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Abstract

Cancer along with cardiovascular disease are the main causes of death in the industrialised countries around the
World. Conventional cancer treatments are losing their therapeutic uses due to drug resistance, lack of tumour
selectivity and solubility and as such there is a need to develop new therapeutic agents. Therapeutic peptides are a
promising and a novel approach to treat many diseases including cancer. They have several advantages over
proteins or antibodies: as they are (a) easy to synthesise, (b) have a high target specificity and selectivity and (c)
have low toxicity. Therapeutic peptides do have some significant drawbacks related to their stability and short
half-life. In this review, strategies used to overcome peptide limitations and to enhance their therapeutic effect will
be compared. The use of short cell permeable peptides that interfere and inhibit protein-protein interactions will
also be evaluated.
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Background
Cancer is the second most common cause of death, be-
ing responsible for 8.2 million deaths worldwide in 2013
[1, 2]. Of particular interest is that in industrialised
countries the incidence of cancer is much higher than
that seen in less developed countries [2]. The incidence
in these less developed countries is expected to rise due
to the growth and ageing of their populations along with
an increase in the prevalence of known risk factors [3].
In males, lung cancer is the leading cause of cancer
worldwide deaths, while for women this is the case only
in industrialised countries, while in less developed coun-
tries breast cancer is the leading cause of cancer deaths
[1, 2]. Cancer has been characterised by the mutations
of somatic genes that alter the function of the protein(s)
they encode for [4]. Somatic alterations have been
observed in most solid tumours such as those of the
colon, breast, brain and pancreas. Nearly all (95%) of
these altered mutations are single base substitutions,
while the other 5% result from the insertion or deletion
of one or a few base pairs [4]. Cancer is not a single
disease with more than 100 different types known [5].

There is an extensive heterogeneity present between the
same type of tumour in different individuals (intertu-
mour heterogeneity) and among cancer cells within the
same tumour (intratumour heterogeneity) [6]. Primary
tumours are genetically heterogeneous and consist of
multiple subpopulations of cancer cells which differ with
respect to genotype(s) and phenotype(s) [7].
In the recent years, there has been a significant pro-

gress; in the diagnosis, treatment and prevention of
some types of cancer [8]. Currently cancer treatments,
involve surgery, chemotherapy, radiation, biological and
hormonal therapy. However, the main problems with
these current treatments are their high cost and adverse
side effects [9]. Doxorubicin is a conventional chemo-
therapeutic agent that is widely used in the treatment of
many tumours. However, it causes oxidative stress-
mediated injury to the kidney [10], heart [11], and brain
[12]. Metastatic breast cancer resistance to chemothera-
peutic agents remain an obstacle for effective treatment.
Chemotherapeutic agents such as taxanes and anthracy-
clines are not effective in controlling breast cancer as
this tumour develops resistance to such drugs [13]. The
overall median survival of patients with brain metastases
from breast cancer was found to be 8.3 months [14].
Even if initial conventional cancer treatments are
successful, the risk of tumour recurrence remains a
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challenge [15]. In this review, we will focus on using
therapeutic peptides as anti-cancer agents.

Therapeutic peptides
Peptides are short linear chains of amino acids (AA). They
are usually <50 AA in length and are often stabilised by
disulfide bonds [16]. They are designed by rational methods
with high specificity to bind and modulate a protein inter-
action of interest. Many sequences, structures and pattern
interactions of oncogenic proteins are available; and as such
peptides can be designed specifically as an inhibitor of these
interactions [17] – for example, if an interaction of two
proteins is known, a peptide can inhibit this interaction
provided if the sequence of the binding site is known [18].
If a protein-protein interaction site is unknown, a series of
overlapping peptides of the desired protein are synthesised
and can be tested for their capability to bind and inhibit this
target interaction [19]. The peptide sequence can also be
modulated easily, due to their ease of synthesis either by
chemical or molecular biological techniques [17].
Therapeutic peptides have several important advan-

tages over proteins or antibodies: they are small in size,
easy to synthesise and have the ability to penetrate the
cell membranes. They also have high activity, specificity
and affinity; minimal drug-drug interaction; and bio-
logical and chemical diversity. An added benefit of using
peptides as a treatment is that they do not accumulate
in specific organs (e.g. kidney or liver), which can help
to minimise their toxic side effects [20]. They can also
be rapidly synthesised and easily modified [21] and are
less immunogenic than recombinant antibodies or pro-
teins [22]. Therapeutic peptides show great potential in
the treatment of many diseases (for further information
see [23]). In the case of cancer, these peptides can be
used in a variety of ways, including carrying cytotoxic
drugs, vaccines, hormones and radionuclides [24]. How-
ever, therapeutic peptides do have some significant
drawbacks such as their stability in vivo. They have little
or no resistance to cleavage by serum proteases in vivo
[22] as well as a short half-life, low bioavailability, and
production and manufacturing challenges [20]. Some of
important advantages and disadvantages of using thera-
peutic peptides as drugs [25] are shown in Table 1.

Peptides for cancer therapy
Therapeutic peptides are a novel and promising ap-
proach for the development of anti-cancer agents [23, 26].
Boohaker et al. [21] has classified existing therapeutic pep-
tides for the treatment of cancer into three main groups:
(a) antimicrobial/pore forming peptides, (b) cell-permeable
peptides and (c) tumour targeting peptides. The cellular
targets of some of these peptides are seen in Table 2.
AMP/pore-forming peptides are peptides that occur

naturally in all living organisms and have specific

biological activities [16]. They are part of the innate im-
mune defence mechanism [27] and show potential as
antimicrobial therapeutic agents (e.g., defensins and
cathelicidins) [28]. Many of these antimicrobial peptides
(AMPs) are short, possess cationic charges, and form
amphipathic structures in non-polar solvents [29]. They
bind to negatively charged bacterial cell membranes via
electrostatic interactions, disrupting their function [29],
resulting in the death of these prokaryotes [30].
These pore-forming peptides target cancer cell mem-

branes, and can induce cell death either by necrosis or
apoptosis. In necrosis, the AMPs target the negatively-
charged molecules on the cancer cell membrane and cause
cell lysis; while in apoptosis, they cause disruption of the
mitochondrial membrane [21]. Another AMP is magainin,
which is derived from the skin of the African clawed frog
Xenopus laevis [31]. Lehmann et al. [32] observed that
margainin II was cytotoxic to human bladder cancer cells
but not human or murine fibroblasts. Magainin killed the
bladder cancer cells by inducing pores in the plasma
membrane [32]. Pleurocidin is isolated from the winter
flounder, Pleuronectes americanus [33] and members of
this family of cationic peptides (such as NRC-3 and NRC-
7) were cytotoxic against human breast cancer cells and
mouse mammary carcinoma cells but not human dermal
fibroblasts [34]. These two peptides were shown to disrupt
the integrity of the cell membrane [34]. The pre-treatment
of human breast cancer cells (MDA-MB-231) with NRC-3
or NRC-7 and cisplatin enhanced the latter’s cytotoxic ef-
fect (EC50) by 5.5- and 1.7-fold, respectively [34].
Buforins are peptides derived from the stomach of Bufo

bufo gargarizans [35]. Buforin I is a 39 AA peptide, from
which the 21 AA buforin II is derived. Both peptides ex-
hibit antimicrobial properties; with buforin II possessing
higher activity than buforin I [36]. Buforin IIb was shown
to be cytotoxic against human cervical carcinoma (HeLa)
and leukaemia (Jurkat cells) cells in vitro, and suppressed
the growth of human lung cancer xenografts in mice [37].
This peptide interacts with the gangliosides on the plasma
membrane and induced the apoptotic extrinsic pathway in
these cells [37].

Table 1 Advantages and disadvantages of therapeutic peptides
(Adopted from [25])

Advantages Disadvantages

High potency of action Metabolic instability

High target specificity and selectivity Poor membrane permeability

Wide range of targets Poor oral bioavailability

Low toxicity Poor solubility

Fewer side effects Rapid clearance

Low accumulation in tissues High manufacturing cost

High biological and chemical diversity Poor activity

Marqus et al. Journal of Biomedical Science  (2017) 24:21 Page 2 of 15



Table 2 Therapeutic peptides and their uses

Peptide name Validation Cell lines examineda Ref.

Antimicrobial peptides

Magainin II in vitro Bladder cancer cells: RT4 pathologic grade 1, 647 V grade 2, and 486P
grade 4

[32]

NRC-3 and NRC-7 In vitro & in vivo Breast cancer: MDA-MB-231, MDA-MB-468, SKBR3, MCF-7 and paclitaxel
resistant MCF-7 (MCF-7-TX400) and murine mammary 4 T1 carcinoma cells

[34]

Buforin IIb In vitro & in vivo Cervical carcinoma (HeLa), leukaemia (Jurkat cells) and lung cancer
(NCI-H460) cells

[37]

BR2 in vitro Cervical carcinoma (HeLa), colon cancer (HCT116) and murine melanoma
(B16-F10) cells

[52]

Cell penetrating peptides

Dox-TAT in vitro Breast cancer (MCF-7 and MCF-7/ADR) and rat prostate carcinoma
(AT3B1) cells

[53]

Tumour targeting peptides

RGD-SSL-Dox In vitro & in vivo Melanoma (A375) and murine (B16-F10) melanoma cells [61]

LPD-PEG-NGR In vitro & in vivo Fibrosarcoma (HT-1080) cells [66]

Therapeutic peptides target transduction pathway

PNC-2 and PNC-7 in vitro Pancreatic cancer (MIA-PaCa) cells [109]

Cardiac natriuretic peptides In vitro & in vivo Pancreatic cancer (HPAC), renal carcinoma (SW156), breast adenocarcinoma
(HCCI428), ovarian adenocarcinoma (NIHOVCAR-3), modularly thyroid
carcinoma (TT), glioblastoma (LNZTA3WT4) and lung carcinoma
(NCI-H1963) cells

[111–118]

RGD-PEG-Suc-PD0325901 In vitro & in vivo Glioblastoma (U87MG) cells [126]

VWCS In vitro Head and neck squamous cell carcinoma (HNSCC) and oral epidermoid
carcinoma (KB) cells

[140]

FWCS In vitro Head and neck squamous cell carcinoma (HNSCC) and oral epidermoid
carcinoma (KB) cells

[141]

Therapeutic peptides target cell cycle

p16 In vitro Pancreatic cancer (AsPC-1 and BxPC-3) cells [166]

Bac-7-ELP-p21 In vitro Ovarian carcinoma (SKOV-3) cells [75]

Pen-ELP-p21 In vitro Cervical carcinoma (HeLa) and ovarian carcinoma (SKOV-3) cells

Therapeutic peptides induce cell death

TAT-Bim In vitro & in vivo Murine T-cell lymphoma (EL4), pancreatic cancer (Panc-02) and melanoma
(B16-F10) cells

[193]

Poropeptide-Bax In vitro Melanoma (SK-MEL-28) cells [194]

R8-Bax In vitro & in vivo Cervical carcinoma (HeLa) and murine mammary carcinoma (TS/A) cells [194]

CT20p-NP In vitro & in vivo Breast cancer (MCF-7 or MDA-MB-231) and colon cancer (HCT-116) cells [195]

RRM-MV In vitro Squamous cell carcinoma (COLO16) and malignant melanoma (MM96L), and
murine melanoma (B16-F10) cells

[197, 199]

RRM-IL12 In vitro Mouse melanoma (B16-F10) cells [197]

Therapeutic peptides target tumour suppressor protein

PNC-27 In vitro Cervical carcinoma (HeLa), colon cancer (SW1417 and H11299), breast cancer
(MDA-MB-453 and MCF-7), osteosarcoma (SAOS2), leukaemia (K562), pancreatic
cancer (MIA-PaCa-2) and melanoma (A-2058) cells. Rat k-ras-transformed
pancreatic cancer (TUC-3) and transformed endothelial (E49) cells

[214, 216, 217]

PNC-21 In vitro Cervical carcinoma (HeLa), colon cancer (SW1417 and H1299), breast cancer
(MDA-MB-453), and osteosarcoma (SAOS2) cells. Rat k-ras-transformed pancreatic
cancer (TUC-3) and transformed endothelial (E49) cells

[214]

PNC-28 In vitro & in vivo Breast cancer (MDA-MB-453), colon cancer (H1299 and SW1417), osteosarcoma
(SAOS2), cervical carcinoma (HeLa) and pancreatic cancer (MiaPaCa-2) cells. Rat
k-ras-transformed pancreatic cancer (TUC-3) and transformed endothelial (E49) cells

[214, 219, 232]

Marqus et al. Journal of Biomedical Science  (2017) 24:21 Page 3 of 15



The second group of therapeutic peptides are cell
penetration peptides (CPPs). These peptides are 5–30
AA in length and can translocate through the plasma
membrane and transport cargos ranging from small
molecules (e.g., DNA, siRNA and plasmid) to oligonu-
cleotides and proteins and as such provide a promising
mechanism for drug delivery [38]. These CPPs are
hydrophobic in nature and are mainly composed of
basic residues, and play an important role in the
interaction and insertion of peptides into the cell mem-
brane [17]. They are taken up by the cell either by an
energy-independent (direct translocation) [39] or energy-
dependent (endocytosis and pinocytosis) process [40, 41].
The internalisation of these peptides depend on several
factors including the size of the transported cargo [39],
temperature [42], peptide concentration [42, 43] and cell
type [44]. An example of a CPP is the trans-activator of
transcription (Tat). The Tat peptide is derived from the
human immunodeficiency virus (HIV) and is easily able to
cross the cell membrane [45]. Intracellular cargos carried
by this peptide across the plasma membrane include anti-
sense oligonucleotides [46], liposomes [47], therapeutic
agents [48], small interfering RNA (siRNA) [49, 50] and
nucleic acids [51]. Recently Lim et al. [52] designed a
novel CPP called BR2 which is 17 AA peptide based on
the CPP motif of buforin IIb. This peptide was cytotoxic
against HeLa cells, HCT116 human colon cancer cells
and B16-F10 mouse melanoma cells but not NIH
3 T3 mouse fibroblasts, HaCat human keratinocytes
and BJ human fibroblasts [52]. BR2 was shown to
interact with gangliosides on the cell membrane of
thee tumour cells [52]. Doxorubicin conjugated to the
Tat peptide was taken up by drug resistant tumour
cells such as human breast cancer (MCF-7 and MCF-
7/ADR) and AT3B1 rat malignant prostate cells
resulting in their death [53].
The third group of peptides are the tumour-targeting

peptides (TTPs). These peptides target markers such as
receptors expressed on the tumour cell membrane [21].
RGD contains the sequence Arg-Gly-Asp which recog-
nises and binds to integrin ανβ3 and ανβ5 [54]
expressed on the membrane of lung cancer [55], melan-
oma [56], brain tumours [57], ovarian carcinoma [58]
and breast cancer cells [59]. This peptide (RGD) could

be used as a drug delivery system due to its ability to be
internalised into the cell [60]. Xiong et al. [61] fused the
RGD peptide onto the surface of sterically stabilised
liposomes (SSL) (a modified liposome with hydrophobic
polymer (PEG) on its membrane [62]) loaded with doxo-
rubicin. As a result, RGD-SSL-Dox enhanced doxorubi-
cin’s efficacy against murine B16-F10 and human A375
melanoma cells grown in vitro as well as B16-F10
tumours grown in vivo in mice [61].
Another TTP peptide is NGR, which contains a Asn-

Gly-Arg sequence. NGR binds to aminopeptidase N
(APN) (also known as CD13) which is highly expressed
by endothelial tumour cells such as scirrhous gastric
cancer [63], pancreatic cancer [64] and non-small cell
lung carcinoma [65]. Chen et al. [66] fused NGR pep-
tides to PEGylated LPD (liposome-polycation-DNA)
nanoparticles for the intracellular delivery of either c-
myc siRNA and/or doxorubicin in HT-1080 human
fibrosarcoma cell xenografts. The c-myc siRNA inhibited
the expression of the c-myc protein and induced apop-
tosis in HT-1080 cells grown both in vitro and in vivo
[66]. The co-delivery of siRNA and doxorubicin signifi-
cantly inhibited the growth of HT-1080 xenografts in
mice [66].

Strategies to overcome peptide limitations
Recently, many mechanisms have been developed to
overcome the limitations of these therapeutic peptides.
In order to overcome their poor cell permeability; vari-
ous CPPs have been used to enhance the intracellular
delivery of peptides [67]. The Tat peptide was conjugated
with multiple pro-apoptotic peptides (KLAKLAK)2 sepa-
rated by a caspase-3 cleavage site [68]. When this
peptide was taken by mouse melanoma and human
breast cancer cells, it activated endogenous caspase-3
which then cleaved the Tat-KLA peptide resulting in
release of the pro-apoptotic peptide (KLAKLAK)2 [68].
This peptide induced apoptosis in these cells in vitro as
well as inhibiting the growth of mouse melanoma xeno-
grafts in mice [68]. This peptide induced apoptosis in
the numerous cancer cell lines such as non-small cell
lung carcinoma (A549), cervical carcinoma cells (HeLa),
breast cancer cells (MCF-7), and malignant melanoma
cells (A375) [69]. To enhance the selectivity and

Table 2 Therapeutic peptides and their uses (Continued)

Tat-αHDM2 In vitro & In vivo Melanoma (MM-23, MM-24 and MM-26), retinoblastoma (Y79 and WERI),
osteosarcoma (U2OS), and cervical carcinoma (C33A) cells

[220]

Therapeutic peptides target transcription factors

Int-H1-S6A, F8A In vitro Breast cancer (MCF-7) cells [230]

Pen-ELP-H1 In vitro Breast cancer (MCF-7) cells [76]

BACl-ELP-H1 In vivo Glioma (U-87 MG and D54) and murine glioma (C6) cells [231]
aUnless specified otherwise, all cell lines are human in origin
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specificity of Tat-KLA peptide for tumour cells, it was
conjugated to the BRBP1 peptide (12 AA) which was
previously identified to possess affinity for human breast
cancer cells MDA-MB-231 that metastasize to the brain
and where they were renamed 231-BR cells [70]. The
BRBP1-Tat-KLA peptide significantly reduced the viabil-
ity and migratory capacity of 231-BR cells grown in mice
and was cytotoxic to human breast cancer subtypes
(BT-474 and MDA-MB-231) [71].
Elastin-like polypeptides (ELPs) are biopolymers that

contain a pentapeptide (Val-Pro-Gly-Xaa-Gly) repeat se-
quence. These biopolymers are sensitive to temperature
and undergo a phase transition from soluble to insoluble
and form aggregates at 40-42 °C [72]. ELP has been used
for various delivery systems such as small drug mole-
cules [73], peptides [74–76], antibodies [77], proteins
[78] and plasmid DNA [79]. It has the potential to target
the delivery of peptides or drugs to solid tumours [80].
Meyer et al. [81] have shown increased ELP accumula-
tion (~two-fold) in tumours that were locally treated
with hyperthermia compared to those that were not.
ELP also enhanced the delivery of ELP-conjugated thera-
peutic peptides, which inhibited the attachment, spread-
ing, migration and invasion of human ovarian cancer
cells in cell culture and also inhibited the metastasis of
ovarian cancer cells in vivo [82].
Multidrug resistance remains one of the major obsta-

cles of conventional cancer treatments [83]. Some anti-
cancer treatments are losing their effectiveness against
tumours which possess a resistant phenotype [84]. Some
tumour cells develop an intrinsic resistance to chemo-
therapeutic drugs, whereas others only develop resist-
ance after exposure [84]. Recently, ELPs have been used
to overcome drug resistance in some tumour cells. In
one study, a Tat-ELP-GFLG-Dox polypeptide consisting
of a Tat peptide fused at the N-terminal, ELP, a tetrapep-
tide linker (GFLG) which was used to release its drug
following cell entry and at the C-terminal a thiol reactive
derivative of doxorubicin WP936, was able to overcome
the efflux pumps in MES-SA/Dx5 and NCI/ADR-RES
human uterine sarcoma cells [85]. Moreover, this poly-
peptide accumulated in these uterine sarcoma cells while
that of free doxorubicin was pumped out of the cell.
This polypeptide formed aggregates when these cells
were treated for 1 h at 42 °C [85] where its cytotoxicity
was enhanced ~20-fold as a result [86].
Penchala et al. [87] recently developed a new strategy

for enhancing the in vivo half-life of peptides without
compromising their potency. They conjugated a number
of peptides to a small molecule called AG10, which
binds with high affinity and selectivity to the plasma
protein Transthyretin (TTR) [87]. Conjugating peptides
to AG10, through short linkers, allowed these peptides
to bind reversibly to TTR in human plasma. By

recruiting the bulk of TTR (56 kDa protein), they were
able to protect the peptides against proteases in serum
and also decrease the filtration of the peptides though
the kidneys [87]. A number of peptides were used in the
study including tripeptide (Arg-Gly-Lys-MCA), neuro-
tensin (13 AA neuropeptide), native gonadotropin-
releasing hormone (GnRH: 10 AA peptide hormone)
and D-6-Lys-GnRH (GnRH agonist: 10 AA). The half-
life of the native GnRH was at least 13-fold longer than
its non-native agonist [87]. Evaluation of the D-6-Lys-
GnRH conjugate in male rats showed that binding to
TTR extended its circulatory half-life which resulted in
enhanced efficacy as measured by elevated levels of
circulating testosterone [87].
PEGylation is another approach to increase the half-

life of peptides. It involves conjugating polyethylene
glycol (PEG) to macromolecules such as proteins or pep-
tides; increasing the size of a polypeptide and reducing
its renal filtration and clearance [88]. However, the prob-
lem with PEG or PEG-conjugated macromolecules is
that it induces the production of antibodies against PEG
in healthy individuals exposed to PEG-containing com-
pounds (e.g., cosmetics, pharmaceuticals and processed
food) or in patients treated with PEG-conjugated agents
[89]. Therefore, a new recombinant polypeptide has
been developed termed XTEN. It is 864 AA in length
and mimics PEG, and is a stable, soluble protein and has
reduced immunogenicity [90]. The conjugation of XTEN
into a protein or peptide resulted in an increase in their
half-life [90, 91]. Teduglutide is a glucagon-like peptide-
2 (GLP2) analogue that has a half-life of ~ 3–5 h in
human serum [92] when conjugated with XTEN, its
half-life increased in mice, rat and monkey serum by 34,
38 and 120 h, respectively [93].
Xiao et al. [94] conjugated site-specific modified beta-

ine onto the amino-terminal end of bacterial xanthine
guanine phosphoribosyltransferase (CG-GPRT) and the
HIV inhibitory peptide CG-T20. Betaine reduced the ag-
gregation and increased the solubility of both the protein
CG-GPRT and the peptide conjugated CG-T20 [94].
Hao et al. [95] fused the Tat peptide into the C-terminal
of HPRP-A1 α-helical (anti-cancer peptide) which is
derived from Helicobacter pylori. The fusion of Tat pep-
tide into HPRP-A1 peptide significantly increased its
uptake compared to that of the unfused peptide. The Tat
peptide was shown to protect HPRP-A1 peptide from
degradation as well as exerting specific anticancer activ-
ity against human cervical carcinoma cells [95].

Therapeutic peptides target signal transduction
pathways
Bidwell et al. [17] have classified therapeutic peptides
into three main groups, based on their biological targets:
(a) signal transduction pathways, (b) cell cycle regulation
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and (c) cell death pathways [96]. Many therapeutic pep-
tides have been designed to inhibit mitogen-activated
protein kinases (MAPKs). MAPKs are serine/threonine
kinases and have an important role in cellular signal
transduction cascades and trigger intracellular events in
response to external growth factors, hormones, nutrient
status or stress [97]. These signals are transmitted into
the nucleus resulting in changes in gene expression [98].
Constitutive activation of the MAPK pathway has been
observed in pancreatic, colon, lung, ovarian and kidney
tumours [99]. The three main characterised subfamilies
of MAPKs found in mammalian cells include the extra-
cellular signal-regulated kinases (ERKs), c-Jun amino ter-
minal kinases (JNKs) and p38 MAPKs (Fig. 1) [100].
ERK plays an important role in cellular proliferation and
differentiation [101] and is deregulated in one-third of
all human cancers such as breast, pancreatic, lung
adenocarcinoma, thyroid, bladder, liver, kidney and mel-
anoma [102].
Developing small molecule inhibitors that target the

Ras/Raf/MEK/ERK pathway has great potential for can-
cer therapy [103]. There are three Ras isoforms
expressed in mammalian cells: H-Ras, K-Ras and N-Ras
[104] and they control signalling pathways that are re-
sponsible for cell growth and malignant transformation
[105]. Oncogenic mutations of Ras are found in many
human cancers derived from the skin, cervix, ovary,
urinary tract, stomach, lung, breast, prostate, thyroid,
and large intestine [104]. The Ras gene encodes for a
p21 protein which becomes oncogenic and causes malig-
nant transformation of cells when a single substitution
base mutation occurs in glycine at position 12 and

glutamine at position 61 [106]. The ras-oncogene p21
peptide, called PNC-7 is 35–47 residues long and is de-
rived from the GAP-binding region of p21 found to in-
hibit cell transformation [107]. Kanovsky et al. [108]
found that two ras-p21 peptides PNC-7 and PNC-2 (96–
110 residues) induced phenotypic reversion of both ras-
transformed rat pancreatic cancer cells (TUC-3) to their
untransformed phenotypes. These peptides were linked
to penetratin a CPP; which induced the phenotypic re-
version of ras-transformed human fibrosarcoma cells
(HT-1080) to its untransformed phenotype [109]. Both
peptides induced the death of MIA-PaCa-2 human pan-
creatic cancer cells by inhibiting ras-p21 phosphoryl-
ation [109], however it did not cause these cells to
undergo phenotypic reversion.
In animals, peptides that possess anti-cancer activities

are mainly found in the immune system, central nervous
system, digestive system, heart, bone, muscle and skin
[110]. Vesely et al. [111–118] investigated four types of
cardiac natriuretic peptides, including atrial natriuretic
peptide (ANP), vessel dilator peptide, long-acting natri-
uretic peptide (LANP) and kaliuretic peptide. These four
peptides normally circulate in the human body and have
shown anti-cancer activity against human cancers, in-
cluding: pancreatic, breast, prostate, renal, colon, ovar-
ian, melanoma, brain, thyroid and lung. Sun et al. [119]
observed that these four peptide hormones inhibited the
activation of ERK1/2 by epidermal growth factor (EGF)
and insulin in human prostate adenocarcinoma and pan-
creatic cancer cells. Moreover, the vessel dilator and
kaliuretic peptide exhibited anti-cancer properties
against human prostate carcinoma by inhibiting Ras

Fig. 1 MAPK signalling pathways (Adopted from [100])
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activity [120]. Sun et al. found that LANP and ANP sig-
nificantly inhibited (80-90%) MEK1/2 and ERK1/2 activ-
ity in human prostate adenocarcinoma cells [121–123].
MEK plays an important role in phosphorylating ERK

that amongst its roles induces the transcription of pro-
teins that control apoptosis [124]. Li et al. [125] devel-
oped a series of conjugates consisting of the RGD
peptide fused to a MEK inhibitor derived from a small
molecule of the MEK1/2 inhibitor PD0325901. The
RGD-MEKI conjugates inhibited ERK1/2 signalling and
halted melanoma A375 cells at the G1 cell cycle check-
point in an analogous manner to that of PD0325901
[125]. Hou et al. [126] fused the RGD peptide with
PD0325901 and a PEG-linker and this RGD-PEG-Suc-
PD0325901 peptide was very efficient in targeting
human glioblastoma U87MG αvβ3 receptor positive
cells by blocking ERK1/2 signalling and inhibiting
metastasis of these xenografts grown in mice [126].
The second subfamily of MAPKs signalling molecules

is JNK1/2. JNK1/2 activity is elevated in many cancers
including those from the colon [127], pancreas [128],
breast [129], blood [130], head and neck [131], stomach
[132], and brain [133]. JNK peptide inhibitors, derived
from the JNK interacting protein (JIP), were conjugated
into the N-terminal region of the inverted Tat peptide
(JIP10-Δ-TATi) or conjugated into a peptide consisting
of nine arginines (JIP10-Δ-R9) [134]. These JIP peptides
inhibited JNK2 activity and were 10-fold more selective
in binding to his isoform rather than to JNK1 or JNK3
and were shown to inhibit the metastasis of murine
mammary cancer cells in vivo [134].
The third MAPK subfamily member is p38. Levels of

p38α are elevated in many cancers such as head and
neck squamous cell carcinoma (HNSCC) [135], breast
[136], gastric [137] and non-small cell lung cancer [138].
It is composed of two binding sites; an ATP-binding site
and a Asp-Phe-Gly (DFG) motif [139]. Recent studies
have focused on design peptides that are inhibitory to
p38α. The synthetic tetrapeptide VWCS, based on the
ATP-binding site, inhibited p38α activity in HNSCC
[140]. This peptide bound to the ATP binding site of
p38α and inhibited the proliferation of HNSCC and KB
human oral cancer cells in a time- and dose- dependent
manner [140]. The FWCS tetrapeptide is based on the
DFG site and inhibited the growth of HNSCC and KB
cells in a dose- and time-dependent manner [141].

Therapeutic peptides that target the cell cycle
The cell cycle is composed of four distinct phases, in-
cluding two gap phases G1 and G2 as well as S-phase
and M-phase [142]. The progression of a cell through
the different phases of the cell cycle is under the control
of several classes of cyclin-dependent kinases (Cdks).
Cdks belong to a large family of catalytic subunits of

heterodimeric serine/threonine protein kinases [143]. In
mammalian cells, as the cells progresses from G1 to mi-
tosis a number of kinase subunits are expressed. In G1
phase, Cdk4 and Cdk6 in association with cyclin-D play
a vital role in the cell progressing during this phase
[144]. The cyclin E-Cdk2 complex regulates the move-
ment of the cell from G1 into S-phase [145]. In S-phase,
cyclin A-Cdk2 complexes control the progression of
cells through this phase [146] while cyclin B-Cdk1 pro-
motes the progress of the cell in mitosis (Fig. 2) [147].
The activation of Cdks in the cell is regulated by Cdk

inhibitors (CKIs) [148]. There are two families of CKIs:
(1) INK4 proteins which include: p16INK4a, p15INK4b,
p18INK4c and p19INK4d and (2) CIP/KIP proteins which
include; p21cip1/waf1, p27kip1 and p57 kip2 (Fig. 2) [149].
The tumour suppressor protein p16 inhibits the progres-
sion of cells from G1 to S phase by binding to Cdk4/6
which prevents cyclin D from binding to this kinase
[150]. The cyclin D-Cdk4/6 complex phosphorylates the
retinoblastoma (pRb) protein that results in the release
of the transcription factor E2F which then promotes the
progression of the cell from G1 to S phase [151]. Muta-
tions of p16 have been observed in tumours of the
breast [152], prostate [153], skin [154], oropharynx
[155], cervix [156], colon [157] and brain [158]. The ex-
pression of exogenous p16 in transfected cancer cells re-
stored the activity of wild type p16 and induced
apoptosis in human brain, prostate, lung and bladder
cancers [159–163]. Fahraeus et al. [164] identified a 20
AA synthetic peptide of the p16 protein (84–103 AA)
that bound to Cdk4/6 which inhibited the formation of
the cyclin D-Cdk4 complex, as well as pRb phosphoryl-
ation. This prevented the entry of HaCat, MCF-7 breast
cancer cells, MRC-5 fibroblasts, HT-29 colon carcinoma
cells and 3 T3 mouse fibroblasts from entering the S-
phase of the cell cycle [165]. When p16 was fused with
the CPP, penetratin, it inhibited the growth of both p16
negative and pRb positive human pancreatic cancer cell
lines (AsPC-1 and BxPC-3) by arresting cells in G1
phase [166]. This peptide significantly suppressed the
growth of human pancreatic cancer and prolonged the
survival of mice without showing severe systemic
toxicity [167].
The cyclin-dependent kinase inhibitor p21 induces cell

cycle arrest, inhibits DNA replication and regulates
apoptosis [168]. It also inhibits cell cycle progression by
two mechanisms: (a) inhibiting the activity of cyclin-Cdk
complex and (b) proliferating cell nuclear antigen
(PCNA) function which results in arrest at the G1 and
G2 cell cycle checkpoints as well as inhibiting DNA rep-
lication [169]. Peptides derived from the p21 C-terminal
region contain an inhibitory domain that inhibits the ac-
tivity of PCNA [170]. Warbrick et al. [171] showed that
the C-terminal region of p21 (144–151 AA) interacted
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with PCNA and inhibited DNA replication. Chen et al.
[19] observed that a p21 peptide fragment (139–164
AA) also bound to PCNA. Pan et al. [172] showed that
both p21 and a p21 peptide fragment (139–160 AA) de-
rived from the C-terminal region inhibited DNA repair in
HeLa cells induced by alkylating agents or UV radiation.
Ball et al. [173] found that a p21 peptide (141–160 AA)
from the C-terminal domain region inhibited cyclin-Cdk4
activity and arrested cell cycle at the G1 cell cycle check-
point. This p21 peptide was fused with penetratin inhib-
ited both cell proliferation and cell cycle progression in
human colon cancer cells by two independent mecha-
nisms involving cyclin-Cdk and PCNA [174]. The p21
peptide (139–164 AA) fragment that was fused into pene-
tratin inhibited cyclin-Cdk activity and induced necrosis
in human lymphoma cells [175].
Recently, the p21 peptide was conjugated into ELP

and Bac-7, a CPP. The Bac-7-ELP-p21 polypeptide
inhibited proliferation of human ovarian cancer cells by
arresting cells at the S and G2/M phases of the cell cycle
[75]. This was most likely caused by the inhibition of
pRb activation. The inhibitory effects of this polypeptide
were enhanced when the cells were treated with hyper-
thermia (42 °C). Hyperthermia induced the ELP to from
aggregates that bound to the cell membrane which were
internalised by endocytosis [75]. Mikecin et al. [176]
used a combinational treatment of bortezomib (a prote-
asome inhibitor) and the carboxyl-terminal of p21 pep-
tide fused into ELP. The synergistic treatments of
bortezomib and p21-ELP-Bac polypeptide at 42 °C pre-
vented human androgen-independent prostate cancer
cells to pass through the cell cycle or proliferate result-
ing in higher apoptotic death than compared to cells
exposed to a single treatment [176]. Massodi et al. [74]

conjugated the p21 peptide into ELP and a penetratin
peptide. This Pen-ELP-p21 peptide displayed anti-
proliferative effect against both human cervical and
ovarian carcinoma cells.

Therapeutic peptides induce cell death
There are two main types of cell death: apoptosis and
necrosis. Apoptosis, or programmed cell death, is a nor-
mal process that plays an important role during develop-
ment and ageing; it maintains stable cell populations
within tissues [177]. It can also be a defence mechanism
as it initiates an immune response to cell damage by dis-
eases or noxious agents [177] and is a complex process
involving different pathways [178]. When a defect occurs
at any stage along this pathway, it can result in malig-
nant transformation, tumour metastasis and resistance
to cancer therapeutics [178]. The two main pathways of
apoptosis are the intrinsic and extrinsic pathways. The
intrinsic pathway is initiated by the release of apoptotic
factors such as cytochrome c from the mitochondrial
membrane and it is highly regulated by proteins belong-
ing to the Bcl-2 family [179]. The Bcl-2 family proteins
contain up to four conserved Bcl-2 homology (BH)
domains (BH1, BH2, BH3 and BH4) as well as a trans-
membrane domain (TM). There are two main groups of
Bcl-2 proteins: (a) anti- and (b) pro- apoptotic Bcl-2
proteins. The anti-apoptotic Bcl-2 proteins contain all
four BH domains (BH1-BH4) and these proteins are:
Bcl-2, Bcl-XL, Mcl-1, Bcl-W, Bfl-1, and Bcl-B (Fig. 3)
[180]. The pro-apoptotic Bcl-2 proteins can be divided
into multi-domain and BH3-only proteins. The multi-
domain proteins contain only three BH domains (BH1,
BH2 and BH3 but not BH4) such as Bax, Bak and Bok

Fig. 2 Cell cycle in eukaryotic (adopted from [147])
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(Fig. 3). The BH3-only proteins including Bid, Bim,
Puma, Bad, Noxa, Hrk, Bik, Bmf, Bcl-G and spike. They
contain a limited number of BH domains but not all
contain a TM domain (Fig. 3) [181].
Apoptosis is highly regulated by Bcl-2 family protein

members; pro-apoptotic proteins (e.g., Bax and Bak)
promote cell death whereas anti-apoptotic proteins (e.g.,
Bcl-2 and Bcl-XL) promote cell survival [182]. When a
cell receives apoptotic signals initiated from stress, DNA
damaging agents or infection, the BH3-only proteins
activate Bax and Bak (a) either directly by binding to
them or by (b) binding to anti-apoptotic proteins and in-
directly activating these proteins. Once activated, the
pro-apoptotic proteins Bax and Bak oligomerise and
form pores in the mitochondrial outer membrane which
triggers the release of cytochrome c thereby inducing
the apoptotic intrinsic pathway [183]. When cytochrome
c is released into the cytosol, it binds and activates
apoptotic protease-activating factor-1 (APAF-1) and
procaspase-9 as well, resulting in the formation of the
apoptosome [184]. The apoptosome activates the initi-
ator caspase, caspase-9 which in turn activates pro-
caspase-3 and −7 and promotes apoptosis [185]. When
the balance of anti-apoptotic and pro-apoptotic proteins
are disrupted, it results in deregulation of apoptosis in
the affected cells [178]. In cancer, the overexpression of
anti-apoptotic proteins protect tumour cells from apop-
tosis [178] and has been observed in many human can-
cers including prostate [186], neuroblastoma [187],
kidney [188], breast cancer [189], acute lymphoblastic
leukaemia [190], chronic lymphoblastic leukaemia [191]
and non-Hodgkin’s lymphomas [192].
Kashiwagi et al. [193] fused the CPP Tat peptide onto

the BH3 domain derived from Bim. This Tat-Bim pep-
tide induced apoptosis in mouse T-cell lymphoma, mel-
anoma and pancreatic cancer cells which was enhanced
when these cells were exposed to radiation [193].

Poropeptide-Bax is a peptide (106–134 AA) derived
from the pore-forming domain of Bax, which induced
cytochrome c release from SK-MEL-28 human melan-
oma cells resulting in these cells undergoing apoptosis
[194]. The amino-terminal region of poropeptide-Bax
peptide was fused with a poly-Arginine sequence,
termed R8-Bax peptide, which induced cell death in
HeLa cells in a time- and dose- dependent manner as
well as the regression of TS/A-pc mice mammary car-
cinoma cells in vivo [194].
The CT20 peptide (CT20p) (173–192 AA) is derived

from the C-terminal α-9 helix of the pro-apoptotic pro-
tein, Bax [195]. This peptide shares some similarities
with AMP’s structure including: hydrophobic, cationic
amino acids and two lysines [195]. CT20p encapsulated
into hyperbranched polymeric nanoparticles (HBPE-
NPs) disrupted the membrane integrity of human breast
and colon cancer cells in vitro as well as causing the re-
gression of human mammary adenocarcinoma xeno-
grafts grown in mice [195]. CT20p-NP was cytotoxic
toward human metastatic breast cancer cells (MDA-MB-
231), but not to human normal breast epithelial cells
(MCF-10A) [196].
Another cell death-inducing peptide is RRM-MV

[197]. RRM-MV is a synthetic peptide that has been
computationally designed using the resonant recognition
model (RRM). It is a short linear peptide (18 AA) that
mimics the bioactivity of the myxoma virus protein M-
T5 [197]. RRM was also used to design a negative 22
AA control peptide, RRM-C, which was not cytotoxic
[197]. The M-T5 protein interacts with Akt (serine/
threonine kinase protein) and this interaction regulates
myxoma virus permissiveness in cells [198]. The cyto-
toxic effects of RRM-MV peptide was investigated on
the mouse melanoma (B16-F10), human squamous cell
carcinoma (Colo16), mouse macrophage (J774) and
Chinese hamster ovary (CHO) cell lines. RRM-MV was

Fig. 3 Structure represents features of Bcl-2 family proteins including anti-apoptotic and pro-apoptotic (adopted from [181])
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only cytotoxic to B16-F10 and Colo16 cells while the
negative peptide RRM-C was not [197]. Almansour et al.
[199] also observed that RRM-MV was cytotoxic to hu-
man MM96L melanoma cells and Colo 16 squamous
cell carcinoma cells but not epidermal melanocytes
(HEM) or dermal fibroblasts (HDF) [199].
RRM was also employed to design a bioactive peptide

possessing interleukin-12 (IL-12) activity. IL-12 is a het-
erodimeric pro-inflammatory cytokine that is produced
by dendritic and phagocytic cells in response to patho-
gens during an infection [200]. IL-12 has anti-tumour
activity in murine models of melanoma, lung, kidney,
ovarian and colon cancers [200]. In total 13 IL-12 pro-
teins from different species have been analysed using
RRM [201]. The bioactive peptide analogue IL-12 de-
vised from mouse was cytotoxic to mouse melanoma
(B16-F10), mouse dermal fibroblasts, Chinese Hamster
Ovary (CHO) and mouse macrophages (J774) [201],
however the negative control peptide RRM-C was shown
to be non-cytotoxic [201].

Therapeutic peptides target tumour suppressor
protein
p53 is often found mutated in many human cancers
[202–204], the majority (75%) of which are missense
mutations [205]. Other mutations include frameshifts
(insertions or deletions) 9%, non-sense mutations 7%
and silent mutations 5% [206]. Normally, endogenous
p53 levels are low because of its rapid degradation by
ubiquitin-dependent proteolysis [207]. Its levels rise in
response to cellular stresses such as DNA damage [208]
and if there is a significant damage then it promotes the
cell to undergo apoptosis [209]. MDM2 binds to p53
and suppresses its activity as a transcription factor [210],
it can also promote its rapid degradation [211]. Several
studies have utilised different types of peptides derived
from the amino group of p53 that were designed to
block the interaction between MDM2 and p53 inter-
action, thereby preventing the rapid degradation of the
latter in the cell. Bottger et al. [212] reported that the
TIP peptide derived from the N-terminal MDM2-
binding domain region of p53 can inhibit its interaction
with MDM2. This led to an accumulation the p53 in the
cell as well as the activation of the p53 transcription fac-
tor [212]. The peptide homologue of p53 disrupted the
MDM2-p53 interaction in SA1 osteosarcoma cells that
overexpresses MDM2 [213]. This caused in an increase
in the level of p53 transcriptional activity and resulted in
the inhibition of colony formation as well cell cycle ar-
rest and increased levels of apoptosis [213].
Kanovsky et al. [214] synthesised three peptides from

the MDM2-binding domain of p53, PNC-27 (12–26
AA), PNC-21 (12–20 AA) and PNC-28 (17–26 AA).
These three peptides were attached to a cell penetrating

sequence at their carboxyl terminus. All three peptides
were cytotoxic against human metastatic colon adeno-
carcinoma cells, transformed rat brain capillary endothe-
lial cells, human cervical carcinoma, human metastatic
breast carcinoma cells, human non-small cell lung car-
cinoma and human osteosarcoma in vitro, but not to
non-cancerous cells such as rat pancreatic acinar cells
[214]. Do et al. [215] investigated the cytotoxicity of
PNC-27 peptide on human breast cancer cell lines:
MDA-MB-468 (mutant p53), MCF-7 (overexpressed
wild type p53) and MDA-MB-157 (null p53). They
found that PNC-27 induced necrosis in these breast can-
cer cells and this was p53-independent [215]. PNC-27
interacted with MDM2 in human leukaemia K562 can-
cer cells (p53 null) and caused pore formation resulting
in cell death [216]. This peptide interacted with HDM2
that is highly expressed on the membrane of MIA-PaCa-
2 human pancreatic cancer, MCF-7 breast cancer, A-
2058 melanoma and TUC-3 Rat k-ras-transformed
pancreatic cancer cells but not in normal cells [217].
This peptide also induced cell lysis in human breast
cancer cells [218].
Bowne et al. [219] found that the CPP, penetratin

which was conjugated in the carboxyl terminal end of
the PNC-28 peptide induced necrosis in human pancre-
atic cancer cells. PNC-28 created pores in the cell mem-
brane resulting in release of lactate dehydrogenase
(LDH) [219]. When the penetratin sequence was re-
moved from the PNC-28 peptide, human pancreatic
cancer cells underwent apoptosis by inducing caspase-3
and −7 levels [219]. The anti-HMD2 peptides were gen-
erated by fusing Tat peptide to a p53-derived peptide
that binds to HDM2 [220]. Tat-αHDM2 inhibited the
interaction of p53 and HDM2, resulting in the death of
several human cancer cell lines including: melanoma,
retinoblastoma, osteosarcoma and cervical carcinoma
[220]. In human osteosarcoma cells (U2OS), the addition
of Tat-αHDM2 increased p53 levels which caused an ac-
tivation of apoptotic genes (e.g., p21, Pig3, and Bax) and
halted the cell from cycling [220].

Therapeutic peptides target transcription factors
The Myc gene family encodes three transcription factors:
c-Myc, N-Myc and L-Myc which are involved in regula-
tion of various cellular processes such as cell growth and
death, cell cycle, differentiation and transcription [221].
Deregulated Myc proteins are found in many tumours
including breast [222], ovarian [223], small cell lung car-
cinoma [224], melanoma [225], cervical [226], multiple
myeloma [227] and gastric cancer [228]. The Myc pro-
tein contains a basic region following by helix-loop-helix
and a leucine zipper (BR-HLH-LZ) motifs which is a
family of DNA-binding proteins [229]. Draeger and Mul-
len [18] used a 14 AA peptide (H1-S6A, F8A) derived
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from the helix 1 (H1) C-terminal region of c-Myc which
inhibited c-Myc DNA binding. Giorello et al. [230]
joined the H1-S6A, F8A peptide with the penetratin
sequence from Antennapedia. This fused peptide, Int-
H1-S6A, F8A, inhibited cell proliferation and induce
apoptosis in MCF-7 human breast cancer cells as well as
blocking the activity of c-Myc [230]. The penetratin pep-
tide was fused with ELP and the c-Myc peptide inhibitor
(H1-S6A, F8A), and was called Pen-ELP-H1 [76]. Pen-
ELP-H1 inhibited the transcription of c-Myc genes that
prevented the growth of MCF-7 human breast cancer
cells in vitro. Hyperthermia enhanced the cellular uptake
of this polypeptide by ~13-fold compared to that seen at
37 °C [76]. This is most likely due to the formation of
aggregates that enhanced the uptake and delivery of this
peptide to the tumour target site [76]. The ELP was
fused into a CPP derived from bactenecin and c-Myc in-
hibitory peptide (H1-S6A,F8A), this peptide was called
BAC-ELP-H1. This peptide inhibited proliferation in hu-
man and rat glioma cells in vitro and reduced tumour
volume by 80% in rat glioma [231].

Conclusion
In this review, we have highlighted the potential of using
therapeutic peptides in treating cancers. Therapeutic pep-
tides can be designed to target almost any protein of inter-
est due to ease of synthesis and high target specificity and
selectivity. Various therapeutic peptides have been select-
ively designed to target signal transduction pathways, cell
cycle, tumour suppressor proteins as well as transcription
factors. These therapeutic peptides bind specifically to
those target protein to which they are designed for. They
induce cell death in various cancer cells in vitro and in
vivo. They show selectivity in targeting cancer cells with-
out damaging untransformed cells. Although there are ad-
vantages of using peptide-based cancer therapy, it does
have limitations. Various approaches have been used to
overcome peptides limitations such as using CPP for effi-
cient delivery of these anti-cancer peptides to their
tumour cell targets. Therapeutic peptides represent a new
and exciting approach for cancer therapy.
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