

Evaluation of the throughput computed
with a dataflow model - A case study

Arno Moonen1, Marco Bekooij2, Rene van den Berg2, Jef van Meerbergen1,3

1University of Technology, Eindhoven, The Netherlands
2NXP Semiconductors, The Netherlands
3Philips Research, Eindhoven, The Netherlands

ES Reports
ISSN 1574-9517

ESR-2007-01
9 March 2007

Eindhoven University of Technology
Department of Electrical Engineering
Electronic Systems

© 2007 Technische Universiteit Eindhoven, Electronic Systems.

All rights reserved.

http://www.es.ele.tue.nl/esreports

esreports@es.ele.tue.nl

Eindhoven University of Technology

Department of Electrical Engineering

Electronic Systems

PO Box 513

NL-5600 MB Eindhoven

The Netherlands

Evaluation of the throughput computed with a dataflow model - A case study

Arno Moonen1, Marco Bekooij2, Rene van den Berg2, Jef van Meerbergen1,3

1 University of Technology, Eindhoven, The Netherlands
2 NXP Semiconductors, The Netherlands

3 Philips Research, Eindhoven, The Netherlands

A.J.M.Moonen@tue.nl

Abstract

Providing real-time guarantees in complex, heteroge-

neous, and embedded multiprocessor systems is an impor-

tant issue because they affect the perceived quality. Dig-

ital signal processing algorithms are often modeled with

dataflow models. A guaranteed minimum throughput can be

computed from such dataflow model. In this paper we an-

alyze three causes for the difference between the computed

and measured throughput. We measure the throughput with

a cycle accurate simulation. For our channel equalizer ap-

plication the measured throughput is 10.1% higher than the

computed minimum throughput.

1 Introduction

Many consumer applications process a number of data

streams and have throughput and latency requirements. Ra-

dios are often designed as hard real-time systems [9], be-

cause they suffer from steep quality degradation if the

throughput and latency requirements are not met. Hard real-

time systems require a guaranteed minimum throughput and

bounded latency. Missing a deadline, e.g. at the digital to

analog converter, can cause a click in the audio.

Reasoning about real-time guarantees in embedded het-

erogeneous multiprocessor systems is challenging. Concur-

rency, resource sharing and many operation modes compli-

cate the analysis. Many recent studies have focused on real-

time analysis, which includes checking whether the timing

constraints are met, identification of possible bottlenecks,

and estimation of resource utilization.

We identify two categories for existing analysis tech-

niques, namely simulation and exhaustive analysis. Poten-

tial disadvantages of simulation are a high running time, an

incomplete coverage and failure to identify possible bot-

tlenecks. The simulation tools accompanying the model-

ing language SystemC and POOSL [4] are used to simu-

late transaction level models [3]. Transaction level models

estimate worst-case

δ ∆

t

actualoptimistic conservative
estimate

Figure 1. The worst-case arrival time of an

audio sample

tradeoff accuracy for running time. An optimistic worst-

case arrival time of e.g. audio samples can be determined

via cycle-accurate simulation. Longer simulation runs can

increase the accuracy and therefore decrease δ in Figure 1.

However, from an optimistic estimate we are unable to guar-

antee that throughput and latency requirements are met.

Real-time calculus [12] falls in the category exhaustive

analysis. The main drawback of real-time calculus is that

it has difficulties in handling cyclic dependencies that influ-

ence temporal behavior.

Another exhaustive analysis model, which is a subclass

of timed Petri nets, is called marked graph [2]. Single

Rate Dataflow (SRDF) graphs [7] have the same express-

ibility as marked graphs. In a SRDF graph we can ana-

lytically derive the length of all the cycles in the graph.

The cycle with the maximum length, which is called the

Maximum Cycle Mean (MCM) [11], is related to the in-

verse of the throughput. More versatile than SRDF graphs

are Multi Rate Dataflow (MRDF) graphs [7] and Cyclo-

Static Dataflow (CSDF) graphs [1] [10]. MRDF and CSDF

graphs can be unfolded into an equivalent SRDF graph of

which the MCM can be calculated [11] [1]. Another anal-

ysis method for deriving the throughput is presented in [5],

which is based on explicit state-space exploration of an

MRDF graph.

Conservative worst-case arrival times of audio samples

can be computed with a dataflow model. From a conserva-

tive estimate we are able to guarantee that throughput and

latency requirements are met. However, it is usually not

1

t1()

{

int x,y1,y2;

if(i mod 8==0) {

x=read(A);

y1=func1(x);

write(B,y1);

y2=func2(x,y1);

write(C,y2);

}

i=i+1;

}

Figure 2. Pseudocode of task t1, which has a

cyclo static behavior

known how far the distance between the conservative esti-

mated and actual worst-case arrival time is. A large distance

∆ can result in a significantly overdimensioned system with

a higher cost than strictly needed.

In this paper we identify and quantify the causes that are

responsible for the difference between the conservative es-

timated throughput and measured throughput. This differ-

ence is determined for a channel equalizer application. The

conservative estimated throughput is derived with a CSDF

model of the channel equalizer. The measured throughput is

determined with a cycle accurate simulator of the complete

multiprocessor system.

The outline of this paper is as follows. We introduce the

CSDF model in Section 2. In Section 3 we describe the

multiprocessor architecture on which the channel equalizer

is executed. In Section 4 we describe the CSDF model of

the channel equalizer application. We describe the mapping

of the channel equalizer application onto the multiproces-

sor system in Section 5. Each mapping decision is mod-

eled with additional constraints in the CSDF model. We

use the CSDF model to compute a conservative estimate of

the throughput. In Section 6 we compare the computed and

the measured throughput. We conclude in Section 7.

2 The CSDF model

In this section we present the CSDF model. We use

CSDF model because it can model cyclic dependencies and

the channel equalizer application can intuitively be mod-

eled with a CSDF. In this section, we also identify three

causes for the difference between the computed and mea-

sured throughput, which we will further investigate in later

sections.

A CSDF model is represented as a directed graph. The

tasks in the implementation are represented by nodes, which

we call actors. A communication channel between two

tasks is represented by an edge. Tasks and actors trans-

form input streams into output streams. An example of a

task is shown in Figure 2. This task reads from channel A

T ,7xT ′

1,7x0
1,7x0A B

t1

8x1 8x1
1,7x0 C

Figure 3. Actor t1, which is representing task

t1 in a CSDF model

and writes to channel B and C. Variable i is a global vari-

able of the type integer and is initialized to zero. After each

execution, i is increased by one. The condition of the if-

statement is true if i is a multiple of eight, therefore, task

t1 has a cyclically changing but predefined behavior. We

call this behavior a cyclo static behavior.

Task t1 is represented by actor t1 depicted in Figure 3.

An actor is executed as soon as the firing rule is evaluated

as true. A firing rule is a boolean expression in the num-

ber of tokens present at the inputs. A token is a data ele-

ment that is transferred over a communication channel, e.g.

an audio sample. When an actor executes, it consumes a

certain number of tokens from its inputs, and it produces a

number of tokens to its output. The number of tokens con-

sumed during one execution is called the consumption rate

and the number of tokens produced during one execution is

called the production rate. The consumption rate of actor t1

at channel A is one if i is a multiple of eight and zero in the

remaining executions. This cyclo static behavior is repre-

sented by 1,7x0 which is equivalent to 1,0,0,0,0,0,0,0. The

production rate at channel B and C is 1,7x0. The execution

time of actor t1 is T if i is a multiple of eight and T ′ in the

remaining executions, which is represented by T ,7xT ′.

A task can start its next execution after its previous ex-

ecution is finished. We model this with a self-edge, which

is an edge where the source and destination actors are the

same, with one initial token. An initial token is depicted as

a black dot. In order to keep the figures, which represent a

CSDF model, simple we do don’t draw the self-edges of a

task and don’t show the production and consumption rates

equal to one.

A first-in-first-out (FIFO) queue in the implementation

can be modeled with a forward and backward edge. The

capacity of the queue is indicated with initial tokens on the

backward edge.

The difference between a task in the implementation and

an actor in the CSDF model is the following. A task is en-

abled by a scheduler while an actor is enabled by the firing

rule. The execution time of a task can vary but should be

bounded. The execution time of an actor is cyclo static. A

task consumes its input data and produces its output data

somewhere during its execution. An actor consumes its in-

put and produces its output at the end of its execution. A

2

task is blocked if no input data or output space is available.

An actor is non-blocking because the firing rule is only en-

abled if input data and output space, in the case of a FIFO,

is available.

A CSDF model can be unfolded into an equivalent

SRDF model from which the MCM can be computed. The

throughput, e.g. number of tokens produced per second, is

related to the inverse of the MCM. The throughput mea-

sured with a cycle accurate simulator is higher than the

throughput computed with the CSDF model. There are

three causes for the difference between the measured and

computed throughput.

First, The execution time of an actor is a compile time

estimate of the Worst Case Execution Time (WCET). Con-

servative estimates on the WCET have been actively inves-

tigated in the real-time system design community. The vari-

ation on the execution time is for example a consequence of

conditional branches, data dependent loops and the behav-

ior of caches.

Second, inter-task communication results in dependen-

cies between tasks, e.g. one task can start consuming data

after another task has finished producing its data. In the im-

plementation a task consumes its input data and produces its

output data somewhere during its execution. An actor con-

sumes its input and produces its output at the end of its ex-

ecution. In a CSDF model a tradeoff can be made between

accuracy and the number of phases in the cyclo static behav-

ior. A higher number of phases results in a larger equivalent

SRDF model.

Third, even when we run our system with identical in-

put data multiple times, the temporal behavior of each run

can vary, because an arbiter has to grant permission to ac-

cess a shared resource and the behavior of this arbiter is not

completely known at design time. In our multiprocessor ar-

chitecture, which is introduced in the next section, the only

shared resource is the network. We model the worst-case

temporal behavior of the arbiter in the latency of the net-

work.

3 Architecture

In this section we describe the architecture of our hetero-

geneous multiprocessor system on which the channel equal-

izer is executed.

Our multiprocessor system is composable. A system is

composable if the behavior of application A can not influ-

ence the temporal behavior of application B.

The architecture consists of tiles that communicate via

a network, as depicted in Figure 4. The network allows to

set up a point-to-point connection that supports Guaranteed

Throughput (GT) service [6]. The bandwidth of a GT con-

nection is configured before starting the application. The

latency of a GT connection is bounded. Tiles can contain a

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �

acc per

adc proc proc proc proc

ninini ni ni

router routernetwork

ni ni ni ni ni

fir cordic acc

Figure 4. Heterogeneous multiprocessor sys-

tem

programmable core (proc), a hardware accelerator (acc) or

a peripheral (per). Each tile is connected to a network inter-

face (ni). The network interface is connected via a link to a

router. In each network interface there are a number of FI-

FOs. The number of FIFOs and the capacity of each FIFO

is selected at design time. The FIFO capacity should be at

least the size of a token, such that a task can store its input

and output data. In our multiprocessor system the capacity

of each FIFO is 32 words, which is sufficiently large. Clock

domain crossings are implemented in the network interface

such that each tile can have its own clock frequency.

When a processor transfers data over the network, it

writes the data into a FIFO in the network interface. The

processor is blocked if the FIFO is full and it continues

again if there is space available. When the processor reads

data from the network, it will read the data from a FIFO in

the network interface. The processor is blocked if there is

no data available and it continues again if there is data.

For our case study we are interested in the throughput

of the channel equalizer. The channel equalizer is mapped

to the cross-hatched tiles in Figure 4. The analog to dig-

ital converter is the input of our channel equalizer and is

located in the adc tile. We make use of a CORDIC (COor-

dinate Rotation DIgital Computer) and FIR (Finite Impulse

Response) hardware accelerator for performance and cost

reasons. These accelerators are located in, respectively, the

cordic and fir tile. Furthermore, we make use of one pro-

cessor tile. The output of the channel equalizer is send to

the input of the FM radio receiver, which is mapped on the

remaining tiles.

We can derive the channel equalizers throughput inde-

pendent from the radio receiver because the architecture is

composable. The temporal behavior of the channel equal-

izer is not effected by the FM radio receiver due to the GT

connections in the network. Furthermore, we make use of

distributed memories, which are local to the processor, such

that we can derive tight estimates of the WCET of tasks.

3

lvl

x

x
y

adc

absx

load

avg

log norm

cu

fir

cf

radabsy

y

Figure 5. CSDF model of the channel equal-

izer

4 Application

In this Section we describe our channel equalizer algo-

rithm and present a CSDF model of this application.

Multipath distortion in an FM signal can be reduced with

a channel equalizer. FM signals are reflected by houses,

cars, hills, etc. and these reflections cause variations in the

magnitude and phase of the FM signal. Multipath can be

described as a complex digital transversal filter C(Z) be-

cause there is a delay between different paths and each path

has a different phase and magnitude.

C(Z) = a + b · Z−∆1 + c · Z−∆2 + d · Z−∆3 + ... (1)

To correct for multipath distortion, a complex digital filter

H(Z) can be made which approximates the inverse of the

multipath filter C(Z). The desired FM signal is obtained if

H(Z) · C(Z) = 1. The channel equalizer should be adap-

tive in portable systems because the channel characteristics

vary over time.

The sequential C-code of the channel equalizer applica-

tion was manually rewritten, such that task level parallelism

is explicit. The rewritten C-code is represented as a CSDF

model, which is shown in Figure 5. Task adc is modeling

the strict periodic AD convertor. Task rad is modeling the

strict periodic input of the FM radio receiver. The tasks

absx, log, fir, and absy can be mapped on a hardware ac-

celerator to offload the processor. The production and con-

sumption rates denoted by x and y are 1,7x0. Therefore,

the number of executions of task absx and log is eight times

lower than the number of executions of the other tasks.

5 Mapping

In this Section we map the channel equalizer applica-

tion onto our multiprocessor system. First, we determine

the binding of tasks to tiles. Secondly, we fix the band-

width of the point-to-point connections in the network and

calculate an upper bound on the latency. Finally, we deter-

mine the execution order of the tasks that are mapped to the

same tile. After each mapping decision we add constraints

to the CSDF model and compute a throughput estimate with

MCM analysis.

Our application consists of twelve tasks. The adc task

represents the incoming data from the adc tile. The rad task

represents the input of the FM radio receiver. The tasks adc

and rad are strict periodic with the period 1/fs, with fs

the sample frequency. We offload the processor by binding

the fir task to the fir tile and the absx, absy, and log tasks

to the cordic tile. The WCET of these tasks is 144ns, as

shown in Table 1. The remaining tasks are executed on the

proc tile. The WCETs of the tasks executed on the proc tile

are computed with a WCET analysis tool. The computed

WCET is an upper bound on the execution time of the task.

The MCM in the CSDF graph is 49248ns. During this

MCM period, 8 samples are read from adc and 8 samples

are written to rad. Therefore, an estimated throughput is

fs = 8/(49248 · 10−9) = 162KHz. This estimate does

not include network communication latency and fixed order

execution of tasks.

The next step is to set up point-to-point connections in

the network. This application requires five connections in

the network, namely from adc to proc, from proc to fir, from

fir to proc, from proc to cordic, from cordic to proc, and

from proc to rad. The tool that comes with the network is

able to generate a configuration in such a way that all con-

nections have a guaranteed throughput service. We com-

pute for each point-to-point connection an upper bound on

the latency. The upper bounds, which are shown in Table 2,

are computed with a CSDF model of the network [8]. No-

tice that multiple communication channels use one single

network connection. For example the channel norm→fir

and cu→fir are both mapped on the connection from the

proc to the fir tile. Sharing a network connection can result

in a higher worst-case latency. In our implementation we

know that their communication is mutually exclusive be-

cause tasks have a static order execution.

Communication latency is modeled with actor c1

through c11 in Figure 6. The arrows with an open head are a

shorthand notation for a forward and backward edge with a

certain number of initial tokens on the backward edge. The

number of initial tokens represents a FIFO capacity of 32

words, which is equal to the capacity of the FIFOs in the

network interface.

The MCM in the CSDF model in which the WCET

4

Task Tile WCET [ns]

adc adc 1/fs

load proc 8x224

absx cordic 144

avg proc 704, 7x416

log cordic 144

lvl proc 440, 7x24

norm proc 328

cu proc 4944, 7648, 6x4944

fir fir 144

cf proc 328

absy cordic 144

rad - 1/fs

Table 1. The binding of tasks to tiles and their

corresponding cyclo static WCET.

actor channel token size latency

[words] [ns]

c1 adc→load 2 66

c2 load→absx 4 114

c3 absx→avg 4 114

c4 avg→log 4 114

c5 log→lvl 4 114

c6 cf→absy 4 114

c7 absy→cu 4 114

c8 norm→fir 3 66

c9 cu→fir 17 162

c10 fir→cf 4 114

c11 cf→rad 2 66

Table 2. Per communication channel the token

size and bounded latency.

of tasks and worst-case communication latency is mod-

eled is 51940ns. In this case the estimated throughput is

fs = 8/(51940 · 10−9) = 154KHz.

Six tasks are executed on the proc tile and three tasks

are executed on the cordic tile. Therefore, we derive a fixed

order execution for these tasks. We choose the ordering in

such a way that the processor utilization is optimized. The

fixed order of execution for the tasks executed on the pro-

cessor is cu, load, avg, lvl, cf, and norm. Dependency edges

are added in the CSDF graph to model this fixed order of

execution, as shown in Figure 6. The preamble to this fixed

order of execution is the execution of tasks load, absx, avg,

log, lvl, and norm during the initialization. The preamble is

modeled by a different placement of the initial tokens in the

CSDF graph. Or in other words, the tasks are executed once

in the initialization such that the initial token on the channel

load

x

avg
x

cu

fir

cf

radabsy

norm

y
y

lvl

log

absx

adc

c6c7 c11

c8

c9 c10c5c4c2

c1

c3

Figure 6. CSDF model in which WCET of

tasks, communication latency and fixed or-

der execution of tasks is modeled

cu→avg in Figure 5 is removed and there are initial tokens

generated on the channels avg→cu, lvl→cu, norm→cu, and

norm→fir in Figure 6.

The MCM in the CSDF model in which the WCET of

tasks, communication latency and fixed order execution of

tasks is modeled, which is shown in Figure 6, is 54616ns.

Therefore, the throughput estimate is fs = 8/(54616 ·

10−9) = 146.4KHz. This throughput is the guaranteed

minimum throughput of the channel equalizer, because the

CSDF model is conservative compared to the implementa-

tion.

6 Experiments

In this section we measure the throughput and analyze

the impact of the three causes that are introduced in Sec-

tion 2. Furthermore, we measure the difference between the

computed and measured latency.

From the analysis in Section 5 we know that the MCM is

54616ns, therefore, the Cycle Mean (CM) in the implemen-

tation is lower than or equal to 54616ns. During one MCM

period 8 samples are read from adc and 8 samples are writ-

ten to rad. Let α(i) and β(i) be the arrival time of token i at

the input of rad, respectively, in the implementation and in

the CSDF model. The CM in the implementation is defined

as CM = α(i) − α(i − 8). With cycle accurate simulation

we measure a maximum CM of 49080ns, an average CM

of 48609ns and a minimum CM of 48366ns, after assur-

ing that the tasks adc and rad not determine the throughput.

The difference between the measured maximum CM and

the computed MCM is 54616 − 49080 = 5536ns, which

is 10.1% compared to the MCM. We don’t know the ac-

5

250500 254000 257500 t [ns]

proc

cordic

fir

cu load avg lvl cf norm

absx log absy

fir

cunorm

Figure 7. A trace computed from the CSDF

model

219300 222800 226300 t [ns]

cu load avg lvl cf norm cu

absx log absy

fir

proc

cordic

fir

stall

norm

Figure 8. A trace measured with the cycle ac-

curate simulator

tual minimum throughput of the channel equalizer, but it is

sure that the difference between the guaranteed minimum

throughput and the actual minimum throughput is less than

10.1%.

In Section 2 we introduced three causes for the difference

between the computed and measured throughput, namely:

variation in the execution time, dependencies between tasks

and different degrees of contention. A trace of the schedule

gives a good impression about the impact of these causes.

A 10µs trace from the proc, cordic and fir tile is shown in

Figure 7 and Figure 8 for, respectively, the CSDF model

and implementation. All tasks executed on the processor

are part of the critical cycle, therefore, variation in these ex-

ecution times is effecting the throughput linearly with the

slope one. The sum of these computed WCETs is 53520ns

in one MCM period. The sum of these measured execu-

tion times is 48700ns in one CM period. The difference

between the sum of computed WCETs and measured exe-

cution times is 53520 − 48700 = 4820ns, which is 8.8%
of the MCM period. For our case study this cause has the

biggest impact on the difference between the computed and

measured throughput.

The second cause is the variation in the moment when a

token is produced or consumed. The processor, in our case,

is stalled when it waits for the data coming from the cordic

tile. The processor stall time, due to this dependency, is at

most 994ns in one MCM period. This 944ns is 1.8% of

0

500

1000

1500

2000

2500

3000

1 20 39 58 77 96 115 134 i

r-
s

 [
ns

]

Figure 9. Difference between the arrival time

of tokens in the dataflow and cycle accurate

simulator

the MCM, therefore, this cause has a small impact on the

throughput.

The third cause is the different degree of contention in

the network. The CSDF model from Section 5 takes worst-

case contention in the network into account. We can build

a similar CSDF model for the situation that there is no con-

tention in the network. The difference in MCM for these

two models would be 544ns, which is 1% of the MCM from

our original CSDF model. Therefore, different degree of

contention in the network has a very small impact on the

throughput.

Finally, we compare the end-to-end latency between our

CSDF model and implementation. For this comparison we

make the period of the strict periodic AD converter equal

to 55000/8 = 6875ns, such that the AD converter deter-

mines the throughput. We start the channel equalizer at the

absolute time t0, to make sure that the system is correctly

initialized. The departure time of the token i at the AD con-

verter in the cycle accurate simulation and the adc actor in

the CSDF model is ti = t0 + (i + 1) ∗ 6875. The measured

arrival time of token i at the input of the FM radio receiver

in the cycle accurate simulator is approximately:

α(i) = t0 + (i + 1) ∗ 6875 + r[ns] (2)

With r the cyclo static variable 865, 1980, 865, 860, 855,

860, 865, 1790. The computed conservative arrival time of

token i at the rad actor is:

β(i) = t0 + (i + 1) ∗ 6875 + s[ns] (3)

With s the cyclo static variable 2005, 4140, 3575, 3010,

2445, 1870, 1305, 2570. We define the latency of token i as

the time between the departure from adc and the arrival at

rad. The latency in the cycle accurate simulator is α(i)− ti
and the latency computed from the CSDF model is β(i)−ti.
The difference between the computed and measured latency

6

is:

(α(i) − ti) − (β(i) − ti) = α(i) − β(i) = r − s (4)

With r− s the cyclo static variable 1140, 2160, 2710, 2145,

1580, 1005, 440, 780. The value r − s is measured over

time and plotted in Figure 6. The departure of tokens from

the AD converter is equal to the departure of tokens from

the adc actor and r − s ≥ 0, therefore, the CSDF model is

conservative.

7 Conclusion

In this paper we analyze the causes for the difference

between the throughput computed with a CSDF model and

the throughput measured with a cycle accurate simulator of

our multiprocessor system. This difference is quantified for

our channel equalizer.

We described three causes for the deviation. First, the

execution time of a CSDF actor is a compile time estimate

of the WCET of a task. The difference between this es-

timated WCET and the measured execution time is 8.8%,

which effects the throughput linearly with slope one. Sec-

ond, the actor consumes the input and produces the output

at the end of its execution, whereas, in the implementation

this is done earlier. This leads to a throughput difference

of at most 1.8% for our channel equalizer. As far as this

contributor concerned, it is a trade-off between the number

of actors and the accuracy in modeling the dependencies.

Third, the CSDF model assumes the maximum degree of

contention at shared resources, which depends on the ar-

bitration. An arbiter need to support derivation of a tight

conservative estimate of the response time. In our multipro-

cessor the network is a shared resource. Contention leads

to a difference in throughput of at most 1%, for our channel

equalizer.

References

[1] G. Bilsen, M. Engels, R. Lauwereins, and J. Peper-

straete. Cyclo-static dataflow. IEEE Transactions on

signal processing, 44(2):397–408, February 1996.

[2] F. Commoner, A. Holt, S. Even, and A. Pnueli.

Marked directed graphs. Journal of Computer and

System Sciences, 1971.

[3] A. Donlin. Transaction level modeling: flows and use

models. In CODES+ISSS ’04: Proceedings of the 2nd

IEEE/ACM/IFIP international conference on Hard-

ware/software codesign and system synthesis, pages

75–80, New York, NY, USA, 2004. ACM Press.

[4] M. Geilen et al. Object-oriented modelling and speci-

fication using she. Journal of Computer Languages,

special issue for VFM’99, 27(1-3), April-October

2001.

[5] A. Ghamarian et al. Throughput analysis of syn-

chronous data flow graphs. In Sixth International Con-

ference on Application of Concurrency to System De-

sign (ACSD), 2006.

[6] K. Goossens, J. Dielissen, and A. Rădulescu. The

Æthereal network on chip: Concepts, architectures,

and implementations. IEEE Design and Test of Com-

puters, 22(5):21–31, Sept-Oct 2005.

[7] E. Lee and D. Messerschmitt. Synchronous data flow.

In Proceedings of the IEEE, 1987.

[8] A. Moonen, M. Bekooij, and J. van Meerbergen. Tim-

ing analysis model for network based multiprocessor

systems. In ProRISC, 15th annual Workshop of Cir-

cuits, System and Signal Processing, pages 91 – 99,

Veldhoven, The Netherlands, November 2004.

[9] A. Moonen, R. v. d. Berg, M. Bekooij, H. Bhullar, and

J. v. Meerbergen. A multi-core architecture for in-car

digital entertainment. In In proceedings of the GSPx

Conference, Santa Clara, California USA, October 24

- 27 2005.

[10] T. Parks, J. Pino, and E. Lee. A comparison of syn-

chronous and cycle-static dataflow. 29th Asilomar

Conference on Signals, Systems and Computers, 1995.

[11] S. Sriram and S. Bhattacharyya. Embedded Multi-

processors: Scheduling and Synchronization. Marcel

Dekker, Inc, 2000.

[12] L. Thiele, S. Chakraborty, and M. Naedele. Real-time

calculus for scheduling hard real-time systems. In

Circuits and Systems, 2000. Proceedings. ISCAS 2000

Geneva, May 2000.

7

