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Abstract

Background

The currently used SARS-CoV-2 mRNA vaccines have proven to induce a strong and pro-

tective immune response. However, functional relevance of vaccine-generated antibodies

and their temporal progression are still poorly understood. Thus, the central aim of this study

is to gain a better understanding of systemic and mucosal humoral immune response after

mRNA vaccination with BNT162b2.

Methods

We compared antibody production against the S1 subunit and the RBD of the SARS-CoV-2

spike protein in sera of BNT162b2 vaccinees, heterologous ChAdOx1-S/BNT162b2 vacci-

nees and COVID-19 patients. We monitored the neutralizing humoral response against

SARS-CoV-2 wildtype strain and three VOCs over a period of up to eight months after sec-

ond and after a subsequent third vaccination.

Results

In comparison to COVID-19 patients, vaccinees showed higher or similar amounts of S1-

and RBD-binding antibodies but similar or lower virus neutralizing titers. Antibodies peaked

two weeks after the second dose, followed by a decrease three and eight months later. Neu-

tralizing antibodies (nAbs) poorly correlated with S1-IgG levels but strongly with RBD-
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IgGAM titers. After second vaccination we observed a reduced vaccine-induced neutralizing

capacity against VOCs, especially against the Omicron variant. Compared to the nAb levels

after the second vaccination, the neutralizing capacity against wildtype strain and VOCs

was significantly enhanced after third vaccination. In saliva samples, relevant levels of RBD

antibodies were detected in convalescent samples but not in vaccinees.

Conclusions

Our data demonstrate that BNT162b2 vaccinated individuals generate relevant nAbs titers,

which begin to decrease within three months after immunization and show lower neutralizing

potential against VOCs as compared to the wildtype strain. Large proportion of vaccine-

induced S1-IgG might be non-neutralizing whereas RBD-IgGAM appears to be a good sur-

rogate marker to estimate nAb levels. A third vaccination increases the nAb response. Fur-

thermore, the systemic vaccine does not seem to elicit readily detectable mucosal

immunity.

Introduction

Starting from the pandemic spread of the coronavirus disease in December 2019 (COVID-19),

global research efforts were made to identify effective vaccine candidates. Vaccines based on

vectors, inactivated viruses and mRNA were licensed. The kinetics of SARS-CoV-2 antibody

production and the persistence of humoral immunity in vaccinees are essential for national

health services and the clinical management of the pandemic.

Studies suggested that SARS-CoV-2 specific antibody production following double vaccina-

tion with the BNT162b2 (BioNTech/Pfizer) mRNA vaccine is comparable to seroconversion

following recovery from COVID-19 [1]. During SARS-CoV-2 infection, the median IgG sero-

conversion time has been estimated at 11 days post-symptom onset [2]. In patients with mild

illness, specific subsets of antibodies, such as anti-nucleocapsid IgG, wane more rapidly,

whereas antibodies against the viral spike protein including neutralizing antibodies (nAbs)

remain detectable much longer [3–5]. To properly characterize the BNT162b2 vaccine and

infection induced antibody response as well as to identify suitable diagnostic surrogate mark-

ers for difficult to determine nAbs, we analyzed and correlated different binding antibody

assays to nAbs. We compared vaccine-derived to well characterized sera from COVID-19 con-

valescent patients of different disease severities. We also dissected the SARS-CoV-2 specific

antibody production in individuals that were vaccinated with a heterologous ChAdOx1-S

(AstraZeneca) prime and BNT162b2 (BioNTech/Pfizer) boost regime.

Furthermore, we performed a prospective study after the second BNT162b2 vaccination

and assessed the levels of vaccine-induced antibodies three and eight months after the second

vaccination dose as well as after a third vaccination.

Currently available vaccines were designed on the basis of the ancestral sequence of SARS-

CoV-2 and have shown to elicit durable and potent immune responses to prevent from severe

COVID-19 [6,7]. However, since the beginning of the pandemic several virus variants emerged

globally with various amino acid substitutions, deletions or insertions in the viral proteins

leading to enhanced transmissibility of the virus or immune escape effects [8–12]. To get

insight into the neutralizing capacity of circulating antibodies elicited by the BNT162b2 vac-

cine against VOCs, we analyzed BNT162b2-induced nAbs after two and three doses against

the variants of concern B.1.351 (Beta), B.1.617.2 (Delta) and B.1.1.529 (Omicron) [13–16].
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In addition to systemic immunity, mucosal immune responses are considered to be criti-

cally important in reducing viral spread [17]. By mediation of the mucosa-associated lymphoid

tissue (MALT), a strong suppression of SARS-CoV-2 transmission can be achieved due to the

blockage of viral entry in mucosal cells of the oral cavity and pharynx [18]. In saliva of recov-

ered COVID-19 patients, IgA antibodies are detectable in high concentrations [19]. Due to

their parental route of application, it remains unclear whether or not mRNA or heterologous

vector/mRNA-combination vaccination regimes induce mucosal immune responses. To

address this question we assessed SARS-CoV-2 specific IgA antibodies in saliva of vaccinees

and convalescent COVID-19 patients.

Patients and methods

Study design and human samples

Two cohorts of vaccinated individuals and a set of bio-banked samples from COVID-19

patients were included into the study (Fig 1, Table 1). Study participants receiving vaccination

with the BNT162b2 mRNA vaccine (BNT/BNT, n = 104, EMA fact sheet [20]) were recruited

among healthcare employees at the Hospital St. Georg in Leipzig, Germany. Sera and saliva

samples were collected on the day of first dose of vaccination (V1), on the day of the second

dose vaccination (V2, median 21 days [IQR 21–22] after V1), and 14 to 28 days after the sec-

ond dose vaccination (P1, median 42 days [IQR 42–43] after V1). Furthermore, additional

serum samples were collected about 2.5 months after V2 (P2, 25 individuals, median 78 days

[IQR 77–82], about 8 months after V2 (P3, 41 individuals, median 253 days [IQR 251–260]

days after V2) and after a subsequent third vaccination (Boost) (20 individuals, median 15

days [IQR 14–16] days after P3).

Another 11 study participants (63.6% females, median age 31 [IQR 26–37]) received a het-

erologous ChAdOx1-S vector based prime (EMA fact sheet [21]) and BNT162b2 boost vacci-

nation (AZ/BNT). In accordance to the BNT/BNT group, serum samples were collected on the

day of the first dose of ChAdOx1-S vaccination (V1), 21 days after V1 (V2, median 21 days

[IQR 20–22] after V1), and 12 to 15 days after second dose vaccination (P1, median 91 days

[IQR 90–92] after V1).

Fig 1. Time points of blood sampling within the different cohorts in median days Vaccinees: V1 prior first

vaccination, V2 21 days after first vaccination, P1 21 days, P2 60 days and P3 240 days after second vaccination.

Boost samples were taken 14 days after third vaccination. BNT162b2 vaccinees received their second vaccination 3

weeks after the first dose, whereas heterologous vaccinees received their second dose (BNT16b2) 10 weeks after the

first vaccination with ChAdOx1-S. COVID-19 Patients: 35 days post symptom onset (PSO).

https://doi.org/10.1371/journal.pone.0263861.g001
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Inclusion into the study was independent of a previous SARS-CoV-2 infection. The ethics

committee of the Saxonian medical chamber approved the study (registry number EK-allg-37/

10–1) and informed written consent was obtained from all volunteers.

As reference, samples of 57 PCR-confirmed COVID-19 patients were included, which were

treated between March 3 and November 11, 2020, at the Department of Infectious Diseases/

Tropical Medicine, Nephrology and Rheumatology of the Hospital St. Georg. Serum samples

were collected between 7 and 43 days (Median 35 days, IQR 20–44) after symptoms onset.

COVID-19 patients were stratified into two groups according to the WHO clinical progression

scale (World Health Organization 2020 ordinal scale for clinical improvement): (1) “mild”, scale

values 2 or 3 and (2) “moderate/severe” with scale values 4 or 5 [22]. For 29 of 34 COVID-19

patients with moderate/severe progression, saliva was collected (Table 1).

Commercial assays for the detection of antibodies against S1 and viral

nucleocapsid

All serum samples were tested for IgG against SARS-CoV-2 S1 (Anti-SARS-CoV-2-Quanti-

Vac-ELISA, S1 Quant IgG; cut-off�25.6 BAU/ml) and for IgA against SARS-CoV-2 S1 (S1

IgA, Euroimmun, Lübeck, Germany; cut-off ratio�0.8). Samples above detection limit for S1

Quant IgG were pre-diluted 1:10 and 1:50 in sample buffer. In addition, baseline sera were

screened for IgG antibodies against SARS-CoV-2 nucleocapsid (Virotech, Rüsselsheim, Ger-

many; cut-off�11 VE/ml).

Table 1. Demographic characteristics of vaccinees and COVID-19 cases.

Homologous vaccinees

(BNT/BNT)

Heterologous vaccinees

(AZ/ BNT)

COVID-19 patients

N 104 11 57

Females (%) 68.3� 63.6� 43.9

Median age (min-max) 41 (20–66) 31� (26–37) 51 (32–79)

Median days after first dose (IQR)

V2

P1

P21

P32

Boost3

21 (21–22)

42 (42–43)

102 (99–109)

276 (272–283)

288 (277–289)

21 (20–22)

91 (90–92)

n/a

n/a

n/a

n/a

Median days after the onset of symptoms (min-max) n/a n/a 35 (7–43)

Vaccination reaction (%):

None

Local4

Systemic5

11.5

14.4

74.0

0

0

100

n/a

n/a

n/a

Severity of disease6 (%)

mild (scale 2–3)

moderate/severe (scale 4–5)

n/a

n/a

n/a

n/a

57.9

42.1

1 blood sampling was done for 25
241, and
320 of 104 volunteers.
4pain at the vaccination site.
5includes fever, chills, headache, fatigue, nausea, diarrhea, body aches, and nerve pain.
6Clinical severity of COVID-19 patients was classified according to the WHO clinical progression: (2) ambulatory without limitation of activity, (3) hospitalized without

oxygen, (4) hospitalized on oxygen therapy by mask or nasal prongs, (5) hospitalized receiving non-invasive ventilation or high-flow oxygen therapy. Mann-Whitney-U

test was used to analyze differences in age and Fisher’s exact test was applied to evaluate difference in gender

(� p<0.05, ��p<0.01). d = days, IQR = inter quartile range, n.s. = not significant. AZ = AstraZeneca (ChAdOx1-S), BNT = BioNTech/Pfizer (BNT162b2), V2 = three

weeks after first vaccination, P1 = two weeks after second vaccination, P2 = three month after first vaccination; P3 = eight months after first vaccination.

https://doi.org/10.1371/journal.pone.0263861.t001
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In-house developed enzyme-linked immunosorbent assays

Detection of SARS-CoV-2 inactivated whole virion (IWV) IgG-antibodies and SARS-CoV-2

RBD polyvalent IgGAM-antibodies was performed according to Rockstroh et al. 2021 [3].

Briefly, Nunc PolySorp plates were coated with 1.5 μl per well of inactivated SARS-CoV-2 wt

viral particles and 250 ng/well of RBD protein in 100 μl per well of carbonate coating buffer

(15 mM Na2CO3, 7 mM NaHCO3 pH 9.6) overnight at 4˚C. RBD protein (AA residues 329–

538 of spike protein, strain Wuhan-Hu-1) was expressed in Drosophila S2 cells and purified

from cell culture supernatants with tandem immobilized metal affinity and size exclusion

chromatography using the ÄKTA pure 25 l chromatography system (GeHealthcare). SARS-

CoV-2 viral particles were purified from infectious cell culture supernatants by ultracentrifu-

gation on a 30% sucrose cushion in MSE buffer (10 mM MOPS, pH 6.8, 150 mM NaCl, 1 mM

EDTA) at 25,000 rpm for 3.5 h and 4˚C. The pellet was resuspended in MSE buffer and chemi-

cally inactivated with 0.1% beta-propiolactone at 22˚C. Sera (diluted 1:100) were incubated for

1.5 h at room temperature and binding antibodies were detected using a HRP-conjugated sec-

ondary goat anti human IgG antibody (Dianova, 1:20,000) or goat anti human IgG+IgM+IgA

H&L antibody (Abcam, 1:10,000) for 1 h at room temperature. TMB substrate (Biozol) was

added after a final wash step and incubated for 25 minutes before the reaction was stopped

with 1 M H2SO4. Absorbance was detected at 450 nm with 520 nm as reference in a micro-

plate reader (Tecan). The cut-off values were determined for each antigen individually and

were validated using 100 pre-pandemic serum samples. All measurements were performed at

least in duplicates.

SARS-CoV-2 viral stocks

SARS-CoV-2 viruses were obtained from the European Virus Archive Global, EVAg (wildtype

virus (wt) isolate BetaCoV/Germany/BavPat1/2020 and B.1.1.529 Omicron BA.1 or isolated

from patient’s leftover samples (SARS-CoV-2 B.1.351 Beta isolate SARS-CoV-2/human/Ger-

many/LE-B14HXA2/2021 and B.1.617.2 Delta isolate SARS-CoV-2/human/Germany/

LE-B21AXB3/2021). Viruses were propagated in VeroE6 cells. Cells were grown to a conflu-

ence of approx. 80–90% and were infected at a MOI of 0.001 in Dulbecco’s modified Eagle’s

medium (DMEM), supplemented with 2% FCS and 1% Pen/Strep. They were incubated for 48

h at 37˚C with 5% CO2 until cytopathic effect (CPE) was visible. Virus containing supernatants

were centrifuged at 4000 g for 10 min at 4˚C and then stored at -80˚C until use. Viral titers

were determined using a focus-forming assay. All viral stocks were sequenced to verify their

spike protein sequences and expected mutation sites.

SARS-CoV-2 neutralization assay

Focus reduction neutralization assays (FRNT) were performed according to Rockstroh et. al.

2021 [3]. Briefly, heat-inactivated human serum samples were serially diluted in DMEM with-

out FCS from 1:2.5 to 1:5120 and incubated with 50–150 focus forming units of SARS-CoV-2

wildtype, B.1.351, B.1.617.2 or B.1.1.529 for 1 h at 37˚C before addition to confluent Vero E6

monolayers in 96-well plates. After an incubation of 1 h at 37˚C, supernatant was removed,

cells were washed with PBS, overlaid with 1% Methyl cellulose in DMEM with 2% FCS and

incubated for 24–26 h at 37˚C in 5% CO2. Cells were fixed with 4% paraformaldehyde in PBS,

permeabilized and blocked with Perm-Wash buffer (0.1% saponin, 0.1% BSA in PBS). SARS-

CoV-2 focus forming units were stained using a monoclonal rabbit anti-S1 antibody (CR3022,

abcam, 1:1,000) and a secondary goat anti-rabbit IgG HRP-conjugated antibody (Dianova,

1:1,000). After the addition of TrueBlue substrate (Seracare), spots were counted with an ELI-

Spot reader (AID Diagnostika). FRNT90 titers were determined as the reciprocal of the last
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dilution providing a minimum of 90% neutralization of focus forming units in comparison to

the virus control without serum. A positivity cut-off of FRNT90�5 was determined with nega-

tive reference sera.

Collection and detection of SARS-CoV-2 specific IgA in saliva

Saliva was collected using the Oracol Saliva Collection System (Oracol, Worcester, U.K.)

according to the manufacturer’s specification. Aliquots were stored at -80˚C in Protein Low-

Bind microtubes (Eppendorf, Hamburg, Germany) until further use. Samples were centrifuged

at 10,000 g for 5 min and the supernatant was collected. 25 μl of saliva was mixed with equal

amounts of LEGENDplex assay buffer and S1- or RBD-coated beads in a 5 ml polypropylene

FACS tube, sealed and incubated overnight at 7˚C in the dark. Subsequently, the bead mixture

was washed with 1 ml of LEGENDplex wash buffer at 250 g for 5 min and incubated with 25μl

of Streptavidin-conjugated anti-IgA detection antibody for 60 min on an orbital shaker at 800

rpm, followed by the addition of 25 μl of Streptavidin-PE conjugate for another 30 min (all

from BioLegend, SanDiego, CA, U.S.). After another wash step, beads were resuspended in

500 μl of BD sheath fluid and analyzed using a BD FACS Lyric flow cytometer (BD Biosci-

ences, San Jose, CA, U.S.) with PMT voltage settings adapted to discriminate beads specific for

Spike S1- and Spike RBD-specific IgA antibodies. Binding of IgA antibodies was evaluated as

median fluorescence signals on detected beads.

Statistical analysis

SPSS version 21 (IBM, Armonk, NY, USA) and GraphPad PRISM version 6 (GraphPad Soft-

ware, San Diego, CA, USA) were used for statistical calculations and generation of figures.

Data was tested for gaussian distribution with Shapiro-Wilk normality test. Statistical tests for

normally distributed values were calculated as paired or unpaired one-way ANOVA with

Holm-Sidak’s multiple comparison test for the analysis of follow-up samples or vaccine and

infection induced antibodies, respectively. For neutralization antibody titers, where Gaussian

distribution was not confirmed, paired or non-paired Kruskal-Wallis with Dunn’s multiple

comparison test to compare multiple timepoints or Wilcoxon matched-pairs signed rank test

to compare two parameters was applied. Fisher’s exact test was applied for comparison of cate-

gorical variables.

Results

Serological characterization of BNT162b2 vaccinees and COVID-19

convalescents

Among 104 individuals receiving a BNT162b2 vaccination we analyzed S1, RBD, inactivated

whole virion (IWV) and neutralizing antibodies and drew comparisons to 57 COVID-19 con-

valescent individuals with mild or severe courses serving as reference group (Table 1, Fig 2A–

2E) [3]. Three weeks after the first vaccination, SARS-CoV-2 neutralizing as well as S1, RBD

and IWV binding antibodies were detectable in most individuals. Two weeks after the second

dose, nAb titers and binding antibodies to all tested antigens were significantly increased. At

this time point, nAb titers (Median FRNT90 = 320) as well as IWV IgG antibody signals in vac-

cinees were comparable to those induced by mild COVID-19 but did not reach the high levels

of patients having severe COVID-19 courses (4- and 1.3- fold decrease for nAb and IWV IgG

respectively) (Fig 2A and 2E). In contrast, vaccine-induced RBD IgGAM and S1 IgA serum

antibody levels corresponded to those induced by severe COVID-19 and were even signifi-

cantly exceeded by vaccine-induced S1 IgG antibodies (3.5-fold increase). For some

PLOS ONE BNT162b2 immune responses

PLOS ONE | https://doi.org/10.1371/journal.pone.0263861 October 18, 2022 6 / 17

https://doi.org/10.1371/journal.pone.0263861


individuals, IgG antibodies against the inactivated whole virion of SARS-CoV-2 (IWV) were

detected even before the first vaccination. In comparison to BNT162b2 vaccinees, the heterolo-

gous AZ/BNT vaccination cohort showed similar nAb titers after the first dose (S1 Fig). How-

ever, after the second vaccination their nAb titers (4-fold increase) were significantly higher

than in the mRNA vaccine group.

The correlation between BNT162b2-induced S1 IgG, RBD IgGAM antibody signals and

nAb titers using Spearman’s rank coefficient is presented in S2 Fig. Herein, S1 IgG and RBD

IgGAM antibodies indicated the strongest correlation to SARS-CoV-2 nAbs (r = 0.93) (Fig 3A

and 3B), whereas IWV and S1-IgA correlation coefficients ranged between r = 0.722 and 0.817

(S1C and S1D Fig).

Fig 2. BNT162b2 vaccination induced antibodies in comparison to SARS-CoV-2 infection induced antibodies The presented data shows antibody ratios

before first (V1), 3 weeks after first (V2), and 2 weeks after second vaccination (P1), as well as antibodies in sera of patients after mild and severe

COVID-19 course. (A) Reciprocal titers of SARS-CoV-2 neutralizing antibodies were measured in focus reduction neutralization assay with 90% inhibition

(FRNT90). (B) RBD IgGAM signals determined as sample/cut-off ratios (C) S1 quant IgG antibodies were quantitatively measured in binding antibody units

per milliliter (BAU/ml). (D-E) S1-IgA and inactivated SARS-CoV-2 whole virus IgG signals (IWV) were determined as sample/calibrator ratios. The horizontal

dotted lines represent positivity cut-offs. � = p<0.05, �� = p<0.01, ��� = p<0.001, ���� = p<0.0001, ns = not significant. x-marked data points represent

vaccinees with a previous SARS-CoV-2 infection.

https://doi.org/10.1371/journal.pone.0263861.g002
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Comparison of binding and neutralizing SARS-CoV-2 antibodies

Ratios of binding to neutralizing antibodies were calculated to compare the proportion of neu-

tralizing antibodies induced by vaccination to convalescent individuals in each test (Fig 3).

Vaccinees presented a significantly lower proportion of neutralizing to S1 binding antibodies

in comparison to the COVID-19 group (10- fold and 5-fold lower for S1 IgG and S1 IgA

respectively). Similarly, this ratio was lower for RBD binding IgGAM antibodies compared to

patients after severe COVID-19 but was found comparable to the mild COVID-19 group. For

IWV-IgG the neutralizing proportion of binding antibodies was higher than in patients with

mild COVID-19 courses but below the median of severe courses.

Long term kinetics of antibody titers

The kinetics of antibody abundance varied greatly between individuals, with a mean titer

reduction of nAbs by 3.3-fold at P2 and 9.7-fold at timepoint P3 compared to P1 two weeks

after second vaccination (Fig 4A). RBD IgGAM ratios decreased 2.1-fold after three months

and 4-fold after eight months (Fig 4C). S1 antibody concentrations reduced 5.7-fold at time-

point P2 and 36.6-fold at P3 (Fig 4C). Smallest differences were observed in the IWV IgG anti-

body signals with a 1.1-fold mean reduction after three months and a 2.2-fold mean reduction

after eight months (Fig 4D).

Neutralizing effect of BNT162b2-induced antibodies on Beta, Delta and

Omicron VOCs

Neutralizing antibody titers were decreased towards VOCs in almost all tested individuals and

cohorts when compared with wildtype SARS-CoV-2 (Fig 5). Two weeks after the second vacci-

nation, mean nAb titers decreased by 5.1-, 11.5- and 57-fold with the Delta, Beta, and Omicron

variant, respectively. With 6.2-fold and 7.7-fold a similar nAb mean reduction was observed for

Delta and Beta variants at P2. For Omicron a 28.7-fold reduction was observed at time point P2.

After eight months nAb titers for Delta showed a 6.2-fold, for Beta a 4.1-fold and for Omicron a

11.9-fold decrease. Compared to the homologous group vaccinated only with mRNA, the

Fig 3. Ratios between SARS-CoV-2 neutralizing antibody titers and (A, C, D) RBD IgGAM, S1 IgA, IWV in sample/calibrator ratios and (B) S1 quant IgG in

BAU/ml. Sera of vaccinees two weeks after second vaccination (P1) were compared with sera of COVID-19 patients with mild and severe courses according to

WHO score (2–3 mild and 4–5 severe). � = p<0.05, �� = p<0.01, ��� = p<0.001, ���� = p<0.0001, ns = not significant.

https://doi.org/10.1371/journal.pone.0263861.g003
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decrease of nAbs against Beta and Omicron was lower (3.5- and 23-fold decrease, respectively)

in the heterologous AZ/BNT vaccination cohort. For Delta the AZ/BNT group showed a similar

reduction (5.8-fold reduction) as the group of mRNA vaccinated individuals (S3 Fig).

Impact of a third vaccination on nAb titer level on wildtype, Beta, Delta

and Omicron strains

Two weeks after the third vaccination (Boost) nAb titers were significantly increased com-

pared to two weeks after the second vaccination (P1). The median titer increase ranged from

6.1-fold for SARS-CoV-2 wildtype to 42.7-fold for Omicron (Fig 6A). Compared to P3 eight

months after the second vaccination, median nAb titers after third vaccination were increased

from 76.3- to 288-fold for wildtype and Delta, respectively (Fig 6B).

Detection of SARS-CoV-2 targeting antibodies in saliva samples

Saliva samples from vaccinees and COVID-19 patients with moderate or severe courses were

assessed for S1- and RBD-specific IgA antibodies using a sensitivity-trimmed bead-based flow-

Fig 4. BNT162b2-induced antibody levels 2 weeks, 3 and 8 months after first vaccination. (A) Reciprocal titers of SARS-CoV-2 neutralizing antibodies were

measured in focus reduction neutralization assay with inhibitor titer 90% (FRNT90). (B) RBD IgGAM signals were determined as sample/calibrator ratios (C)

S1 IgG antibodies were quantitatively measured in binding antibody units per milliliter (BAU/ml). (D-E) S1 IgA and IWV (SARS-CoV-2 inactivated whole-

virion) titers were determined as sample/calibrator ratios. (F) Fold reduction of SARS-CoV-2 neutralizing antibody titers, RBD IgGAM, S1 IgG, S1 IgA and

IWV IgG antibody signals in follow-up vaccine sera calculated as ratio of value on timepoint P1 to timepoint P3.

https://doi.org/10.1371/journal.pone.0263861.g004
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cytometric assay. Based on interquartile range calculation, no increase of IgA production at

V2 or P1 was observed in the group of BNT162b2-vaccinated individuals. In contrast, most

COVID-19 patients had detectable salivary IgA towards SARS-CoV-2 antigens after 15–30

days after the onset of symptoms (Fig 7).

Discussion

Impact of vaccination against SARS-CoV-2 on antibody formation

Vaccination with mRNA- or vector-based vaccines represents a milestone in combating the

SARS-CoV-2 pandemic. To better understand their protective effects, we assessed the antibody

formation quantitatively and functionally after vaccination in comparison with SARS-CoV-2

infections. Three weeks after the first vaccination with BNT162b2, in half of the subjects nAbs

could be detected, which is of note with regard to recent studies linking early levels of nAbs

with protection against SARS-CoV-2 [23,24]. This supports a presumably protective effect

already after the first vaccination with the BNT162b2 mRNA vaccine, which previously has

Fig 5. BNT162b2- and infection induced reciprocal SARS-CoV-2 nAb titers on wildtype strain wt-BavPat1 and

VOC strains Delta, Beta and Omicron at timepoint P1 to timepoint P3. The dotted line indicates the limit-of-

detection at a titer of 1:5. FRNT90: Focus reduction neutralization titer at 90% virus inhibition; results plotted as

reciprocal values. Proportion of individuals with remaining nAbs in percent. Mean neutralizing titer reductions of

SARS-CoV-2 wt to VOC-nAb are depicted above the continuous lines � = p<0.05, �� = p<0.01, ��� = p<0.001, ���� =

p<0.0001, ns = not significant.

https://doi.org/10.1371/journal.pone.0263861.g005
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been demonstrated by a study with US health care personnel [25]. Two weeks after the second

dose, all individuals developed high S1- and RBD-binding as well as SARS-CoV-2 nAb titers.

These results are in concordance with similar observations in studies on mRNA vaccines [26–

28]. Interestingly, an even stronger nAb production was observed in the group of heterologous

ChAdOx1-S/BNT162b2 vaccinated individuals. This indicates that a combination of different

Fig 6. SARS-CoV-2 nAb titers on the wildtype strain wt-BavPat1 and the VOC strains Delta, Beta and Omicron after third vaccination (Boost) (A) compared

to P1 two weeks after second vaccination and (B) compared to P3 8 months after first and third vaccination (Boost). Only individuals that had provided

samples at both time points were compared. The dotted line indicates the limit-of-detection at a titer of 1:5. FRNT90: Focus reduction neutralization titer at

90% virus inhibition; results plotted as reciprocal values. Mean neutralizing titer reductions are depicted above the continuous lines � = p<0.05, �� = p<0.01,
��� = p<0.001, ���� = p<0.0001, ns = not significant.

https://doi.org/10.1371/journal.pone.0263861.g006

Fig 7. Salivary IgA specific to SARS-CoV-2 RBD in N = 40 individuals prior first (V1), three weeks after first (V2)

and to weeks after second vaccination (P1) in comparison with COVID-19 patients (N = 31). The dotted line

indicates the 95% interquartile range for vaccinees.

https://doi.org/10.1371/journal.pone.0263861.g007
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SARS-CoV-2 vaccine classes can lead to similar or stronger humoral immune response which

may result in a better protective effect, as has also been shown by other studies [29–33].

Kinetics of SARS-CoV-2 antibody response after BNT162b2 vaccination

We have observed significant reduction of vaccine-induced antibody levels already after three

months, which was even more pronounced eight months after the first vaccination. Interest-

ingly, S1 quant IgG and IgA antibodies decreased strongly, whereas nAb levels and RBD-Ig-

GAM dropped to a lesser extent [34]. Thus, the S1 quant IgG ELISA does not seem to be an

optimal diagnostic choice for determining longevity of humoral immune responses after

SARS-CoV-2 mRNA vaccination. This is at least the case for the test systems used here. The S1

IgG antibody kinetic might be different in assays of other manufactures [35]. Nevertheless

according to our data, we propose the use of RBD-IgGAM determination as a rapid and simple

surrogate marker to estimate the levels of nAbs after SARS-CoV-2 mRNA vaccination. One

explanation for a better correlation between RBD-IgGAM and nAbs could be a better RBD-

presentation in the vaccine antigen. This is supported by a study showing a broader nAb pro-

duction against the RBD region in vaccinees compared to COVID-19 patients [36].

The significant decrease in SARS-CoV-2 antibody titers within a short diagnostic interval

strengthens the demand of a third vaccination dose from a serological point of view, which has

already been supported by real world data [37,38]. However, the measurement of circulating

antibodies upon vaccination or infection does not deliver the full picture of protection from

disease. Instead, cellular and memory immune responses have to be taken into account, as

well. Data from recovered COVID-19 patients implies the presence of memory B- and T-cells

in almost all individuals up to eight months after SARS-CoV-2 infection [5,39].

Vaccination or SARS-CoV-2 infection induced nAbs against SARS-CoV-2

VOCs

The BNT162b2 vaccine was designed using the spike gene sequence of the ancestral Wuhan

SARS-CoV-2 wildtype strain. During the pandemic spread of SARS-CoV-2, viral variants

emerged with various mutations, leading to amino acid substitutions, deletions or insertions

in the spike protein. These provide potential for increased transmissibility of the virus [40,41].

Compared to wildtype strain our data revealed a significant but only moderate reduction in

the effectiveness of neutralizing antibodies against the B.1.617.2 (Delta) and B.1.351 (Beta)

VOC two weeks after second vaccination, thereby providing further evidence for mRNA vacci-

nation efficacy against this variants [42–45]. A substantial (57-fold) reduction was observed

with the B.1.1.529 (Omicron) variant with a few individuals showing only poor or no neutral-

izing response at all. These results are in line with recent findings of other serological studies

and real world data which indicate that two vaccine doses provide only a very limited neutral-

izing antibody activity or protection from symptomatic disease against the Omicron variant

[46–50].

Data of individuals that were vaccinated with ChAdOx1-S and subsequently with

BNT162b2 showed a lesser reduction of nAbs targeting VOCs after two vaccinations com-

pared to the group vaccinated exclusively with mRNA. This leads to the conclusion that the

combination of both vaccines results in more robust immune response regarding VOC infec-

tions. However, the group size for the heterologous vaccination is rather small compared with

the mRNA vaccinated one, but our results support recent findings of a large cohort study [33].

The third immunization led to a significantly stronger production of SARS-CoV-2 nAbs

compared to the second vaccination as it was expected based on previous findings [51]. Of

note, the mean increase was even more pronounced for SARS-CoV-2 variants, which indicates
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that a third vaccine dose not only raises the antibody titers but also enhances the quality of the

produced antibodies through maturation and antibody avidity as also observed in other stud-

ies [52–54]. This finding is relevant for antibody-mediated protection against the Omicron

variant. Here, a neutralizing immune response was now detected in all boosted individuals.

BNT162b2 vaccination and mucosal immune response

Generation of an intermittent protective mucosal immunity is generally accepted in COVID-

19 patients undergoing natural infection and constitutes a relevant component in the suppres-

sion of pandemic SARS-CoV-2 dissemination. However, using available COVID-19 mRNA

and vector-based vaccines, an immune response of mucosa associated lymphoid tissue

(MALT) is highly questionable. The protection of most systemic vaccinations against mucosal

infection solely relies on few circulating IgA and IgG antibodies which transudate from sera

into the mucosa [55]. We have not found detectable antibodies against SARS-CoV-2 in the

saliva using our methods. These results suggest that SARS-CoV-2 mRNA vaccination is not

able to trigger a detectable protective mucosal immune response. However, other groups

recently detected S1-IgA, IgG and RBD IgG antibodies IgG antibodies in saliva of vaccinated

individuals [56,57]. One explanation for the apparently discrepant results might be, that the

detected IgA antibodies in these studies are most likely transudated plasma S1 antibodies. Our

data suggest that the production of circulating IgA might be weaker against the RBD than

against the full length S1 subunit. In order to increase mucosal immunity, development of

mucosal vaccines could be crucial to critically interfere with the pandemic spread of SARS-

CoV-2.

Conclusions

BNT162b2 mRNA vaccination provided sustainable formation of SARS-CoV-2 neutralizing

antibodies in the present study cohort. To induce a detectable neutralizing immune response

against the Omicron VOC and to preserve detectable nAb titers in serum against other SARS-

CoV-2 variants during 6 months, a third vaccination seems to be necessary. Regarding muco-

sal immune response, the present analysis showed no relevant induction of salivary IgA after

mRNA vaccination.
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