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Evaluation of the TRMM 
product for monitoring drought 
over Paraíba State, northeastern 
Brazil: a trend analysis
Reginaldo Moura Brasil Neto 1, Celso Augusto Guimarães Santos 1*, 
Jorge Flávio Casé Braga da Costa Silva 2, Richarde Marques da Silva 2, 
Carlos Antonio Costa dos Santos 3 & Manoranjan Mishra 4

Droughts are complex natural phenomena that influence society’s development in different aspects; 
therefore, monitoring their behavior and future trends is a useful task to assist the management of 
natural resources. In addition, the use of satellite-estimated rainfall data emerges as a promising 
tool to monitor these phenomena in large spatial domains. The Tropical Rainfall Measuring Mission 
(TRMM) products have been validated in several studies and stand out among the available products. 
Therefore, this work seeks to evaluate TRMM-estimated rainfall data’s performance for monitoring 
the behavior and spatiotemporal trends of meteorological droughts over Paraíba State, based on 
the standardized precipitation index (SPI) from 1998 to 2017. Then, 78 rain gauge-measured and 
187 TRMM-estimated rainfall time series were used, and trends of drought behavior, duration, and 
severity at eight time scales were evaluated using the Mann–Kendall and Sen tests. The results show 
that the TRMM-estimated rainfall data accurately captured the pattern of recent extreme rainfall 
events that occurred over Paraíba State. Drought events tend to be drier, longer-lasting, and more 
severe in most of the state. The greatest inconsistencies between the results obtained from rain 
gauge-measured and TRMM-estimated rainfall data are concentrated in the area closest to the coast. 
Furthermore, long-term drought trends are more pronounced than short-term drought, and the 
TRMM-estimated rainfall data correctly identified this pattern. Thus, TRMM-estimated rainfall data 
are a valuable source of data for identifying drought behavior and trends over much of the region.

Droughts, climate variability, changes in land use and land cover, and the lack of formal policies on water 
resources are the main factors a�ecting water availability in northeastern Brazil (NEB)1. Meteorological drought 
is a natural phenomenon caused by the absence of rainfall over a certain period and can damage the development 
of society’s di�erent  activities2. Currently, problems resulting from droughts and water scarcity are increasingly 
recurrent in the daily lives of a large part of the population living in the Brazilian semiarid region (BSAR) and 
a�ect the social and economic development of that  region3–5. Among the causes that contribute to this situation, 
the rainfall irregularity and the water storage problem in large, medium, and small cities in the BSAR stand out. 
Furthermore, the high rates of evaporation and the increased demand for water by the population are also other 
factors that contribute to this scenario.

Monitoring meteorological droughts and their e�ects is not an easy task. It is necessary to have a monitor-
ing network that accurately captures the spatiotemporal rainfall variability, which is a challenge, especially in 
the arid and semiarid  regions6. In addition to the rainfall variability, it should be noted that although longer 
rainfall time series are usually obtained from rain  gauges7, in tropical and developing regions, the absence of 
�nancial and technical resources results in networks of poorly distributed rain gauges or in failures in the time 
series hindering the monitoring of these natural disasters. �us, orbital remote sensing-estimated rainfall data 
emerge as alternative data sources for monitoring rainfall globally with high spatiotemporal  resolution8. With 
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the evolution of technology, these estimates have been used to monitor natural disasters and assist in managing 
water resources in large areas and areas with a lack of meteorological  data9.

In this context, the Tropical Rainfall Measuring Mission (TRMM) rainfall estimated data had been widely 
evaluated and used satisfactorily to monitor drought patterns in di�erent  regions10–18. �e use of TRMM in 
the context of drought assessment based on multiple time scales is of signi�cant interest due to the possibility 
for monitoring this phenomenon and its di�erent impacts. Some  studies14,16 indicated that TRMM-estimated 
data perform better in identifying short-term drought, whereas other studies showed that the performance is 
better for long-term  droughts13,15. In some cases, there is not a major di�erence in the performance of TRMM-
estimated data to monitor short-, medium- and long-term drought  patterns11,17. �ese di�erent results are due 
to the physical characteristics of the regions, the length of the time series used and the number of rain gauges 
used to calibrate the TRMM estimates.

Combined with the ability to characterize these natural disasters on a large spatial scale and a re�ned temporal 
scale, the analysis of drought trends is another theme that has attracted the attention of several studies. �is is 
closely related to the fact that the future impacts of climate change for semiarid regions can cause the intensi�ca-
tion and prolongation of droughts and generate serious problems such as water scarcity and water supply col-
lapse. In addition, droughts can create socio-environmental impacts such as deserti�cation, reduced agricultural 
potential, and rural exodus to urban  areas19. For this reason, assessing drought trends and their characteristics 
based on di�erent statistical methods, such as Mann–Kendall and Sen non-parametric tests, is a practice that 
has contributed actively to improve the e�cient management of available resources in di�erent  regions20–28.

Among the indices commonly used to monitor droughts and their e�ects, the standardized precipitation 
index (SPI)29 is considered one of the most widespread in the world. �e SPI is a standardized index that allows 
the evaluation of droughts at various time scales and severity categories, enabling comparisons among di�erent 
regions, requiring only rainfall data to be computed, facilitating the SPI application compared to other more 
complex indices. Each drought index has di�erent characteristics, which are suitable for speci�c  environments30, 
stimulating several comparisons of di�erent indices in the literature in di�erent climatic regions of the  planet31–33.

It is important to expose an extremely high limitation of long-term and high-quality hydrometeorological 
time series in arid and semiarid regions worldwide, which is even more relevant considering such regions in 
developing countries, which is the case of Paraíba State. For this reason, evaluate the drought pattern using 
indices that involve more variables, as is the case of  SPEI34,35, is di�cult. On the other hand, the use of SPI is a 
crucial tool to assess the geospatial distribution of droughts over a region, and this index has satisfactorily been 
used to monitor droughts at multiple time scales in NEB and Paraíba  State5,18,36–39.

Paraíba State is formed by four physiographic mesoregions distributed in di�erent biomes. Mata Paraibana is 
located in the Atlantic Forest biome, the Borborema and Sertão Paraibano mesoregions in the Caatinga biome, 
and Agreste Paraibano is a transition  zone40. �ese mesoregions have di�erent climatic characteristics, and 
understanding droughts’ behavior in areas with contrasting characteristics is of great relevance for managing 
the water resources in Paraíba  State41. Furthermore, such mesoregions have climatic and relief patterns that 
in�uence vegetation, soil types, rainfall variability, and water  availability42.

In Paraíba State, Brasil Neto et al.18 showed that TRMM is more accurate in identifying the pattern of medium-
term droughts, but the results vary according to the performance index used. It is worth highlighting that 
except for the study proposed by Brasil Neto et al.18, we are not aware of any other research that evaluated the 
performance of TRMM product in the context of multitemporal monitoring of meteorological droughts or in 
comparing drought trends based on satellite-estimated and rain gauge-measured rainfall data. However, the 
environmental impacts of frequent drought episodes in Brazil have resulted in drought-related  studies43, and 
interest in regional assessments of droughts is emerging as part of novel management initiatives to build drought 
 resilience44. Finally, this study aims to assess the TRMM-estimated rainfall data’s performance in monitoring 
meteorological droughts’ behavior and trends at multiple time scales based on the SPI over Paraíba State for the 
past 20 years (1998–2017).

Materials and methods
Study area. �e study area is Paraíba State, limited by latitudes 5.875° S and 8.375° S, and longitudes 38.875° 
W and 34.625° W. Paraíba State has an area of 56,469.78  km2 and is bordered by Ceará State (to the west), Rio 
Grande do Norte State (to the north), the Atlantic Ocean (to the east), and Pernambuco State (to the south). Par-
aíba State has a population of approximately four million inhabitants distributed in 223 municipalities; the state 
is divided into the aforementioned four  mesoregions45 (Fig. 1). According to the physical characteristics, Paraíba 
State is formed by two biomes: Atlantic Forest and Caatinga. �e Atlantic Forest biome covers not only the ridge 
but the coastal plains. �is biome is well de�ned in Paraíba State and covers an area of 6578  km2. �is area has 
climates with high air relative humidity and abundant and well-distributed rainfall throughout the year. �ese 
features support predominantly forested vegetation, known as Atlantic Forest, which shelters a rich and threat-
ened endemic biological  diversity46. �e Caatinga biome includes two markedly di�erent climatic sectors. �e 
rainfall seasonality and the controlling factors, such as drought frequency and length, are distinct between these 
two  areas47. Details on the characteristics of the region can be obtained from Santos et al.42 and Santos et al.39.

Rainfall data. Rain gauge-measured rainfall data. A total of 251 daily rainfall time series were obtained 
from rain gauges distributed throughout the study area, from 1998 to 2017, available from the Water Manage-
ment Executive Agency (AESA). Daily data were accumulated at a monthly level to calculate the SPI and to 
develop the drought analysis. However, time series with missing data were excluded from the following analyses, 
resulting in 78 complete time series to be used in this study. �e accuracy of the TRMM-estimated rainfall data 
in capturing the behavior of droughts was assessed, using only complete time series to avoid �lling the gaps, 
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which could distort the results and expose the situation of the region regarding the availability of data. Although 
we have known that it is better to use the longest time series as possible since the results must be more reliable, 
extend the period of our study to 30 years will imply in decrease the number of rain gauge time series used as 
reference, which is not a good solution, because we are using only complete time series. More details regarding 
the qualitative analysis of the rainfall data available in the region can be found in Brasil Neto et al.18.

Satellite-estimated rainfall data. To carry out drought monitoring, complete and equally distributed TRMM-
estimated rainfall data over Paraíba State were  used48. TRMM was a research satellite designed to monitor rainfall 
within the  tropics49. Among the available products, the TRMM Multi-satellite Precipitation Analysis (TMPA) 
(https ://giova nni.gsfc.nasa.gov/giova nni/) is the one that combines remote sensing estimated precipitation data 
with the rain gauge and radar precipitation observations when these observations are  available50. TMPA prod-
ucts are capable of covering extensive space domains, i.e., between latitudes 50° N and 50° S and longitudes 180° 
W and 180° E. �e data have a re�ned spatial resolution of 0.25° × 0.25°, allowing rainfall monitoring in various 
areas of the globe.

In Paraíba State, studies used the TMPA estimates, and the results indicate that these estimates are quite 
viable data sources to capture the rainfall patterns and meteorological  droughts18,39,42,51. Daily data from TMPA 
3B42v7 were used in this work, and the study area was divided into 187 grids (11 × 17). Figure 2 shows the spatial 
distribution of the TRMM grid and the rain gauges used in this study. Daily rainfall time series were accumulated 
monthly from January 1998 to December 2017, obtaining slightly less than 45,000 data of accumulated monthly 
totals (187 TRMM series × 20 years × 12 months).

Standardized precipitation index and run theory. �e SPI calculation was based on the adequacy 
of the rainfall data to a gamma distribution of α and β parameters, and eight SPI values were used to monitor 
droughts at multiple time scales: SPI-1, SPI-3 and SPI-6 for short-term droughts; SPI-9 and SPI-12 for medium-
term droughts; and SPI-18, SPI-24 and SPI-48 for long-term droughts. �e period used to compute the SPI val-
ues was from January 1998 to December 2017. All SPI values for each time scale and available series, i.e., 78 rain 
gauge-measured time series provided by AESA and 187 TRMM-estimated rainfall time series, were calculated. 
In addition, four severity categories were used to classify dry and wet events. �e dry events are those whose SPI 
values are less than or equal to zero, and the wet events are those with SPI greater than zero.

The categories related to the severity of events vary according to the SPI value, such as mild events 
(0.0 <|SPI|≤ 1.0), moderate events (1.0 <|SPI|≤ 1.5), severe events (1.5 <|SPI|≤ 2.0) and extreme events (2.0 <|SPI|). 
More details regarding the calculation of the SPI can be found in Santos et al.52. Furthermore, it was admitted 
that a drought event is characterized by the period in which exists continuity of dry events (SPI ≤ 0) according 

Figure 1.  Location of mesoregions in Paraíba State, northeastern Brazil.

https://giovanni.gsfc.nasa.gov/giovanni/
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to the premise of Run  �eory53. Based on this de�nition, three distinct drought time series were de�ned and 
used to assess the drought behavior, duration and severity, and trends at di�erent time scales. Figure 3 depicts 
an example of three distinct drought events and the time series evaluated in this research.

�e drought duration (DD) is the number of months between the start and end period of the drought events, 
the drought severity (DS) is the cumulative SPI values for the event, and drough intensity (DI) is the ratio between 
drought severity and duration. From Fig. 3, three distinct drought events stand out with durations of �ve, three 
and seven months, and it can be seen that the three events di�er in terms of severity. �ree types of time series 
were evaluated: (a) the behavior time series, composed of SPI values, (b) duration time series (DDS), consisting 
of the duration values of each drought event, and (c) the severity time series (DSS), consisting of the severity 
values of each event. Based on Fig. 3, the drought behavior time series is composed of 50 values that usually range 
from − 3 to 3, the DDS time series is composed of three duration values (i.e., 5, 3 and 7 months), and the DSS 
time series is composed by three severity values (i.e., 5.31, 2.53 and 3.89). �erefore, all drought metrics (DD, 
DS, DI) and drought time series (behavior, DDS, DSS) were computed based on these time series (8 scales × 265 
times series). Moreover, our results were interpolated to improve the visualization of the maps, but we assessed 
all available values (time series) for each database (point and grid).

Trend analysis. Analyses were developed to assess trends in short-, medium- and long-term drought time 
series and determine the respective magnitudes. �us, three time series that re�ect important drought charac-
teristics were evaluated, and two non-parametric tests were chosen to carry out the trend analysis. �e trends in 
the behavior (SPI), duration (DDS) and severity (DSS) time series (Fig. 3) were evaluated based on the Mann–
Kendall54,55 and  Sen56 tests. �e Mann–Kendall test was used to identify a statistically signi�cant trend, and the 
Sen test was used to estimate the linear magnitude of the identi�ed trends.

�e variability of the behavior time series calculated from the Mann–Kendall and Sen tests’ application was 
evaluated monthly. In contrast, for the duration and severity time series, the variation was assessed based on 
events. For the behavior series, negative trends characterize the worst scenario and indicate that SPI values tend 
to be more negatively accentuated over the months. Still, for drought duration and severity time series, positive 
trends point to the worst scenario and indicate that drought events tend to be more lasting and severe for each 
event.

In this study, three levels of α signi�cance were used (i.e., 0.01, 0.05 and 0.10), and analyses at single-gauge 
for each mesoregion were performed considering rain gauge-measured and TRMM-estimated rainfall data. In 

Figure 2.  Spatial distribution of the TRMM grid and the rain gauges used over Paraíba State.
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the mesoregional levels, �iessen-method polygons of the rain gauge-measured and TRMM-estimated data were 
computed, and the percentage of area that presented signi�cant trend was calculated. We highlight that the exist-
ence of autocorrelation between time series should be considered, which is why some researchers are concerned 
with removing the e�ects of autocorrelation between time series, as is done by the modi�ed Mann–Kendall test 
(MMK). On the other hand, some studies do not consider such an autocorrelation or indicate that the results 
obtained using the MK or MMK tests are not so  di�erent57,58. Due to the similarity of Paraíba State with those 
regions, we did not use the MMK and assumed that this might not a�ect the results. More than 6,000 trend 
analyses were developed (265 rainfall time series × 8 SPI indices × 3 time series), and more details regarding the 
Mann–Kendall and Sen tests can be found in Santos et al.39 and Santos et al.59.

Results and discussion
Evaluation of rainfall and drought over Paraíba State. Initially, the mean rainfall values over Paraíba 
State were obtained by taking �iessen-weighted averages of the rain gauge-measured and TRMM-estimated 
rainfall data from 1998 to 2017 (Fig. 4a). �e results show that the pattern of the rainfall time series is remark-
ably similar over the analyzed period. �e metrics indicate the TRMM-estimated rainfall data’s satisfactory 
performance to capture the regional rainfall regime (R = 0.98), which means an almost perfect linear associa-
tion between these time series. From the relative bias (RB), which is the ratio between the di�erence between 
TRMM-estimated and rain gauge-measured rainfall data by the rain gauge-measured rainfall data, there is evi-
dence that the TRMM-estimated rainfall data slightly overestimated the rain gauge-measured values (RB = 8%), 
which can be considered good, as Paraíba State is an extensive longitudinal region with di�erent climates. �e 
root mean squared error (RMSE) values were also low, which shows the accuracy of the TRMM-estimated 
rainfall data to monitor the regional rainfall behavior, as found by Pereira et al.60, Melo et al.61 and Soares et al.51.

�ese results can be related to many factors, such as the number of rain gauges, the precipitation pattern 
and the presence of circulation mechanisms over the region, as stated by McCollum et al.62. �e number of rain 
gauges and their spatial distribution over Paraíba State must have a�ected the precision of the results, since there 
are regions that present very few rain gauges, making the comparison between the rain gauge-measured and 
TRMM-estimated rainfall data a challenging task. Moreover, the contrast between the precipitation pattern in 
inland and coastal zones and the existence of circulation mechanisms related to rainfall anomalies over NEB can 
contribute to the discrepancies between the datasets because of the humidity  gradient63,64. A detailed analysis 
of the TRMM-estimated rainfall data’s accuracy for monitoring droughts over Paraíba State can be found  in18.

TRMM-estimated rainfall data precisely identi�ed the rainy (e.g., 2004, 2008 and 2009) and dry (e.g., 1998 and 
2012) years when compared to the mean annual rainfall levels within the region (1998–2017). However, despite 
the similarity between the time series, some overestimation and underestimation of the TRMM-estimated rainfall 

Figure 3.  De�nition of (a) drought events, and illustration of the time series of drought (b) behavior, (c) 
duration and (d) severity.
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data are highlighted. In most cases, overestimations occurred in the rainy months, when the monthly totals of 
rainfall measured in the rain gauges were greater than 150 mm. On the other hand, TRMM-estimated rainfall 
data were underestimated when monthly rainfall was less than 50 mm (Fig. 4a). �is result demonstrates the 
sensor’s inaccuracy when estimating the magnitude of precipitation. �is may be related to the spatial scale of the 
TRMM-estimated rainfall data or due to the variability of rainfall within the region, because we are comparing 
single-gauge level results with the results at a grid level.

For instance, Pombo and de  Oliveira65 compared the estimates of annual maximum daily precipitation from 
TRMM 3B42 to in-situ observation data in Angola, and the results show a slight underestimation. Prakash et al.66 
reported limitations in estimating heavy rainfall over northern India and southeast peninsular India. Fang et al.67 
showed that the satellite products capture the spatial patterns in extreme precipitation with relative accuracy, but 
less accurately estimate rainfall rates and volumes. �e di�erence in accuracy at monthly scale may be due to 

Figure 4.  (a) Hyetograph and two-dimensional kernel density estimate plot (Inset) of monthly mean rainfall 
over Paraíba State using rain gauge-measured and TRMM-estimated rainfall data, and behavior of SPI-1 to SPI-
48 based on (b) rain gauge-measured and (c) TRMM-estimated rainfall data (1998–2017).
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the deviations caused by complex topography, rainfall rate, uncertainty of the rain gauges and their low density, 
which cannot accurately re�ect the rainfall patterns within the  areas68,69.

�en, the SPI time series at 48 time scales (from SPI-1 to SPI-48) were calculated based on rain gauge-
measured (Fig. 4b) and TRMM-estimated (Fig. 4c) rainfall data from 1998 to 2017. �e results show similarity 
in the obtained drought pattern, regardless of the temporal scale. It is possible to observe the sensor’s accuracy 
in capturing the drought regime over Paraíba State was satisfactory. In addition, from the SPI application, it is 
possible to identify more precisely the dry and wet periods and how wet or dry the events are over the period. It 
is worth noting that there is a pattern of similarity between the results, which shows well-de�ned vertical lines 
demarcating the beginning of the wet (e.g., 2004) and dry (e.g., 2012) periods. From that point, there is a change 
in the SPI behavior, and these values tend to be positive or negative in a diagonally downward direction, as found 
by Tan et al.16 and Yang et al.70.

However, there are some divergences between the SPI values calculated based on these time series. From 1998 
to 2001, SPI values calculated based on satellite-estimated rainfall data  (SPITRMM) overestimated those obtained 
from rain gauge-measured rainfall data  (SPIgauge). In other words, this means that the TRMM-estimated rainfall 
data estimated wetter events than rain gauge-measured rainfall data. �e results show that a�er 2008,  SPITRMM 
values were underestimated in relation to  SPIgauge values, regardless of the time scale. A�er 2012, which marks 
the beginning of one of the most severe drought events of recent times, there is an increase in the number 
of SPITRMM less than SPIgauge values (underestimation), especially when evaluating large time scales. �e most 
considerable inconsistency between the two time series occurred in the case of short-term droughts. �is may 
be linked to the fact that, for these time scales, few months were considered for computing the accumulated 
precipitation, unlike the SPI-48. Despite the occasional divergences, the results are valuable in the process of 
characterizing droughts, and the  SPITRMM values captured drought events at multiple time scales over the study 
area during the 20 years studied.

Figure 5 shows the time evolution of the eight  SPIgauge and  SPITRMM time series and the percentage of occur-
rence of each type of wet and dry event over the period. From Fig. 5, it can be seen that for short-term droughts, 
the SPI values o�en vary between positive and negative over time, i.e., there is a discontinuity between dry and 
wet events, as found by Santos et al.52. Although the SPI values at smaller time scales are sensitive to the occur-
rence of extreme rainfall events, the  SPITRMM and  SPIgauge values were still remarkably similar to each other. 
Regarding the frequency of events, the results indicate greater similarity between the percentages of mild dry 
events. For SPI-1, about 55% of the events were dry, but for SPI-3 and SPI-6, this percentage was slightly lower. 
�e results of  SPITRMM sometimes overestimated  SPIgauge results (e.g., between 1998 and 2001), and sometimes 
underestimated them (e.g., from 2008). Among the most notable errors on the part of TRMM-estimated rainfall 
data, the overestimation of moderate dry events by TRMM-estimated rainfall data stands out when evaluating 
the SPI-3.

Unlike the behavior of short-term droughts, it is noted that there is a temporal continuity of dry and wet 
events for medium-term droughts, which facilitates the identi�cation of wet and dry periods, as de�ned by Wable 
et al.71. From the results of SPI-9 and SPI-12, it can be noted that 2004, 2008 and 2009 were the wettest years, 
while 1998, 1999 and 2012 were the driest years in the entire period. Despite the similarity between the  SPIgauge 
and  SPITRMM series, it is noted that there are still divergences on the part of  SPITRMM, which overestimated the 
values in 2002. From the percentage of occurrence of the events, the similarity in the pattern of the results was 
more evident than in the case of short-term droughts.

�e percentage of dry events increased, mainly in the case of  SPIgauge results. For SPI-12, the total percent-
age of dry events was 56%, based on  SPIgauge and  SPITRMM, re�ecting an increase of 3% compared to SPI-3 and 
SPI-6. �e mild dry events were the most frequent in the analyzed period, a result analogous to that obtained 
for short-term droughts. On the other hand, almost none extreme wet events were registered when evaluating 
medium-term droughts, but moderate wet events were more recurrent. For SPI-9, the frequencies of severe and 
mild wet events were underestimated by  SPITRMM, while moderate wet events were overestimated. In the case of 
SPI-12, the percentage of severe wet events based on  SPITRMM was underestimated, as well as for SPI-9 results.

Negative or positive SPI values tend to be even more continuous for long-term droughts than for short- and 
medium-term droughts. On the other hand, although long-term droughts’ behavior has been identi�ed, the 
results for  SPITRMM have great variability. Until 2003, there was an overestimation of  SPIgauge for SPI-18 and SPI-
24, but a�er 2012, there was an underestimation of the SPI-18, SPI-24, and SPI-48 values. In addition, compared 
to the results of short- and medium-term droughts, there is a change in the frequency of the event types. For 
SPI-18, SPI-24, and SPI-48, mild wet events were the most frequent events over the 20 years, and the frequency 
of dry events (SPI ≤ 0) has dropped considerably. For SPI-48, the percentage of dry events was 39% and 35% 
based on  SPIgauge and  SPITRMM, respectively, lower than that obtained for short- and medium-term droughts. 
�e frequency of extreme and severe dry events, on the other hand, increased, and this result corroborates the 
pattern obtained in Santos et al.39, which also indicates that when evaluating larger SPI scales, the frequency of 
dry events decreases, but those events become more severe.

Analysis of drought behavior trends. Figure 6 shows the spatial distribution of the Sen’s slope of the 
drought behavior time series and the percentage of area with a signi�cant trend based on di�erent con�dence 
levels over Paraíba State at various time scales. From this �gure, it is noted that there is considerable variability 
among the results when analyzing the rainfall data and SPI time scales. �e comparison between the  SPIgauge 
and  SPITRMM results shows that Sen’s slope values increase as the time scale increases. �e same happens when 
analyzing the percentage of areas with a signi�cant trend. In other words, in the case of long-term droughts, the 
behavior time series has a steeper slope, with signi�cant trends with a high degree regardless of the dataset used. 
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�is result is a pattern concerning the trend analysis of the drought behavior time series, as found in  Asia23 and 
 Oceania72.

When comparing the results obtained from the rain gauge-measured and TRMM-estimated rainfall data, 
the spatial variability related to both Sen’s slope and signi�cance level is highlighted. �ere are areas where the 
results of the Mann–Kendall and Sen tests are consistent between both datasets, e.g., in Sertão and Borborema 
mesoregions when evaluating SPI-1, where the series of rain gauge-measured and TRMM-estimated rainfall data 
presented mildly negative Sen’s slopes and showed no signi�cant trends. In contrast, in other regions (e.g., the 
coastal area of Paraíba State), the results were opposite when evaluating the SPI-48, which presented accentuated 
positive and negative Sen’s slopes based on  SPIgauge and  SPITRMM, respectively. Brasil Neto et al.18 found that the 
Pearson correlation coe�cient between rain gauge-measured and TRMM-estimated rainfall data was negative 

Figure 5.  SPIgauge and  SPITRMM time series and frequency of the types of wet and dry events at multiple time 
scales based on the mean rainfall time series over Paraíba State.
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in the coastal zones and positive in inland zones regarding the SPI-48 analysis, which supports the �ndings of 
the present study. �e strong negative correlation between the datasets means that the trends move in opposite 
directions. Proximity to the coast, highest rainfall levels, the spatial distribution of the rain gauges, and the vari-
ability of the atmospheric mechanism, in the case of Mata Paraibana, were factors linked to the reduction of 
TRMM-estimated data  accuracy38,41.

When performing an analysis of short-term droughts, the spatial variability of Sen’s slope over Paraíba State 
is highlighted. �e results of  SPIgauge show that in the border region between Mata Paraibana and Agreste Parai-
bano, the trend of the time series is positive and signi�cant, especially for the case of SPI-6. On the other hand, 
in the western portion of Agreste Paraibano and Borborema, the time series trend is negative. When analyzing 

Figure 6.  Percentage of the area with the signi�cant trend and spatial distribution of the Sen’s slope of the 
drought behavior time series over Paraíba State (1998–2017).
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the results of  SPITRMM, some inconsistencies can be highlighted. For SPI-1, most time series showed a trend with 
considerable signi�cance, especially in Agreste Paraibano and Mata Paraibana. Furthermore, unlike the  SPIgauge 
results, the trends were predominantly negative in all mesoregions, highlighting the inconsistency between these 
results, mainly in regions close to the coast. It is worth noting that this inconsistency was as much to Sen’s slope 
as to Mann–Kendall’s statistical signi�cance. However, Borborema showed negative trends using both datasets.

For medium-term droughts, Sen’s slopes are higher in the modulus than short-term droughts, and there 
are many series with a signi�cant trend, regardless of the dataset. Based on  SPIgauge, there is a considerable 
increase in the area with a signi�cant trend (40% for SPI-9 and 50% for SPI-12) compared to those found for 
the SPI-1, which was 5%. Based on  SPITRMM, these percentage values were greater than 90% in SPI-9, and 100% 
when evaluating SPI-12, which reveals a high overestimation in the percentage of area with a signi�cant trend. 
However, the spatial distribution of Sen’s slope is the same as that of short-term droughts, but these values are 
more accentuated. �e results of  SPIgauge show that the border region between Agreste Paraibano and Borborema 
presents the greatest variation in trend slopes since the eastern portion has a positive trend, whereas the western 
portion presents a negative trend.

Although there is no signi�cant change in the Sen’s slope in the Mata Paraibana, it is noteworthy that in the 
Sertão Paraibano, the trend slopes were more pronounced than the short-term droughts, and in most cases, the 
trends were negative. �e results of  SPITRMM show that the entire Paraíba State has negative trends, with emphasis 
on the Agreste Paraibano, Borborema and part of Mata Paraibana. For long-term droughts, the results are more 
extreme when dealing with the percentage of area with a signi�cant trend and the Sen’s slopes. �e  SPIgauge results 
show that the area with a negative trend at α ≤ 0.01 level was greater than 45%, which is higher than any other 
time scale. Furthermore, Sen’s slope values were higher than those of the other time scales, especially in the case 
of SPI-48; and the percentages of the area with the signi�cant trend, obtained in this case, exceed three times 
the percentage in the case of short-term droughts.

�e positive trends were concentrated in Mata Paraibana, in eastern Agreste Paraibano, and western Bor-
borema. Negative values are in southwestern Sertão Paraibano, on the border between Agreste and Borborema 
and in Agreste’s central portion. It can be highlighted that the zone of greatest inconsistency between the results 
of  SPIgauge and  SPITRMM occurred in the region close to the coast and that this is intensi�ed when assessing the 
behavior of long-term droughts. Analyzing the results obtained by Brasil Neto et al.18, it is noted that this region 
has the lowest values of the correlation coe�cient, indicating no satisfactory linear association between the 
 SPIgauge and  SPITRMM time series.

From another point of view, Rao et al.73 evaluated the seasonal trends of rainfall over Brazil over 30 years and 
indicated that precipitation in the rainiest and driest periods over Paraíba State would increase, and events will 
tend to be wetter. Medeiros et al.74, in turn, evaluated the rainfall trends in the Sertão Paraibano (1912–2012) 
and concluded that rainfall has positive trends, especially when considering annual and semiannual time scales. 
Notoriously, these were not the results obtained in this study, and this may be related to the period of analysis 
used. It is important to point out that the data period in�uences the evaluation of trends. �e data period used 
in the present research di�ers signi�cantly from the periods used in those studies.

One of the most severe drought periods has recently occurred, which may have in�uenced the spatial distribu-
tion of Sen’s slopes. Marengo et al.75 pointed out that from the 21 most severe drought events that have occurred 
in NEB since 1900, six are included in the analyzed period of the present study, with particular emphasis on 
1997–1998 and 2012–2015. �is latest most recent event that reached the NEB caused approximately 1000 cities 
to declare a state of emergency and spurred social and economic con�icts. In this sense, one of the reasons that 
may have signi�cantly in�uenced the present study’s negative trends was this drought event during the recent 
years. In addition, as discussed by Páscoa et al.76 and Guo et al.26, the shorter the data period, the time series 
trend tends to be more signi�cant, as is the case of the present study.

Analysis of drought duration trends. Figure 7 shows the spatial distribution of the Sen’s slope of the 
drought duration time series and the percentage of area with a signi�cant trend over Paraíba State at eight time 
scales. Regarding the pattern of the results considering the time scales, the most signi�cant results of the Sen’s 
slopes were obtained for droughts at a large time scale. Regarding the percentage of area that tended to the most 
signi�cant level of signi�cance (α ≤ 0.01), the same pattern of results was not found for the drought behavior time 
series, as shown in Fig. 6. �is result is strongly related to the amount of data in each time series submitted to 
trend analysis. As discussed by Santos et al.59, it is noted that a minimum amount of data in each time series is 
necessary for this to have relevant signi�cance. For example, the minimum amount of data required for a time 
series to have signi�cance at α = 0.010 is four, whereas, for signi�cance to be α = 0.10, the time series must have 
at least seven data.

�e amount of drought events decreases considerably when assessing long-term droughts, even though these 
events are more lasting and severe. For this reason, due to the reduction in the amount of data available for the 
duration time series, these time series may not have obtained a high signi�cance level (e.g., α > 0.10), even though 
Sen’s slopes were relatively more accentuated. When comparing the results between the datasets, the results are 
even more similar to each other than the results of the behavior time series. However, it is noteworthy that, 
although it is not mandatory, the spatial distribution of Sen’s slope for the duration time series is also similar to 
the spatial pattern of Sen’s slope of the behavior time series.

It is worth arguing that it is not because the drought behavior time series has a positive trend, i.e., events tend 
to be wetter, that the duration time series will necessarily tend to decrease. Although the drought duration time 
series is derived from the behavior time series, these time series may show a negative trend, but the duration 
time series do not. When comparing the results of these �gures, it is noted that there was an agreement between 
these time series in most cases. For SPI-48, for example, trends in drought behavior were negative, and trends 
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in duration were positive in northeastern Agreste Paraibano, based on the rainfall data. Indeed, these results 
complement each other, as they indicate that events tend to be drier over time, and the duration of the drought 
events tends to be longer when these events occur.

When evaluating short-term droughts, it is noted that Sen’s slope values were not so signi�cant and that only 
a few time series had a signi�cant trend. �ese are mostly located in Agreste Paraibano and southwestern Sertão 
Paraibano in the case of SPI-1, in southern Mata Paraibana and northeastern Agreste Paraibano in the case of 
SPI-3, and southern Borborema in the case of SPI-6, based on  SPIgauge data. In addition, when evaluating SPI-6, 
the same pattern of Sen’s slopes was identi�ed on the border between Agreste Paraibano and Borborema, and 
there are indications that drought events will be more lasting in this region. Based on  SPITRMM, Sen’s slopes were 

Figure 7.  Percentage of the area with the signi�cant trend and spatial distribution of Sen’s slope of the drought 
duration time series over Paraíba State (1998–2017).
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less accentuated for SPI-1 but more signi�cant for SPI-6 and remarkably similar to  SPIgauge results. For statistical 
signi�cance, there is an increase in the percentage of area with a signi�cant trend compared to the results based 
on rain gauge-measured rainfall data, especially in southern Borborema for SPI-1, and in northeastern Agreste 
Paraibano for SPI-6.

According to Sen’s slope values and the low number of time series with signi�cant trends, it can be said that 
for short-term droughts, the di�erences between the results obtained from  SPIgauge and  SPITRMM are smaller when 
evaluating the drought duration time series than for the behavior time series. For medium-term droughts, the 
slopes are more pronounced, and the spatial variability is greater when compared to the results of short-term 
droughts. However, there is no change as relevant as the area with signi�cant trends concerning short-term 
duration time series and the case of the behavior time series. For  SPIgauge results, there is a high percentage of 
signi�cant trends when evaluating SPI-12 and a low percentage for SPI-9. Most of Mata Paraibana and Agreste 
Paraibano show negative trends, while Sertão Paraibano and Borborema have positive trends, which indicates 
that in these mesoregions, drought events tend to be more lasting.

�e results of  SPITRMM show positive trends throughout all mesoregions and indicate that the results found 
for medium-term droughts were similar to those for short-term droughts. �ere was an inconsistency between 
the two datasets in the Mata Paraibana mesoregion and on the border between Agreste Paraibano and Mata 
Paraibana. However, these results were less discrepant than those obtained in the analysis of the behavior time 
series. As for the duration trends of drought events, it is noted that the results obtained in this research cor-
roborate with those obtained by Awange et al.21, who also showed that drought events tend to be more lasting 
over Paraíba State. However, in the north of the NEB, the trend is that drought events will become less lasting.

Finally, for long-term droughts, the highest and lowest Sen’s slope values are found among the time scales, 
although the area with a signi�cant trend is reduced compared to the results obtained in Fig. 6. �e results found 
for  SPIgauge indicate that Agreste Paraibano and Borborema have positive trends when evaluating the SPI-18 and 
SPI-24. For the SPI-48, in turn, these slopes tend to be even more pronounced, especially in northeastern Agreste 
Paraibano and in northern Sertão Paraibano. In these regions, the slope values indicate an increase of 1 month 
per drought event; i.e., future drought events tend to last for a month. In the southeastern Agreste Paraibano 
and on the coast of Paraíba State, on the other hand, Sen’s slopes are negative and accentuated, indicating that 
drought events will last less.

In comparison with the  SPITRMM results, it is noted that there is an agreement between the results, especially 
in the case of SPI-18. For SPI-24, the trend slopes in northeastern and southeastern Agreste Paraibano and the 
central region of Borborema were overestimated. For the SPI-48, the trend values were more pronounced in 
northern Agreste Paraibano and the southeastern coast of Paraíba State. On the other hand, it is interesting to 
note that in the central portion of Mata Paraibana, there was coherence on the part of the satellite-estimated 
rainfall data when detecting negative trends in the duration of drought events, corroborating with the results 
found based on  SPIgauge data. However, in northern Mata Paraibana, in southeastern Agreste Paraibano, and 
in large part of Borborema, TRMM-estimated rainfall data did not precisely identify the trend patterns of the 
drought duration time series.

Analysis of drought severity trends. Similar to the results of Figs.  6 and 7, Fig.  8 shows the spatial 
distribution of the Sen’s slope of the drought severity time series and the percentage of area with a signi�cant 
trend over Paraíba State at multiple time scales. In general, there is considerable similarity between the results of 
the time series of drought duration and severity, in terms of the levels of signi�cance, in the Sen’s slopes and the 
 SPIgauge and  SPITRMM results. In the case of short-term droughts, the slopes are less pronounced, which was also 
observed in the analyses of drought duration and behavior time series. In addition, it is interesting to note that in 
some cases, such as southern Borborema and northeastern Agreste Paraibano, in the case of the SPI-3 and SPI-6, 
the trend is signi�cantly positive both when assessing severity and duration.

�is information is relevant because it provides evidence of the trend in the intensity of the drought events. 
In general, if the slopes of the drought duration and severity time series are the same, this probably implies that 
the intensity of drought events tends to remain constant over time. On the other hand, if the duration time series 
has a negative trend, i.e., the events tend to be less lasting, and the severity time series has a positive trend, i.e., 
the events tend to be more severe, it is possible to state that the intensity of the drought events will increase. �e 
result highlights the importance of conducting a joint assessment of the trend analysis of these three types of 
time series, as one can understand the pattern of drought trends not only in terms of behavior (Fig. 6) but also 
in terms of duration (Fig. 7), severity (Fig. 8), and indirectly as in terms of intensity.

When using  SPITRMM, the percentage of area with a signi�cant trend is higher than that obtained for  SPIgauge 
results. For SPI-6, for example, the percentage using  SPITRMM is four times higher than the values using  SPIgauge, 
which were concentrated in Agreste Paraibano and Mata Paraibana. �e trends were predominantly positive 
when considering the two datasets. It can be said that the disagreements between the  SPIgauge and  SPITRMM results 
were smaller compared to those obtained in the drought behavior time series. In the case of medium-term 
droughts, the slope values increased in modulus, and an area started to show a trend with relevant signi�cance, 
as is the case of the drought duration time series. Based on  SPIgauge data, the trends were positive in southern 
Borborema and in Sertão Paraibano, revealing an increase in the severity of the drought events.

On the other hand, close to the coast, the slope was negative mainly for SPI-12, which reveals that drought 
events will be less severe. Based on the  SPITRMM results, there was an increase in the percentage of area with a 
signi�cant trend concerning the results obtained for short-term droughts. Except for isolated areas in Sertão 
Paraibano and Borborema, most grids showed a positive trend, as found in the case of drought duration time 
series. Once again, Agreste Paraibano and Mata Paraibana were the mesoregions where the severity time series 
presented the most accentuated positive slopes. �is situation exposes the discrepancy between the results 
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obtained based on rain gauge-measured rainfall data. In addition, in comparison with the results of the duration 
time series, it is noted that the severity time series showed less expressive slopes when evaluating the SPI-12. 
�is indicates that, although the duration and severity time series have positive trends, the �rst one had more 
accentuated slopes than those of severity.

As the duration tends to increase at a rate greater than severity, it is estimated that drought events will be less 
intense, although they tend to be more lasting and severe. Finally, for the analysis of long-term drought events, 
the most pronounced Sen’s slopes among the analyzed scales were observed, a result that is similar to that found 
in Figs. 6 and 7, and to the studies developed in  Asia20 and  Africa22. It is worth noting that the results of trends 
in duration and severity are similar to each other, but some caveats will be discussed. For SPI-18, there is a drop 

Figure 8.  Percentage of the area with the signi�cant trend and spatial distribution of the Sen’s slope of the 
drought severity time series over Paraíba State (1998–2017).
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in the magnitude of the slope compared to the duration time series results, and the same occurs in northern and 
western Sertão Paraibano in the case of SPI-24, and in eastern Mata Paraibana in the case of SPI-48.

In all situations, as well as for SPI-12, it is estimated that drought events will tend to be less intense, as the 
slope of duration time series tends to be higher than the slope of severity time series. On the other hand, in 
northeastern and southeastern Agreste Paraibano, the situation is reversed; e.g., the severity time series present 
steeper slopes than the duration time series, in the case of SPI-48. �e results of  SPIgauge show that the severity of 
drought events in Mata Paraibana and Agreste Paraibano tends to fall, but in Sertão Paraibano and Borborema, 
the trends are positive. When evaluating the  SPITRMM results, almost the entire Paraíba State starts to show posi-
tive trends. �e highest values are found in northern and northeastern Agreste Paraibano and Mata Paraibana 
and the drought duration time series.

In these regions, the slope values exceed the rate of 1 unit of SPI per drought event. In other words, this implies 
that based on the drought events that happened over the 20 years evaluated, the next events tend to have severity 
values plus one unit, which reveals a considerable increase compared to the results of the short-term droughts. 
For the precision of TRMM-estimated data in capturing Sen’s slopes and the percentage of area with a signi�-
cant trend, the similarity with the results obtained in the analysis of trends in drought duration is highlighted.

Trend analysis per mesoregion. Finally, to carry out an analysis for each mesoregion, Fig. 9 shows the 
percentage of area with a signi�cant trend (α ≤ 0.10) for the drought behavior, duration and severity time series 
for the mesoregions of Paraíba State. �e results indicate that the percentage of area with a signi�cant trend that 
had the greatest variability was obtained when evaluating the drought behavior time series. In contrast, in the 
case of the drought duration and severity time series, this variation was not accentuated. It was also observed that 
the temporal scale considerably in�uenced the variation of the percentage of area with a signi�cant trend, such 
that the values were signi�cant when evaluating long-term droughts, regardless of the mesoregion or dataset.

Figure 9.  Analysis of the percentage of area with a signi�cant trend based on the time series of drought 
behavior, duration and severity for the mesoregions of Paraíba State (1998–2017).
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Mata Paraibana has a substantial inconsistency between the  SPIgauge and  SPITRMM results, mainly when 
assessing the drought behavior time series. Although both datasets have identi�ed that Mata Paraibana has a 
predominantly negative trend, the percentages were notoriously overestimated by  SPITRMM. However, this dif-
ference was smaller when dealing with long-term droughts (i.e., SPI-18, SPI-24 and SPI-48). For duration and 
severity time series, the  SPITRMM overestimation was related to the percentage of area with positive trends, but 
the discrepancies were smaller than the results obtained for the behavior time series. �e highest percentage 
values for duration and severity were obtained when evaluating SPI-9 and SPI-12, showing consistency between 
 SPIgauge and  SPITRMM results.

In Agreste Paraibano, one can note a more evident similarity between the  SPIgauge and  SPITRMM results when 
compared to those of Mata Paraibana. Although there is an overestimation in the percentage of area with a nega-
tive trend on the part of the satellite-estimated rainfall data, it is noteworthy that this fact occurred to a lesser 
extent than the pattern of Mata Paraibana. In general, when analyzing the drought behavior time series, the 
results were less accurate for short- and medium-term droughts than for long-term droughts, whose percentage 
of area with a negative trend was greater than 75% for both datasets. For the drought duration and severity time 
series, the area percentage with a signi�cant trend is less than 25%. It reaches the maximum values in the case 
of SPI-9 for the duration time series and SPI-6 for the severity time series.

In the Borborema mesoregion, it is noted that although the results obtained between the two datasets were 
remarkably similar in the case of the duration and severity time series, in the case of the behavior time series, 
there is a notable inconsistency between the percentage values obtained from the rain gauge-measured and 
TRMM-estimated rainfall data. �e satellite-estimated data identi�ed that the pattern of trends was predomi-
nantly negative, but the area’s overestimation was greater than 50% in most cases. In Sertão, there are similari-
ties between the results of the two datasets, which occurred when assessing the drought behavior, duration and 
severity. �e percentage of area with a signi�cant trend obtained from the two datasets was very similar when 
evaluating the short- and medium-term drought behavior time series. For the long-term time series, there was 
an overestimation of the TRMM-estimated data.

Conclusions
From this study, the behavior and trends of multiple-scale droughts over Paraíba State using rain gauge-measured 
and satellite-estimated rainfall data were evaluated, and the performance of TRMM-estimated rainfall data to 
capture rainfall and drought patterns was very satisfactory. �e satellite-estimated rainfall data accurately identi-
�ed one of the events categorized as one of the most severe droughts in recent times. It was possible to observe 
that when evaluating long-term droughts, the percentage of dry events decreased in frequency but increased 
in severity.

For the trend analysis, it was noted that the larger the time scale, the more signi�cant were Sen’s slopes and 
the signi�cance of the behavior time series. In the case of the duration and severity of droughts, although it is 
clear that the events tended to be more lasting and severe with the increase in the time scale, the signi�cance of 
these time series was not sensitive to the variation of the time scale as well as in the case of the behavior time 
series. Regarding the pattern found among the mesoregions, the events tended to be drier, longer-lasting, and 
more severe in most of the state. �e greatest inconsistencies between the results obtained based on rain gauge-
measured and TRMM-estimated rainfall data are concentrated in the area closest to the coast of Paraíba State.

�e results obtained using the TRMM-estimated rainfall data identi�ed trends in Paraíba State. �is was more 
precisely when assessing the duration and severity of drought events. Finally, it is concluded that the TRMM-
estimated rainfall data are a valuable source of data to identify the drought patterns and trends in large part of 
Paraíba State at multiple time scales and, therefore, the results obtained may contribute to the drought monitoring 
in similar regions worldwide. Additionally, we recommend that more studies involving other satellite products 
and drought indices should be done over Paraíba State and other similar regions to improve the preparedness 
for future drought hazards using remote sensing data.
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