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ABSTRACT 
In the last decade, artificial neural networks (ANNs) 
have been receiving an increasing attention for 
simulating engineering systems due to some interesting 
characteristics such as learning capability, fault 
tolerance, speed and non-linearity. This paper 
describes an alternative approach to assess two types 
of hybrid solar collector/heat pipe systems (plate heat 
pipe type and tube heat pipe type) using ANNs. 
 Multiple Layer Perceptrons (MLPs) and Radial 
Basis Networks (RBFs) were considered. The networks 
were trained using results from mathematical models 
generated by Monte Carlo simulation. The 
mathematical models were based on energy balances 
and resulted in a system of non-linear equations. The 
solution of the models was very sensitive to initial 
estimates, and convergence was not obtained under 
certain conditions. Between the two neural models, 
MLPs performed slightly better than RBFs. It can be 
concluded that similar configurations were adequate for 
both collector systems. It was found that ANNs 
simulated both collector efficiency and heat output with 
high accuracy when “unseen” data were presented to 
the networks. An important advantage of a trained ANN 
over the mathematical models is that convergence is 
not an issue and the result is obtained almost 
instantaneously. 
 
INTRODUCTION 
Heat pipe solar collectors can either be of the flat-plate 
type or of the evacuated-tube type. The thermal 
performance of evacuated-tube collectors is described 
in reference [1], while flat-plate heat pipes have been 
studied by several authors [2-5]. 
 In order to predict solar collector performance, 
numerical models can be used. Traditional regressive 
models are based on energy balances that can be 
solved either numerically or analytically. Some of the 
drawbacks are that they use a large number of 
parameters, empirical correlations for heat transfer and 
sometimes there is the possibility of no convergence. 
 Neural networks are widely accepted as a 
technique offering an alternative way to tackle complex 
and ill-defined problems. They can learn from 
examples, are fault tolerant in the sense that they are 
able to handle noisy and incomplete data, are able to 
deal with non-linear problems, and once trained can 
perform prediction at very high speed [6]. It has a wide 

variety of applications: pattern recognition, decision-
making, system control, information processing, 
symbolic mathematics, computer-aided instruction, 
speech recognition, vision and robotics. Artificial neural 
network approaches have been applied to many 
thermal systems [7] and also renewable energy 
systems [8]. 
 The primary objective of this work was to evaluate 
whether ANNs present any practical advantage over a 
traditional approach in predicting the thermal 
performance of two different types of solar collectors, 
while providing at least the same degree of accuracy. 
Training of the ANN was accomplished by using results 
of the regressive model. 
 
COLLECTOR DESIGN 
Two types of hybrid heat pipe solar collectors were 
studied: plate heat pipe and tube heat pipe – see Fig.1.  
Both collectors are supplied with a double glazing cover 
on top, at a distance of 12 mm from the metal plate; 
collector surface is equal to 2.4 m2. The collectors have 
a hybrid heat input. Besides solar energy, a hot gas, 
coming from a gas burner (located at collector 
entrance), is circulated below the metal plate – see 
Fig.1 and Fig.2. Useful heat is transferred to a stream 
of water using heat pipes (tubular or plate shape) in 
order to minimise the temperature gradient and 
maximise the heat transfer between the input and 
output points of the system. This type of collector was 
developed for use in hybrid power generation cycles [9]. 
Table 1 shows the solar collector characteristics. 
 
 
Table 1. Solar collector characteristics. 

Number of heat pipes 20 
Evaporator length 1.70 m 
Condenser length 50 mm 
Adiabatic length 150 mm 
Tube spacing 70.9 mm 
Plate thickness 2 mm 
Tube diameter 8 mm 
Back insulation thickness 22 mm 
Cover emissivity 0.88 
Cover transmissivity 0.87 
Plate emissivity 0.16 
Plate absorptance 0.95 
Tilt angle 38º 
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(a) Types of heat pipe solar collectors. 
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Fig. 1. (b) Hybrid heat pipe solar collector. 
 
MATHEMATICAL MODEL 
Two types of models were applied to simulate the heat 
transfer in the solar collectors. The first type was based 
on the conservation of energy law and the second was 
a “black box” approach using ANN. Collector 
performance was estimated using two parameters, the 
thermal efficiency, ηcollector, and the total heat transferred 
by the hybrid system, Q. The latter was evaluated as 
the useful heat transferred to the water stream in the 
condenser. The thermal efficiency can be defined as: 
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where Qgas is the heat transferred from combustion gas 
to the collector plate and obtained from: 
 

, ,( )gas gas p gas in gas outQ m c T T= −     (2) 
 
Models based on conservation of energy 
Two approaches with different complexity were 
developed based on the conservation of energy law for 
the two cases: a simpler one for the plate type collector 
and a more complex one for the tube type collector. The 
main objective of this was to evaluate the effect of 
model complexity on the optimal ANN architecture and 
its predictive power. 
 

• Plate heat pipe solar collector 
The major simplification for the plate type design was 
that the temperature in the heat pipe was considered to 
be uniform and equal to the saturation temperature of 
the working fluid, Tsat. Normally heat pipes are modelled 
with thermal resistances (see next subsection), but the 
heat pipe resistances could be very small so that in 
many cases they can be neglected [4]. It was also 
assumed that the temperature variation inside the glass 
covers was negligible. In order to calculate the heat 
transfer inside the hybrid collector the following 
equations can be obtained: energy balance on first 
glass and second cover, energy balance on collector 
side of heat pipe, heat flux from the gas to the plate, 
heat transfer from the combustion gas to the heat pipe, 
energy balance on the condenser surface and overall 
heat balance. Detailed mathematical formulation of 
these balances is given in [10]. 
 The resulting set of non-linear equations was 
simultaneously solved for the glass temperatures, 
working fluid saturation temperature, the gas and water 
outlet temperatures, and the heat fluxes through the 
gas and collector side of the evaporator section. The 
heat transfer coefficients on the collector side were 
determined using empirical correlations for natural 
convection in horizontal cavities [11]. The external heat 
transfer coefficient (hwind) was calculated as a function 
of the wind speed according to [12]. hgas and Ucond were 
taken as constant using typical values. The solution of 
the non-linear set of equations was obtained by the 
Newton-Raphson’s method [13]. 
 
• Tube heat pipe solar collector 
Uniform temperature in the glass covers was also 
considered for the tubular type design. However, the 
assumption of uniform temperature distribution on the 
collector plate was no longer valid, because of the heat 
transfer between heat pipes. A one dimensional 
temperature variation perpendicular to the tube axis 
was considered.  
 The heat transfer over the two glass covers was 
identical to the previous model. The energy balance on 
the collector plate was evaluated considering a 
differential volume of length dx (with x perpendicular to 
the tube axis) yielding a second-order differential 
equation: 
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 In order to solve Eq. (3), the domain was 
discretised using a finite-difference scheme with one 
hundred finite-difference volumes. Knowing the plate 
temperature distribution, it is possible to calculate the 
useful energy per unit length of heat pipe with: 
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 In Eq. (4), Q’ indicates the heat transferred to the 
heat pipe evaporator. In this case, it was assumed that 
there was a temperature distribution inside the heat 
pipe. The thermal balance in the heat pipes is usually 
estimated using an electric circuit analogy as: 
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       (5) 

 
 In the denominator part of Eq. (5), ΣRheatpipe 
represents the total thermal resistance. For a detailed 
discussion of the individual thermal resistances, the 
reader is referred to Dunn and Reay [14] or Peterson 
[15]. In this work typical values were chosen.  
 The thermal balances in the gas channel and in 
the condenser were calculated using the equations for 
the plate collector with the difference that hgas and Ucond 
were determined using empirical correlations [16] and 
[17]. The numerical model was implemented in the EES 
(F-Chart software, USA), [18], computer environment.  
 
• Neural network model 
A detailed discussion of existing neural network models 
is out of the scope of this paper. Here only some of the 
relevant issues are presented. For details the reader is 
referred to [19], [20] and [21]. Two types of feed forward 
ANNs are widely used in engineering for simulation 
proposes: multi-layer perceptrons (MLP) and radial 
basis functions (RBF). ANNs are typically made up of 
many interconnected processing units, called neurons. 
Detailed representation of a typical neuron is shown in 
Fig.3.  
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Fig. 3. Artificial neuron. 

 
 The information (ui) enters the neuron through p 
input connections after being multiplied by a “synaptic 
weight (wi). Mathematically the information processing 
can be written as: 
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 There are several choices for the form of the 
activation function (F). Any bounded increasing function 
can be applied. However due to some attractive 
properties (e.g. differentiability, saturation, etc.) usually 
sigmoid shaped functions (e.g. hyperbolic tangent) are 
used. 
 By itself, a single processing element has a very 
limited predictive power. Its capacity emerges from 
arranging many of these individual units into a strongly 
interconnected parallel architecture [20] such as an 

MLP architecture shown in Fig. 4. In the input layer, the 
independent variables are presented to the network. 
They are not artificial neurons, because there is no data 
processing, only branching. The response variables are 
“collected” at the output layer. Those layers (usually 
one) that are not visible to the exterior are called hidden 
layers. 
 One of the most important properties of ANN´s is 
its capability of “learning” from examples where for a 
given set of inputs the desired outputs are available. 
The learning or training process is achieved by 
adjusting the weights (w) in a way that the network 
output results in a sufficiently small error when 
compared to the target values. Another interesting 
property is that they can generalise or, in other words, 
they can produce accurate outputs for inputs that have 
not been seen before.  
 Mathematically the training process is a non-linear 
optimisation problem. One seeks for w that minimises 
an objective (cost) function. The objective function is an 
error measure between the predicted, y, and target 
outputs, t, e.g. the mean square error: 
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 For available training techniques the reader is 
referred to [20-22]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Multi-layer perceptrons network. 
 
 Another task besides training is to select the 
optimal configuration of the ANN for a given problem, 
namely the smallest system that will fit the data. 
Although there are a few constructive and pruning 
methods for the selection of (near) optimal 
architectures, it is mostly done by a trial/error approach. 
Some interesting applications of multi-layer perceptrons 
for simulation can be found in [7], [23], [6] and [24]. 
 Although radial basis function (RBF) networks 
have the same structural characteristics as MLPs (see 
Fig. 4), the processing of information in the hidden layer 
is different. Here, in each unit the response is 
calculated according to a multivariate Gaussian function 
that has two parameters, a centre in the input vector 
space and a spread. The result (y) is then obtained by a 
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linear combination of the weighted outputs of the hidden 
layer. For a more detailed discussion see [21]: 
 The training process of RBFs consists of first 
choosing the radial basis centre and spread constants, 
and then adjusting the output weights. The training 
process is generally simpler than MLP training. 
However RBFs tend to require more neurons. For 
details the reader is referred to [21]. Some applications 
of RBFs can be found in [25-28]. 
 
SIMULATION DESIGN 
As mentioned before, there are a large number of 
parameters affecting solar collector performance. In this 
work only the most relevant design and environmental 
factors were selected as inputs for both systems: solar 
radiation, ambient temperature, inlet gas temperature, 
inlet water temperature, evaporator length, condenser 
length, gas mass flow rate and water mass flow rate. 
Another independent variable was added in the plate 
heat pipe to characterise the collector condenser 
section geometry and flow: the heat transfer coefficient 
in the condenser section. In order to ensure that the 
ANN is properly trained, it is crucial that representative 
input/output data are selected for training. 
 The simulations were divided in two phases. First 
a Monte Carlo simulation was carried out using the 
energy balance models assuming uniform distribution 
for each input. Table 2 shows the lower and upper 
bounds considered for the factors. Random sampling 
was made using the Latin Hypercube technique, so that 
the sampling points cannot cluster together. Several 
hundreds of data were simulated for both solar collector 
designs. The dependent variables were the collector 
efficiency and the collector heat output. A similar 
approach can be found in [29]. 

 
Table 2. Range of the independent variables. 

I 0-1000 W/m2 
Ta 5-30ºC 
Tgas,in 200-400ºC 
Tw,in 30-90ºC 
levap 1.5-2 m 
lcond 0.04-0.10 m 
mgas 0.0025-0.02186 kg/s 
mw 0.005-0.05 kg/s 
U 2000-4000 W/m2/ºC 

 
 In the second phase, the optimal ANN architecture 
was selected and trained. The data was normalised and 
divided into three sets, at least 250 for training, 50 for 
validation and 50 for test. The validation data set is 
used for avoiding over-training by stopping the training 
process at the point where the validation MSE starts to 
increase. The test data is designated to evaluate the 
generalisation capabilities of the trained network 
(“unseen” data). For the selection of the best 
configurations, a commercial software, Statistica’s 
(StatSoft, USA) Intelligent Problem Solver was used. 
For details the reader is referred to [30]. The best 
networks were then tuned at least 100 times by 
selecting random initial weights. It was necessary in 
order to avoid local minima on the error surface (Eq. 7). 
For the tuning process Matlab 6 (The Math Works, 

USA) was used. The results obtained by the two types 
of models were compared using simple regression. 
 
RESULTS AND DISCUSSION 
More than six hundred cases were simulated using the 
regressive models described in section 3.1. The results 
are summarized in Table 3.  

 
Table 3. Summary statistics of efficiency and heat flux. 

Tube heat pipe 
collector 

Plate heat pipe 
collector 

η  q [W/m2] η q[W/m2] 
Number of 
cases 

693 693 691 691 

Maximum 0.880 2990 0.986 2810 
Minimum 0.034 11.4 0.166 108 
Mean 0.657 1030 0.629 1060 
St. 
Deviation 

0.123 531 0.154 456 

 
 It was found that there were only small differences 
in the performance of the two collectors considering 
either the heat flux or the efficiency results. The 
difference was 3% and 4% for the heat flux and 
efficiency respectively, which is probably within the 
accuracy of the models. The standard deviation and 
minimum/maximum values indicated that, for the same 
set of input conditions, the tubular collector had a more 
equilibrated efficiency. However there was a smaller 
dispersion of the heat flux in the case of the plate heat 
pipe. 
 About 40% of the random combinations of the 
input data resulted in a divergent solution for the plate 
type collector. This value was slightly higher for the 
more complex model (tube type). However, there was 
no clear and simple evidence of what combination of 
the input values caused divergence.  
 In order to model the solar collector performance 
using ANNs, first the best configurations have to be 
selected. The training time for each case was less than 
a minute and fast convergence was obtained for all 
training situations. Once the network was trained, 
simulation was instantaneous. The best architectures, 
already tuned by retraining, with the corresponding 
MSE for both systems, are summarised in Table 4.  
 
Table 4 MSE for several configurations. 

Tube heat pipe collector Plate heat pipe collector 
Model ��MSE q MSE model ��MSE q MSE 
MLP 8-3-1 0.0028 0.0016 MLP 9-3-1 0.0118 0.0054 
MLP 8-5-1 0.0015 0.0007 MLP 9-6-1 0.0131 0.0036 
MLP 8-6-1 0.0011 0.0005 MLP 9-9-1 0.0145 0.0042 
MLP 8-9-1 0.0005 0.0002 RBF 9-55-1 0.0420  
MLP 8-11-1 0.0011 0.0002 RBF 9-84-1  0.0079 
RBF 8-83-1 0.0062 0.0050    

 
 The evaluation was based on the mean square 
error calculated for the test (“unseen”) data set. 
Perhaps the most interesting result is that the best 
MLPs configurations needed only a few hidden neurons 
to simulate both the solar collector efficiency and heat 
flux. It was observed that although the mathematical 
model used to generate the target values was more 
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complex for the tube type collector, the mean square 
error of the approximation was generally one order of 
magnitude smaller for the same ANN architecture 
compared to the plate type. In the case of the tube 
collector, the best accuracy was obtained with 9 hidden 
nodes for both Q and η. For the plate type, a network 
with only 6 and 3 hidden neurons for the useful heat flux 
and efficiency gave the lowest MSE respectively. The 
performance with radial basis function is in general 
weaker. For RBF 9-84-1 the heat flux in plate heat pipe 
collector has a MSE about the double of magnitude of 
MLP models. 
 Figures 5 and 6 show observed (regressive model) 
versus predicted (neural network model) heat outputs in 
the plate heat pipe solar collector with the radial basis 
function (RBF 9-84-1) and multi-layer perceptron (MLP 
9-6-1) that resulted in the lowest MSE.  

There was a very good agreement between 
predicted and observed values for both cases. However 
the MLP models seem to perform slightly better. This 
better performance was indicated by the higher R2 
value (0.96 vs. 0.92) as well as by the 95% confidence 
intervals calculated for the slope and intercept of the 
regression line which included 1 and 0 respectively. An 
important advantage of the MLP network is that it has 
less parameters than the optimal RBF configuration.  
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Fig. 5. Observed (regressive) versus predicted (neural 
network) collector heat output, for plate heat pipe solar 
collector with radial basis function model RBF 9-84-1. 
 
 Figures 7, 8 and 9 show the useful heat results for 
the tube heat pipe solar collector. As expected, the 
goodness of fitting in this case was higher than for the 
plate type collector. In comparison with the data 
obtained by the correlation model, the multi–layer 
perceptron network with 9 hidden neurons had a 
regression coefficient of nearly 1 (Fig. 8). 
 The confidence intervals for the estimated 
regression parameters indicated that 1 and 0 were 
included for the slope and intercept respectively. Only a 
somewhat smaller coefficient of correlation (R2=0.998) 
was obtained for the model with only 6 hidden neurons 
that was the optimal architecture for the plate type solar 
collector. As in the previous case, the values 1 and 0 
were within the 95% confidence interval for the 
estimates of the slope and intercept of the regression 
parameters. Therefore, this configuration can be 
considered a good choice for simulating the useful heat 

for both systems. It was found that RBF networks 
performed slightly poorer than MLPs, but still providing 
an acceptable accuracy (Fig. 7). 
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Fig. 6. Observed versus predicted collector heat output, 
for plate heat pipe solar collector with multi-layer 
perceptron model MLP 9-6-1. 
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Fig. 7. Observed versus predicted collector heat output, 
for a radial basis function model with 83 hidden neurons 
in the tube heat pipe solar collector. 

q’observed

1.0.50.0-.5-1.0-1.5

q’
pr

ed
ic

te
d

1.0

.5

0.0

-.5

-1.0

-1.5

q’predicted=2.653E-04(±4.734E-03)+0.999(±0.008)q’observed

Rsq=0.9991

q’observed

1.0.50.0-.5-1.0-1.5

q’
pr

ed
ic

te
d

1.0

.5

0.0

-.5

-1.0

-1.5

q’predicted=2.653E-04(±4.734E-03)+0.999(±0.008)q’observed

Rsq=0.9991

 
Fig. 8. Observed versus predicted collector heat output, 
for a multi-layer perceptron model with 9 hidden 
neurons in the tube heat pipe solar collector. 
 
  

Analysing the results obtained for the normalised 
thermal efficiency, similar conclusions can be drawn. An 
MLP with 6 hidden neurons represents an atractive 
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alternative for simulating a solar collector because of its 
simplicity, instantaneous response and because it did 
not present any convergence problem. 
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Fig. 9. Observed versus predicted collector heat output, 
for a multi-layer perceptron model with 6 hidden 
neurons in the tube heat pipe solar collector. 
 
CONCLUSIONS 
The use of neural networks for the simulation of the 
thermal performance of two types of heat pipe solar 
collectors was evaluated. The evaluation was based on 
the comparison with the results obtained by a traditional 
simulation (energy balance model), for a large variety of 
environmental and design conditions.  

Convergence problems were observed in about 
40% of the input combinations using the energy 
balance models. However, there was no clear evidence 
of what caused the divergence. Results indicated that 
there was only an insignificant difference between the 
two collector designs in terms of the average thermal 
efficiency and average heat flux transferred to the 
cooling liquid for the same set of conditions.  

Two types of feed forward ANN models were found 
to be useful for the simulation of the two systems: MLP 
and RBF. Besides being simpler, multiple layer 
perceptrons performed slightly better than radial basis 
function networks. Several configurations were tested 
and it was found that the MLP configuration with 6 
hidden neurons provided an excellent alternative to 
calculate useful heat and thermal efficiency for both 
designs. It can be concluded that ANNs have several 
advantages over the energy balance based models, 
such as: instantaneous response, no convergence 
problem, insensitivity to uncertainties in the input 
parameters, simple structure (small number of weights) 
and high accuracy.  
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NOMENCLATURE 
c  space between two tubes (mm) 
dext  external tube diameter (mm) 
dx   differential length between tubes (m) 
cp   specific heat (J/kg/K) 
F  activation function 
h  convection heat transfer coefficient (W/m2/K) 
I  incident solar radiation on tilted collector 

surface (W/m2) 
l   length (m) 
MSE  mean square error 
m   mass flow rate (kg/s) 
n   number of cases 
Np   total number of training patterns 
ns   number of neurons in the output layer 
p   input connections 
q   heat flux (W/m2) 
q’   normalised heat flux 
Q  heat flux (W) 
Q’  heat flux per unit length of heat pipe (W/m) 
Rheatpipe heat pipe thermal resistance (W/m/K) 
S  absorbed solar radiation (W/m2) 
T  temperature (ºC, K) 
tip  target 
u  input variable 
U  heat transfer coefficient in the condenser 

section (W/m2K) 
w  weight 
y  output variable 
yjp  observed value 
 
Greek Letters 
δ  plate thickness (mm) 
ε   emissivity 
ηcollector  collector thermal efficiency 
λ   thermal conductivity (W/m/K) 
σ  Stefan-Boltzmann constant (W/m2/K4) 
 
Subscripts 
a  ambient 
c  cover 
c1  cover 1 
cond  condenser 
evap  evaporator 
gas  gas 
in  inlet 
out  outlet 
p  plate 
p-c1  plate to cover 1 
t  tube 
w  water 
 
REFERENCES 
1. J. Ribot and R. D. McConnell, Testing and analysis 

of a heat pipe solar collector, Journal of Solar 
Energy Engineering, Transactions of the ASME 
105, 440-445, (1983). 

2. T. Y. Bong, K. C. Ng and H. Bao, Thermal 
performance of a flat-plate heat-pipe collector array, 
Solar Energy 50 (6), 491-498, (1993). 

3. S. B. Riffat, P. S. Doherty and E. I. Abdel Aziz, 
Performance testing of different types of liquid flat 

   838



plate collectors, International Journal of Energy 
Research, 24, 1203-1215, (2000). 

4. K. A. R. Ismail and M. M. Abogderah, Performance 
of a Heat Pipe Solar Collector, Journal of Solar 
Energy Engineering, Transactions of the ASME 
120, 51-59, (1998). 

5. Emmanouil Mathioulakis and Vassilis Belessiotis, A 
New Heat-Pipe Type Solar Domestic Hot Water 
System, Solar Energy 120 (1), 13-20, (2002). 

6. S. A. Kalogirou and S. Panteliou, Thermosiphon 
solar domestic water heating system: long-term 
performance prediction using artificial neural 
networks, Solar Energy 69 (2), 163-164 (2000). 

7. M. Sen and K. T Yang., Applications of artificial 
neural networks and genetic algorithms in thermal 
engineering, in: F. Kreith (Ed.), CRC Handbook of 
Thermal Engineering, 2000, pp. 620-661 (Section 
4.24). 

8. Soteris A Kalogirou., Artificial neural networks in 
renewable energy systems applications: a review, 
Renewable and Sustainable Energy Reviews 5, 
373-401, (2001). 

9. “Hybrid-CHP – An Hybrid Combined Heat and 
Power System” EU Research Contract nº ENK5-
CT-2000-0080. 

10. Jorge Facão, Szabolks Varga and Armando C. 
Oliveira, Neural networks as alternative to evaluate 
the performance of hybrid heat pipe solar 
collectors, submitted to the journal Neural 
Networks, Elsevier Science. 

11. K. G. T. Hollands, T. E. Unny, G. D. Raithby and L. 
Konicek , Free Convection Heat Transfer Across 
Inclined Air Layers, Trans. ASME, J. Heat Transfer, 
98 (189) (1976). 

12. E. M. Sparrow, J. W Ramsey. and E. A. Mass, 
Effect of Finite Width on Heat Transfer and Fluid 
Flow About an Inclined Rectangular Plate, Trans. 
ASME , J. Heat Transfer, 101 (2) (1979). 

13. S.C Chapra and R.P. Canale, Numerical Methods 
for Engineers, 2nd ed. Mc Graw Hill, New York, 
1989. 

14. P. D. Dunn and D. A. Reay, Heat Pipes, 
Pergamon, fourth edition, 1993. 

15. G. P. Peterson, An Introduction to Heat Pipes, 
Modelling, Testing, and Applications, John Wiley & 
Sons, Inc., 1994. 

16. F. W. Dittus and L. M. K. Boelter, Univ. Calif., 
Berkeley, Publ. Eng. 2:443(1930). 

17. A. Zhukauskas, Heat Transfer from tubes in Cross 
Flow, in Advances in Heat Transfer, edited by J. 
Eds., volume 8, Academic Press, New York, 1972. 

18. S. A. Klein and F. L. Alvarado (2002). Engineering 
Equation Solver. F-Chart Software, Middleton, 
USA. 

19. C. Looney, Pattern Recognition Using Neural 
Networks, Oxford University Press, NY, 1997. 

20. R. D. Reed and R. J. Marks, Neural Smithing, MIT 
Press, Cambrige, 1999. 

21. F.M Ham and I. Kostanic, Principles of 
Neurocomputing for Science and Engineering, Mc-
Graw-Hill, New York, 2001. 

22. Howard Demuth, Neural network toolbox for use 
with Matlab, user's guide, version 4, The Math 
Works, 2000. 

23. Arturo Pacheco-Vega, Mihir Sen, K. T. Yang and 
Rodney L. McClain, Neural network analysis of fin-
tube refrigerating heat exchanger with limited 
experimental data, International Journal of Heat 
and Mass Transfer, 44 (2001) 763-770. 

24. Y. Keymmoku, S. Orita, S. Nakagawa and T. 
Sakakibara, Daily Insolation Forecasting Using a 
Multi-Stage Neural Network, Solar Energy, vol. 66, 
No.3, pp. 193-199, 1999. 

25. M. Mohandes, A. Balghonaim, M. Kassas, S 
Rehman and T. O. Halawani, Use of Radial Basis 
Functions for Estimating Monthly Mean Daily Solar 
Radiation, Solar Energy, vol. 68, No. 2, pp. 161-
168, 2000. 

26. H. Bechtler, M. W. Browne, Bansal P. K. and 
Kecman V., New approach to dynamic modelling of 
vapour-compression liquid chillers: artificial neural 
networks, Applied Thermal Engineering 21 (2001) 
941-953. 

27. A Sfetsos and A.H Coonick, Univariate and 
multivariate forecasting of hourly solar radiation 
with artificial intelligence techniques. Solar Energy 
68 (2) 169-178 (2000). 

28. J. E. Hurtado, Analysis of one-dimensional 
stochastic finite elements using neural networks, 
Probabilistic Engineering Mechanics 17, 35-44 
(2002). 

29. M. Y. Rafiq, G. Bugmann and D. J. Easterbrook, 
Neural network design for engineering applications, 
Computers and Structures 79, 1541-1552 (2001). 

30. StatSoft, Inc. (2001). User manual STATISTICA 
(data analysis software system), version 6. 
www.statsoft.com. 

 

   839

http://www.statsoft.com/

	ABSTRACT
	NOMENCLATURE
	
	Subscripts


	REFERENCES

