model evaluation.

1. Introduction

With the confirmation of the occurrence of climate

change induced by anthropogenic greenhouse gases and

associated feedback within Earth’s climate system, de-

veloping policies to ensure sustainable development in

the future has become a worldwide concern. With it,

assessing the impacts of the anticipated climate varia-

tions and change on regionally important sectors is grow-

ing in their importance as it provides scientific resources

to policy makers in decision making for mitigating and

adapting to these impacts (Houghton et al. 2001). Typ-

ically, assessing the impact of climate change on specific

sectors is achieved by driving sector-specific assessment

models (e.g., surface hydrology, agriculture, various

ecosystems) using forcing data from climate model

outputs representing the present and future climates as

illustrated schematically in Fig. 1.

It is important to recognize that the only quantifiable

and objective information on future climate stems from

projections by physically based, multicomponent nu-

merical climate models, now often referred to as Earth

systemmodels (ESMs) (e.g., Abiodun et al. 2008; Pollard

and Thompson 1992). These ESMs calculate the physi-

cal and dynamical processes and interactions within and
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between various components of Earth’s climate system

including the atmosphere, hydrosphere, lithosphere, cryo-

sphere, and biosphere. However, all climate models, as

well as simulations in which they are used, suffer from

incompleteness in their formulations due to the lack of

1) understanding of the underlying processes, 2) ob-

servations to correctly prescribe initial states, and

3) computational capacity combined with challenges to

robustly yet economically coding up the aspects of the

processes and model we do understand; this incom-

pleteness results in model errors. Because of the critical

role such models play in projecting future climate and

assessing its impacts (Solomon et al. 2007), it is a high

priority to bring as much observational scrutiny to these

models as possible (e.g., Nature 2010). Figure 2 provides

a schematic illustration of the flow of information, hi-

erarchically from left to right, showing (a) detection

and characterization of the past climate variations and

change, (b) global model development and evaluation,

(c) the projection of future climate, (d) downscaling and/

or the assessment of the impact of climate variations and

change on specific sectors, and (e) decision making to

mitigate and/or adapt to the impacts. In particular, cli-

mate model evaluation, both for global climate models

(GCMs; Fig. 2a) and regional climate models (RCMs;

Fig. 2d), is among the especially important steps in the

process. For RCMs in particular, model evaluation is

used not only for model development and improve-

ments but also for assessing and correcting model

biases. Model evaluations are also used to weight in-

dividual models in multimodel ensembles, alleviate the

effect of model error on assessment models, and esti-

mate the range of uncertainty in projected impacts.

The long history ofGCManalyses for assessments and

other climate variability issues has resulted in a mature

process of model experimentation and evaluation (e.g.,

Houghton et al. 1996, 2001; Solomon et al. 2007; Bader

et al. 2008). Gleckler et al. (2008b) have evaluated the

fidelity in simulating the present-day climate of multiple

GCMs that have contributed to the archives of phase 3

of the Coupled Model Intercomparison Project (CMIP3)

used for the Intergovernmental Panel on Climate Change

(IPCC) Fourth Assessment Report (AR4) (Meehl et al.

2007). This study is among the first (cf. Murphy et al.

2004; Reichler and Kim 2008) that attempted to sys-

tematically and quantitatively score GCM-simulated

global climate fidelity across the CMIP archive for multi-

ple GCMs, model parameters, and metrics. These evalu-

ations, and their refinements, are crucial for quantitative

weighting of projections of future climate, with weight-

ings that may depend on the key processes relevant to

the given decision-support goal (e.g., Gleckler et al.

2008b; Dosio and Paruolo 2011; Gangopadhyay and

Pruitt 2011; Grigory et al. 2012; Giorgi et al. 2009;

Mearns et al. 2012b; Kim et al. 2013b). It must be

noted that all weighting schemes, regardless of their

principles, are highly subjective and a subject of further

research.

FIG. 1. A schematic illustration of the model hierarchy and associated information flow in

assessing the climate change impact on regional sectors on the basis of multiple GCMs and

RCMs in conjunction with specific assessment models.

FIG. 2. A schematic showing in red where observations play a key role in the climate change assessment process; typically carried out

from left to right, with the goal of a thoroughly informed process on the far right. The areas with red and black boundaries in (d) represent

a region of interests in an RCM study.
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Systematic multimodel RCM experimentations and

observation-based evaluations are much less mature

than those for GCM studies. Given RCMs’ important

role in regional climate change impact assessments that

are frequently the scientific basis for developing policies

to mitigate and adapt to these impacts, it is critical that

a framework be established to bring to bear as much

observational scrutiny as possible to this process. Note

that even with the expected increases in computer re-

sources that will allowGCMs to run at higher horizontal

resolutions, RCMs will remain essential to the processes

for regional climate projections, climate change impact

assessments, and policy making for the foreseeable future.

This study evaluates threeRCMvariables—precipitation,

surface air temperature, and surface insolation—that

are important for surface hydroclimate and widely used

in impact assessment studies using the Regional Climate

Model Evaluation System (RCMES; Crichton et al.

2012; Hart et al. 2011; Kim et al. 2013b). A brief de-

scription of the current and planned capabilities of

RCMES is presented in section 2. Section 3 presents the

evaluation of these three fields and is followed by con-

clusions and discussions in section 4.

2. The Regional Climate Model Evaluation System

Apart from their use in characterizing and under-

standing climate variability, observed data are funda-

mental to model evaluation. Moreover, as model

resolution has increased and models have become more

complex, the demands for observations have increased

dramatically. For example, today’s fine-resolution RCMs

require measurements with horizontal resolutions on

O(1–10 km) for evaluation. In addition, most of today’s

RCMs incorporate and couple a variety of processes

within the climate system, and thus require observa-

tions of a range of variables. Such evaluations are sorely

needed as models, such as GCMs and RCMs, play an

ever more important role in guiding our adaptation and

mitigation paths associated with climate change. Taken

together, the demands from higher resolution and mul-

tivariate evaluation make the scientific and logistical

process of model evaluation ever more challenging (e.g.,

Overpeck et al. 2011). These challenges include not only

bringing together massive amounts of observational

and model data, but also dealing with the wide variety

of sources and formats of data, necessitating significant

investments in computer and personnel resources to

transfer, decode, (re)format, (re)archive, and analyze

the data. Such steps can make the process of performing

robust model evaluations extremely difficult and time

consuming even for highly trained scientists. A number

of these steps could be greatly facilitated by having a

flexible and coupled database and analysis to alleviate

much of the burden in handling these massive datasets

and allow scientists to spend more time on performing

comprehensive and robust model evaluations. To help

address these needs, including developing both the

technical capabilities and performing robust model evalu-

ations, RCMES has been developed through collaboration

between the Jet Propulsion Laboratory (JPL) and

University of California Los Angeles (UCLA). RCMES

(Fig. 3) is a combined database/toolkit designed to fa-

cilitate the access to observational data and a basic

computational toolkit for handling the database and

calculating statistical metrics with special emphasis on

handling a variety of remote sensing data that are and to

be available today and in the future (e.g., Gleckler et al.

2008a). The system has complete end-to-end capabilities

in terms of ingesting observational and model data, per-

forming subsetting and formatting compatibility steps,

calculating evaluation metrics, and plotting and/or out-

putting the results. Its inherent design makes it easily

extensible for including more observations, diagnostics,

and plotting/outputting capabilities. Details of the com-

putational, both software and hardware-related, as-

pects of RCMES are presented by Hart et al. (2011)

and Crichton et al. (2012) and only a brief outline of

RCMES is presented below.

RCMES is composed of two main components, the

Regional ClimateModel EvaluationDatabase (RCMED)

and the Regional Climate Model Evaluation Toolkit

(RCMET). RCMED can reside on a single server or be

distributed on multiple servers to allow efficient data

management and sharing while reducing the hardware

and software burdens for handling the data storage and

traffic. It ingests data in various formats from various

sources to extract metadata and translate the main body

of a dataset into a common data format to be stored in

RCMED. Once stored within RCMED, the data can be

readily retrieved by RCMET for processing. The cur-

rent system uses a sophisticated data management sys-

tem comprising Apache OODT (Mattmann et al. 2006,

2009), a MySQL database back-end, and the Apache

Hadoop technology (White 2009) to store and allow

querying of the observational datasets. The data catalog

forRCMED is continuously updated and is posted in the

RCMES web site (http://rcmes.jpl.nasa.gov).

The RCMET is the main user-end of RCMES com-

posed of a library of Python scripts and is installed on

users’ local systems. It retrieves the reference data, usu-

ally from observations, reanalysis, and/or assimilations,

and model data from RCMED and the user’s own ar-

chive, respectively; regrids both data onto a common

grid spatially and temporally; calculates metrics for

model evaluation; and produces visualizations of the

5700 JOURNAL OF CL IMATE VOLUME 26



results. The RCMET communicates RCMED to retrieve

the reference data via a web interface. This method of

linking RCMED and RCMET enables users to access

database items located atmore than one data system and

institution. That is, the hardware required for hosting

RCMED and data traffic between data servers and users

can be distributed to avoid massive infrastructure and

easier future growth. This allows the system to grow

through collaborations among institutions with minimal

investments in both hardware and manpower. In addition

to the access to the database, RCMET includes a software

suite for calculating statistical metrics popularly used in

model evaluations and visualizations. Model-evaluation

metrics and visualization generally varywidely according to

users and targets; some users often invent their ownmetrics

to fit their specific analysis and scopes. Thus, it is not

practical, if not impossible, to include all metrics calcula-

tions and visualization within RCMETdespite the fact that

it is continuously updated to include additional metrics and

visualization widely used for model evaluation. For added

flexibility, RCMET also includes the capability to incor-

porate user-defined metrics as well as pathways to extract

partially processed data (e.g., both model and reference

data regridded onto a common grid) so that users can do

their own specific data processing and visualizations.

3. Evaluation of NARCCAP model simulation

fidelity

The surface air temperature, precipitation, and sur-

face insolation over the conterminous U.S. region for

FIG. 3. A schematic illustration of the outline and data flows within RCMES.

TABLE 1. The RCMs and corresponding references evaluated in

this study. Surface insolation data from MM5I were not yet avail-

able at the time of writing.

Model Model name References

CRCM Canadian Regional Climate Model Caya and LaPrise

(1999)

ECP2 NCEP Experimental Climate

Prediction Center Regional

Spectral Model 2

Juang et al. (1997)

HRM3 Hadley Regional Model 3 Jones et al. (2004)

MM5I The fifth-generation Pennsylvania

State University–National Center

for Atmospheric Research

Mesoscale Model (MM5) run by

the Iowa State University (ISU)

modeling group

Grell et al. (1993)

RCM3 Regional Climate Model version 3 Giorgi et al.

(1993a,b)

WRFG Weather Research and Forecasting

model (Grell scheme)

Skamarock et al.

(2005)

ENS Multimodel ensemble mean
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the 24-yr period 1980–2003 simulated bymultiple RCMs

(listed with full expansions in Table 1) that contributed

to the NARCCAP hindcast experiment are evaluated.

These three variables have been chosen because they

represent key atmospheric variables in shaping the

surface hydrology and atmosphere–land interaction.

NARCCAP is an international program that was de-

signed to serve the high-resolution climate scenario needs

of the United States (U.S.), Canada, and northern

Mexico, in time-slice experiments using RCMs nested

within GCMs to form multimodel ensemble climate

scenarios over these regions (Mearns et al. 2009,

2012b). The primary application of these experiments is

to investigate uncertainties in regional-scale projections

of future climate and generate climate change scenarios

for use in impacts research. These experiments repre-

sent the main systematic, multi-RCM climate simula-

tion and projection resource for the assessment of the

climate change impact over most of North America.

NARCCAP is composed of a set of RCM simulations

using the large-scale forcing data from an atmospheric

reanalysis (climate hindcast) and GCMs (climate sce-

narios) over a domain covering the North America re-

gion including Canada, the conterminous United States,

and northern Mexico (http://www.narccap.ucar.edu). In

the hindcast experiment, the RCMs are driven with the

large-scale forcing data from the National Centers for

Environmental Prediction (NCEP) Reanalysis II for the

period 1979–2004. This phase-1 experiment is essential

for evaluating RCMs over the North America region to

examine the fidelity of these RCMs and the character-

istics of model biases. All of the participating RCMs

are run at spatial resolutions of about 50 km; the spatial

resolution varies according to models as well as map

projections used in the hindcast. The NARCCAP pro-

gram archives the model data and provides them to the

users for the assessment of the impact of climate change

on regionally important sectors (Mearns et al. 2009).

Details of the NARCCAP program are provided at the

project web site (http://www.narccap.ucar.edu).

The 0.58-resolution Climatic Research Unit (CRU)

surface analysis is are used as the reference data

against which the simulated surface air temperatures

and precipitation are evaluated for the 24-yr period

1980–2003. The simulated surface insolation is evalu-

ated against the Global Energy and Water Cycle Ex-

periment (GEWEX) Surface Radiation Budget (SRB)

data (Hinkelman et al. 2009; Stackhouse et al. 2011) for

the 20 years from 1984 to 2003. Note that this insolation

evaluation period is shorter than that for precipitation

and temperature due to limited temporal coverage of

the SRB dataset. The regional climate hindcast data

from all RCMs are distributed in a common analysis grid

at a 0.58 resolution (Fig. 4) by the NARCCAP program.

Multiple subregions within the conterminous U.S. re-

gion (Fig. 4; Table 1) are selected to facilitate the strati-

fication of model performances according to regions and,

to some degree, distinct regional climate characteristics.

For example, precipitation in the SWw region (all region

abbreviations are expanded in Table 2; see Table 1 and

Fig. 4) is directly affected by the North American mon-

soon system (e.g., Higgins et al. 1997; Kim 2002) and the

winter precipitation in Pacific Northwest (PNw and PNe)

and southern California show an opposite response to

ENSO (Redmond and Koch 1991). Key findings from the

evaluation study are summarized in the following sections.

FIG. 4. The conterminous U.S. region of the NARCCAP domain uses for this evaluation study. The color contours represent the terrain

elevation (m). The numbered boxes indicate the 14 subregions in Table 2.
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a. Surface air temperature

The simulated annual mean surface air temperature

climatology is evaluated against the CRU analysis. The

most noticeable feature is the general warm bias in the

Great Plains region (Fig. 5). This warm bias is found in

all RCM results except CRCM. CRCM is an outlier

among these six RCMs in the sense that it generates

general cold biases over almost the entire conterminous

U.S. region. On the contrary, HRM3 (Fig. 5d) generates

overall warm biases. All RCMs generate warm biases in

California’s Central Valley and southern California and

cold biases in the coastal regions, especially along the

Atlantic Ocean and the Gulf of Mexico. These coastal

cold biases are absent along the Pacific Ocean. Instead,

all models except HRM3 underestimate the surface tem-

peratures over the high elevation regions in the Cascades

and the Sierra Nevada. The temperature bias over the

Rocky Mountains is complicated, but there is a hint,

when the bias pattern is compared with the terrain profile

shown in Fig. 4, that cold (warm) biases tend to occur in

the regions of relatively high (low) elevations. This may

be related to the simulation of cold-season snowpack in

the high-elevation regions (e.g., Waliser et al. 2011) and/

or the lack of resolutions both in model simulations and

the CRU data, suitable for representing the large oro-

graphic variations and associated variations in surface

temperature in the mountainous region (e.g., Giorgi

et al. 1997; Kim 2001; Kim and Lee 2003). Higher-

resolution simulations may adequately resolve the tem-

perature variations in the region.

Overall, all RCMs simulate the spatial variations in

the annual mean temperatures in the conterminous U.S.

region with the spatial pattern correlation coefficients

between 0.95 and 0.99 and standardized deviations (the

spatial standard deviation of the simulated surface air

temperature normalized by that of the observed data) of

0.9–1.05 with respect to the CRU data (Fig. 6). Standard

deviations and the pattern correlation coefficients in

Fig. 6 are calculated over only the land surfaces. Figure 6

also shows that the multimodel ensemble mean (ENS

in Fig. 5), along with MM5I, yield the smallest RMSE.

Note that the distance between individual data points

and the reference point (labeled REF in Fig. 5) in the

Taylor diagram (Taylor 2001) represents RMSE.

Comparison of the simulated annual cycle against the

CRU analysis for the subregions shows that the multi-

model ensemble is generally within one standard de-

viation (s) from the observed climatology in these

regions (not shown). It also shows that the annual cycles

simulated by individual models vary, but generally re-

main within the 61s range. Considering that these re-

gions are spread over the entire conterminous United

States, this suggests that the simulated annual cycle

surface air temperature climatology in the NARCCAP

hindcast experiment exhibits high model fidelity within

the conterminous United States.

Despite the reasonable performances, model biases

vary noticeably according to regions and seasons. Figure 7

presents the normalized biases and interannual vari-

ability in terms of the percentage of the temporal stan-

dard deviations of the CRU data over the 24-yr period,

of the simulated surface air temperatures in the 14 sub-

regions during winter and summer. The temporal stan-

dard variations are adopted as the measure of the

interannual variability. The scaled model bias (Fig. 7a)

shows that the warm bias over the Great Plains region is

common for nearly all models in both winter and sum-

mer; CRCM, which generates weak (by 25%–50% of

the observed interannual variability) cold biases over

the region in winter, is the only exception. Thus, the

warm bias in the Great Plains region is systematic re-

gardless of models and seasons. The model biases also

vary systematically according to regions. For summer,

the most noticeable systematic biases are the warm bias

in the western inland region including SWw, SWe, and

Colorado (COL), and the cold bias in the PNw and PNe.

Note that these biases are systematic only during sum-

mer. For winter, themost systematic biases are the warm

bias in the southern California and Atlantic coast re-

gions, especially the southeastern United States and

Florida, and the cold bias in the northern California and

Arizona–western New Mexico regions. The tempera-

ture bias in California varies closely with orography as

shown in Fig. 5; this may not be well represented in this

regional evaluation as the area representing the two

California regions is large enough to include both

low- and high-elevation regions. The evaluation of the

TABLE 2. The subregions in Fig. 4.

ID Name Region

R01 PNw Pacific Northwest West—the coastal region

R02 PNe Pacific Northwest East—the inland region

R03 CAn Northern California

R04 CAs Southern California

R05 SWw Southwestern U.S. West: Arizona and western

New Mexico

R06 SWe Southwestern U.S. East: Eastern New Mexico

and western Texas

R07 COL Colorado Rockies

R08 GPn Northern Great Plains

R09 GPc Central Great Plains

R10 GC Gulf Coast region

R11 GL Great Lakes region

R12 NE Northeastern United States

R13 SE Southeastern United States

R14 FL Florida
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temporal standard deviation, a surrogate for the in-

terannual variability (Fig. 7b), shows that all models

perform well in simulating the interannual variability

of the winter temperatures for all subregions. Most

RCMs also reasonably simulate the interannual vari-

ability of the summer temperatures in most of the coastal

regions, but overestimate it in the interior regions.

The RCM skill in simulating the interannual vari-

ability of the seasonal temperature is further examined

using RMSE and the temporal correlation coefficients

between the simulated and CRU data over the 24-yr

period. The resulting RMSE (Fig. 7c) generally exceeds

the interannual variability of the CRU data (i.e., nor-

malized RMSE .100% in Fig. 7c), especially during

summer. Forwinter, theRMSEvaries according tomodels

in most regions; the normalized RMSE for CRCM and

ECP2, as well as the multimodel ensembles, is less than

100% while that for MM5, HRM3, RCM, and WRF is

well above 140% for all subregions. The correlation co-

efficients between the simulated and CRU time series

(Fig. 7d) also shows that the RCMs examined in this

study generally perform better in simulating the phase of

the interannual variation in the surface air temperatures

during winter than in summer.

In summary, the model performance measured in

terms of bias is not well correlated with that measured

in terms of interannual variability. Model performance

also varies widely and, often systematically, according to

regions and seasons. These characteristics in model er-

rors (or performance) make it difficult to design a set of

model weightings that can be universally applied to the

construction of multimodel ensemble. Thus, it may be

necessary to use season- and/or property-specific weight-

ing factors in constructing multimodel ensemble for im-

pact assessments at the expense of generality. Mearns

et al. (2012a) discuss these biases on a seasonal time scale.

b. Precipitation

The bias in the simulated annual precipitation calcu-

lated against the CRU data (Fig. 8) shows that all five

FIG. 5. (a) The annual-mean surface air temperature (8C) from the CRU analysis. The biases (8C) from the reference data for (b)–(g) the

individual models and (h) the multimodel ensemble (ENS).
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RCMs evaluated in this study systematically overestimate

the annual-mean precipitation in the northwestern

U.S. and the southwestern Texas regions, and un-

derestimate it in the GC and GPs regions. Most

RCMs also overestimate the annual precipitation in the

Rocky Mountains region, but not as systematically and/

or sizably as the wet bias in the eastern Washington and

northern Idaho, to the east of the Cascades. It is also

noted that all RCMs except CRCM underestimate pre-

cipitation in southern and central Arizona.

Evaluation of the spatial variability of the simulated

annual precipitation (Fig. 9) shows that all models gen-

erate similar spatial correlations with the CRU data

with the spatial correlation coefficients between 0.8 and

0.9 with the highest spatial correlation generated by the

model ensemble (ENS in Fig. 9). The spatial variability

of the simulated annual precipitation ranges between

0.75 and 1.1 with a majority of RCMs underestimating

the spatial variability. As happens for the surface air tem-

peratures, the multimodel ensemble yields the smallest

RMSE. Note that in the Taylor diagram, the distance

between REF and a model corresponds to RMSE

(Gleckler et al. 2008b).

The simulated annual cycles of precipitation in the 14

subregions are compared to that from the CRU analysis

(Fig. 10). Unlike the surface air temperature evaluated

in the previous section, the intermodel variations are

large. The multimodel ensemble (blue lines in Fig. 10) is

generally within or close to the 61s range throughout

the entire year in most subregions except for the inland

part of the Pacific Northwest region (PNe), Colorado, and

northern Great Plains. The multimodel ensemble over-

estimates the observed precipitation throughout the year

in the Pacific coastal regions (PNw, CAn) except CAs

where ENS are CRU are close, and the interior Pacific

Northwest region. The underestimation of precipitation

occurs throughout the year in GC; however, the bias is

very small for the period from late spring (April) to late

summer (August). In the interior regions (SWw, SWe,

COL, GPn, GPc, GL), the multimodel ensemble over-

estimates (underestimates) precipitation roughly in the

first (second) half of the year. For the Atlantic coast re-

gions (NE, SE), the multimodel ensemble overestimates

precipitation except in the period from late fall to early

winter. Thus, as in the surface air temperature simulation,

the model performance in simulating the precipitation

annual cycle varies according to regions and seasons in

addition to RCMs.

The multimodel ensemble precipitation annual cycle

(Fig. 11) is evaluated using the RMSE normalized by

the annual-mean value and the temporal correlation

between the model ensemble and CRU data. The nor-

malized RMSE (Fig. 11a) is relatively small in the

eastern half of the conterminous U.S. and the Pacific

coast regions and large in the interior western U.S. re-

gions, especially for PNe where the RMSE is compara-

ble to the annual means for all models. All or most

models reasonably simulate the phase of the pre-

cipitation annual cycle in all regions except the Great

Plains and GL regions. Figures 10 and 11 show that the

multimodel ensemble precipitation annual cycle is gen-

erally more reliable in the coastal regions than in the

interior regions.

The simulated seasonal precipitation in the sub-

regions is evaluated against the CRU data using the

normalized bias and interannual variability as the per-

formance metrics. As with the seasonal surface air

temperature evaluation in section 3a above, the model

bias and interannual variability are normalized by the

interannual variability of the CRUdata. Figure 12 shows

that the model biases vary substantially according to

season and region. During summer, a majority of RCMs

underestimate precipitation in the southwestern United

States (CAs, SWw) and the two Great Plains regions,

and overestimate in the Pacific coast (PNw, PNe), CL,

and Atlantic coast regions. The bias in the SWw region

implies that all models show difficulties in simulating the

summer precipitation associated with the North Amer-

ican monsoon circulation, a great concern because the

summer monsoon precipitation plays a crucial role in

water resources and ecosystems for this arid region

(e.g., Higgins et al. 1999; Kim 2002; Kim et al. 2005).

M. Bukovsky et al. (2012, unpublished manuscript)

FIG. 6. The spatial correlation coefficients and standardized de-

viation of the simulated normalized annual-mean surface air tem-

perature climatology with respect to the CRU analysis. The square

next to the model numbers indicates the multimodel ensemble

(ENS) mean.
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examined the models’ performance in the North

American monsoon region from a process level point of

view. Despite its large magnitude, the overestimation of

summer rainfall in the Pacific coast regions may not be of

a serious concern. Summer rainfall and its interannual

variability in these regions is very small; thus, the rela-

tively large wet bias does not translate into meaningful

differences for most practical applications. For the GC

and GL regions, model bias varies largely about the

observed means according to models, resulting in small

biases in the multimodel ensemble. Note that CRCM

generates a large wet bias in the entire mountainous

western United States in summer, but yields a relatively

small bias in the eastern United States. In fact, the small

bias in the multimodel ensemble for the interior of the

western United States results from the dry biases in five

of the six RCMs being compensated by the large wet

bias in CRCM. The systematic bias in simulating the

FIG. 7. Regional (a) bias, (b) temporal standard deviation, (c) RMSE, and (d) temporal correlation coefficients of average simulated

surface air temperatures relative to CRUobservations. The bias, standard deviation, andRMSE are normalized by the standard deviation

of the CRU data.
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interannual variability of the summer rainfall are char-

acterized by underestimations of the variability in both

California regions and overestimations in the Pacific

Northwest (PNw, PNe), Colorado, and Great Lakes

regions (Fig. 12b). The multimodel ensemble agrees

reasonably with the CRU data, with the bias less than

50% of the interannual variability of the CRU data, in

5 out of 14 regions.

The bias in the winter precipitation varies more sys-

tematically according to regions (Fig. 12a). A majority

of RCMs show large wet bias accompanied by sub-

stantial overestimation of the interannual variability in

the interior western U.S. (SWw, SWe, COL, GPn) and

the northern Pacific coast (PNw, PNe, CAn) regions. All

RCMs also underestimate the winter precipitation and

its interannual variability in GC. Most RCMs perform

well in simulating the winter precipitation in CAs, SE,

and FL. Examinations of the interannual variability of

the seasonal precipitation using RMSE and temporal

correlation coefficients, as in the previous section for

temperatures, also show that all RCMs generally per-

form better in simulating precipitation during winter

than summer (not shown).

The accuracy of reference data can affect the outcome

of model evaluations as all observations and/or analyses

include errors of unknown and/or estimated magnitudes

(Kim and Lee 2003; Kim et al. 2013b; Waliser et al.

1999). Uncertainties in model evaluation originating

from reference data are examined for precipitation us-

ing five different reference datasets including the CRU,

University of Delaware (UDEL; Willmott and Matsuura

1995; Matsuura and Willmott 2009), NCEP Climate Pre-

diction Center (CPC) daily analysis (Higgins et al. 2000),

Global Precipitation Climatology Project (GPCP; Adler

et al. 2003), and Tropical Rainfall Measuring Mission

(TRMM) data (Shige et al. 2006) for 1998–2003. The

evaluation period for this multireference data evalua-

tion is determined by the existence of all five reference

datasets. In this evaluation, we first use the simple mean

of all five observational data as the reference data and

FIG. 8. As in Fig. 5, but for precipitation.
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then evaluate all observations and model outputs

against the reference data. The evaluation of the over-

land annual-mean precipitation is summarized in a

Taylor diagram (Fig. 13). The area defined by the red

lines encompasses all five observational data and may

be regarded as the range of uncertainties for the ob-

servational data. Figure 13 shows that there exist notable

variations among these observational data in represent-

ing the spatial variability and that none of the RCMs

shows fidelity within the range of uncertainty defined by

these observational datasets. In this multiobservation

evaluation, the multimodel ensemble (ENS) also yields

better performance than any other participating RCM.

It is interesting to note that, although the relationship

between the biases in the seasonal precipitation and

surface air temperatures appears to be weak, the sum-

mertime dry bias in SWw, GPn, and GPc corresponds to

the warm bias in the same regions. This may show that

the summer surface temperatures in these regions are

closely related with the surface latent heat flux that is

strongly affected by precipitation. This will be examined

in future studies in which surface fluxes and soil moisture

will be included in RCMES and the evaluation. Mearns

et al. (2012b) provide more discussion on the seasonal

precipitation bias.

c. Surface insolation

Surface insolation is the primary energy input that

drives the land–atmosphere interaction in the regional

climate system. Hence, the accuracy of the surface in-

solation is a basis for accurately simulating surface fluxes

and hydrology. Evaluating surface radiation has been

suffering from the lack of proper observational data

until late 1990s (e.g., Kim and Lee 2003). Recent prog-

ress in remote sensing products made a suite of quality

controlled radiation data available to significantly alleviate

the problem. The simulated surface insolation data are

evaluated against the SRB data (Hinkelman et al. 2009;

Stackhouse et al. 2011) for the 20 years from 1984 to

2003. The evaluation period is dictated by the period for

which the SRB data exist. Five RCMs (CRCM, ECP2,

HRM3, RCM3, and WRF) and their simple ensemble

(ENS) are evaluated.

Figure 14 shows that the model bias in simulating

surface insolation varies substantially according to RCMs.

All but RCM3 show positive bias over land surfaces

(Table 3). It is also noteworthy that all RCMs but WRF

show more positive (or less negative) biases over the

eastern half of the conterminous United States than the

western half. The model errors in the annual-mean

surface insolation in Fig. 14 are closely related to those

of the annual-mean precipitation with negative spatial

pattern correlation coefficients between the model bia-

ses in precipitation and insolation for all RCMs and their

ensemble (Table 3). This is not surprising as excessive

precipitation is related with excessive cloudiness (or

cloud water path) that tends to reduce surface insolation,

and vice versa.

Model performance in simulating the spatial vari-

ability is visualized using the Taylor diagram (Fig. 15).

The spatial pattern correlation coefficients between the

simulated insolation and the SRB data range from 0.8 to

0.95, similar to those for the annual-mean precipitation

(Fig. 9), but somewhat lower than for surface air tem-

peratures (Fig. 6). Figure 15 also shows that most RCMs

overestimate the spatial variability compared to the

SRB data. As for precipitation and surface air temper-

ature, the multimodel ensemble mean (ENS in Fig. 15)

yields smaller RMSE than all RCMs included in the

multimodel ensemble mean.

The annual cycle of the simulated surface insolation in

the selected regions shows that the multimodel ensem-

ble mean is generally within the 61s range from the

SRB climatology (not shown). As in the temperature

and precipitation evaluations, s is the temporal standard

deviation of the SRB data calculated over the 20-yr

period. The intermodel variations are larger than those

in the surface air temperature but smaller than those in

precipitation (Fig. 10). The most noticeable discrepancy

between the multimodel ensemble and the SRB cli-

matology occurs from late spring to early summer

(May–July) in the inland regions including the two

Great Plains regions and the Great Lakes region, and

in the Gulf of Mexico and NE and NS where the model

ensemble is close to the upper 1s boundary of the

SRB data in the May–July period.

FIG. 9. As in Fig. 6, but for annual-mean precipitation.
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FIG. 10. The simulated (thin black) and observed (thick red) precipitation annual cycle (mmday21) for the (a)–(n) 14 subregions

shown in Fig. 4. The thick blue line indicates the multimodel ensemble precipitation. The green lines define the61s range from the

CRU data.
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The simulated surface insolation in summer and winter

is evaluated in terms of model biases (Fig. 16a) and in-

terannual variability (Fig. 16b); the model biases and

variability are normalized by the interannual variability

of the SRB data. Compared to surface temperatures and

precipitation, the model biases in surface insolation vary

more widely according to models. For example, RCM3

underestimates the seasonal-mean surface insolation

and overestimates their interannual variability in all

regions for both summer and winter, whereas WRFG

overestimates the seasonal-mean insolation in most

regions, especially in summer when the model over-

estimates the surface insolation by more than twice

its interannual variability in all regions except the

Florida region (Fig. 16a). WRFG performs well in sim-

ulating the wintertime insolation in PNw, PNe, CAn, and

CAs but substantially overestimates it in all other re-

gions except FL. Both CRCM and ECP2 perform well

in simulating interannual variability in all regions

(Fig. 16b). The model ensemble mean shows positive

biases in most regions except PNw, PNe, and CAn

during summer, and negative bias in the western United

States in winter. Themodel ensemble also overestimates

the interannual variability in all regions in summer,

but performs well for winter. Regionally, three out of

four RCMs overestimate insolation in the eastern half

FIG. 11. (a) The RMSE normalized by the annual-mean values (fraction) and (b) the correlation coefficients between the precipitation

annual cycles from the model ensemble and the CRU analysis for the 14 subregions shown in Fig. 4.

FIG. 12. The normalized (by the interannual variability of the CRU data) (a) biases and (b) interannual variability of the simulated

seasonal-mean precipitation in the 14 regions for winter and summer.
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of the conterminous U.S. region during summer. The

only exception is RCM3, which underestimates in-

solation for all regions in both seasons. In winter, most

models underestimate insolation in the Pacific coast

and FL.

In some regions, the model bias in surface insolation is

negatively correlated with that in precipitation. Such

a relationship occurs most clearly in the Pacific coast

region in winter where most RCMs show negative bias

in surface insolation (Fig. 16a) and positive bias in pre-

cipitation (Fig. 12a). This may be due to the fact that

precipitation in the region is mostly from stratiform clouds

that reduce insolation over large areas for extended

periods. The negative correlation between the surface

insolation bias and precipitation bias also occurs in the

Pacific Northwest region in summer; however, the sig-

nificance of this summertime relationship is not clear as

the summer rainfall in the region is very small.

4. Discussions and conclusions

The regional climate model errors in precipitation, sur-

face air temperature, and surface insolation simulated

by the RCMs that have contributed to the NARCCAP

hindcast experiment have been evaluated against surface-

and satellite-based observational data. Because RCMs

play a crucial role in generating regional climate data

for assessing the impact of climate change on regional

sectors by downscaling GCM data, evaluating the per-

formance of RCMs is a critical step in developing

objective policy and strategies to mitigate and adapt to

the impact of anticipated climate change. To facilitate

model evaluations, RCMES has been developed by

combining an efficient database schema and a compu-

tational toolkit. Evaluations of these RCM results show

that all RCMs simulate the spatial pattern and vari-

ability of the observed annual-mean climatology of

these three fields reasonably. The multimodel ensemble

shows the best performance for all metrics and variables

examined in this study, as in Gleckler et al. (2008b).

Note that the reason behind such improvement has not

been established and that the multimodel ensemble

generally underestimates variability compared to the

individual models within the ensemble due to smoothing

effects. (e.g., Kim et al. 2013b). It also shows that the

model performance varies systematically, in addition to

RCMs, for seasons, regions, and metrics.

It has been found that some errors in simulating these

variables occur systematically across all these RCMs.

The most noticeable systematic errors in the annual-

mean surface air temperatures are the warm biases in

the Great Plains and the cold bias in the Atlantic and

Gulf of Mexico coasts. Model biases in the mountainous

regions may vary according to terrain elevations sug-

gesting the need for fine resolutions to simulate the tem-

perature variations in mountainous regions. All models

well simulate the spatial pattern and variability of the

simulated annual-mean temperature as well as the an-

nual cycles in selected regions compared to the CRU

data. The warm bias over theGreat Plains occurs in both

summer and winter. For summer, the most notable er-

rors are the warm bias in the interior western United

States and the cold bias in the Pacific Northwest. For

winter, the most outstanding RCM errors include the

warm bias in the Atlantic coast and Florida regions and

cold bias in northern California and Arizona–western

New Mexico.

The most notable common errors in simulating the

annual precipitation is the wet bias in the mountainous

northwestern United States and dry bias in GC and the

southern Great Plains. Spatial variations in the annual

precipitation and the annual cycles in selected regions

are also well simulated by all models although not as

highly as for surface temperatures. All models generally

perform better for the eastern half of the conterminous

United States than the western half. The regions of small

RMSE do not always correspond to those of large cor-

relation coefficients. In summer, most RCMs underes-

timate precipitation in CAs, Arizona, New Mexico, the

Great Plains, and western Texas, and overestimate in all

three coastal regions. All RCMs show especially poor

performance in simulating the summermonsoon rainfall

in theArizona–western NewMexico region, an important

FIG. 13. Evaluation of the spatial pattern and the standard de-

viation of multiple models and observations against the observa-

tional ensemble. The red line defines the area that defines the range

of uncertainties of observational data with respect to the obser-

vation ensemble.
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concern to the region. M. Bukovsky et al. (2012, un-

published manuscript) discussed the process-level causes

for these biases in the NAMS region. Models generally

overestimate the mean and interannual variability of

winter precipitation in the northern Pacific coast and

interior western U.S. regions, but perform well for CAs,

SE, and FL.

The model bias in surface insolation varies widely

according to RCMs. All but one model overestimate

surface insolation over the conterminous United States.

Most models generate larger positive bias (or smaller

negative bias) over the eastern half of the conterminous

United States than the western half. Overall, the annual

insolation bias is negatively correlated with the annual

precipitation bias (i.e., a negative bias in surface in-

solation corresponds to a positive bias in precipitation,

and vice versa). Seasonally, the relationship between the

model biases in surface insolation and precipitation is

clearly identified only in the Pacific coast regions, es-

pecially in winter, when precipitation is associated with

large-scale stratiform clouds. This also suggests that the

bias correlation between precipitation and insolation

is weaker in the case where convective precipitation is

dominant compared to the case where stratiform pre-

cipitation is dominant.

Significant variations in model errors according to

seasons and regions may point out common problems in

physics parameterizations used in today’s RCMs, model

resolutions, and/or large-scale forcing due to inaccurate

FIG. 14. The annual-mean surface insolation over the 20-yr period: (a) SRB data (left color bar). (b)–(g) The biases for individual models

and the ENS (right color bar). Units are Wm22.

TABLE 3. The model biases in the annual precipitation and in-

solation over land surfaces and the pattern correlation coefficients

between them for the four RCMs and their ensemble (ENS).

Model

Land-mean bias

Correlation

coefficients

Precipitation

(mmday21) Insolation (Wm22)

CRCM 0.33 10.2 20.47

ECP2 0.41 9.0 20.28

HRM3 0.54 10.6 20.30

RCM3 0.54 229.9 20.50

WRFG 20.08 30.4 20.18

ENS 0.25 4.92 20.62
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reanalysis data. Thus examinations of related model

variables are needed to elucidate the detailed error

characteristics and, hopefully, their origins. An example

of this is the warm temperature and dry precipitation

bias over the plains regions during the summer. It is

thought that this has much to do with the ability to

represent the diurnal cycle in summer precipitation in

this region that arises from relatively small-scale prop-

agating convective systems (Jiang et al. 2006). This

implies that to obtain the most accurate climate change

assessments possible, we need to improve model phys-

ics, which in part will arise from high-resolution simu-

lations (e.g., 1–5 km).

The error characteristics also imply that bias correc-

tions, a key step in applying climate projection data to

drive a wide range of impact assessment models, may

need to be performed for specific variables and regions.

Please note that bias correction is highly subjective and

its nature and consequences on transferring climate

model information to assessment models remain as

a research topic. That is, universal bias correction that

can work for multiple variables and/or larger areas like

the entire conterminous U.S. regionmay not be feasible.

This requires that climate modeling and impact assess-

ment communities work closely to answer the questions

in applying climate projections to impact assessments,

a key step for developing policies to mitigate and adapt

to future climate change.

With the anticipated improvements in computational

resources that will enable more fine-resolution climate

simulations, future RCM evaluation will require high-

quality finescale reference data. For example, regional

downscaling using RCMs for extended periods (.10

seasons) with spatial resolutions of a few kilometers

is feasible now (e.g., Kim et al. 2013a), albeit with

a considerable commitment of computer resources.

Such fine spatial resolutions are key to improving sim-

ulations in regions of complex terrain, especially surface

fields such as precipitation and mountain snowpack that

FIG. 15. As in Fig. 6, but for surface insolation with respect to the

SRB data.

FIG. 16. As in Fig. 12, but for the SRB insolation data.
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are a critical concern for water supply in the western

states. Presently, fine-resolution (,10 km) observations

exist only for limited durations, variables, and geog-

raphy. Thus, future efforts need to be directed to

finding fine-resolution data, especially from spaceborne

remote sensing, and developing methodologies for ap-

plying those data to model evaluations. Establishing the

uncertainties in observations will become more impor-

tant with higher resolution.
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