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ABSTRACT

The Wyoming Weather Modification Pilot Project randomized cloud seeding experiment was a crossover

statistical experiment conducted over two mountain ranges in easternWyoming and lasted for 6 years (2008–

13). The goal of the experiment was to determine if cloud seeding of orographic barriers could increase

snowfall and snowpack. The experimental design included triply redundant snow gauges deployed in a target–

control configuration, covariate snow gauges to account for precipitation variability, and ground-based

seeding with silver iodide (AgI). The outcomes of this experiment are evaluated with the statistical–physical

experiment design andwith ensemblemodeling. The root regression ratio (RRR) applied to 118 experimental units

provided insufficient statistical evidence (p value of 0.28) to reject the null hypothesis that there was no effect from

ground-based cloud seeding. Ensemble modeling estimates of the impact of ground-based seeding provide an

alternate evaluation of the 6-yr experiment. The results of the model ensemble approach with and without seeding

estimated a mean enhancement of precipitation of 5%, with an inner-quartile range of 3%–7%. Estimating the

impact on annual precipitation over these mountain ranges requires results from another study that indicated that

approximately 30% of the annual precipitation results from clouds identified as seedable within the seeding ex-

periment. Thus the seeding impact is on the order of 1.5% of the annual precipitation, compared to 1% for the

statistical–physical experiment, which was not sufficient to reject the null hypothesis. These results provide an

estimate of the impact of ground-based cloud seeding in the Sierra Madre and Medicine Bow Mountains in

Wyoming that accounts for uncertainties in both initial conditions and model physics.

1. Introduction

Themain source of water in the western United States is

snowmelt from major mountain ranges. This resource is

renewed annually through snowfall thatmelts in the spring.

The timing of the snowmelt corresponds well with the

spring growing season, allowing agriculture to exist in this

usually semiarid region. As the reality of climate change

becomes more evident, water managers are increasingly

concerned about the future amount and timing of snow-

melt. The recent report by the Bureau of Reclamation

(2012), ‘‘Colorado River BasinWater Supply andDemand

Study,’’ presents an in-depth analysis of the future of water

resources in the Colorado River basin, United States, and

concludes that future demand will likely outstrip the

available water supply when accounting for climate change

and expected increases in population. Thus, conservation

and other measures are needed to avoid a future water

crisis in this region. The report listed 13 measures to help

avert this crisis including the possibility of cloud seeding of

winter orographic clouds to increase snowpack.
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While orographic cloud seeding using silver iodide

(AgI) is commonly performed over many western U.S.

mountain ranges today, estimating the likely impact on

snowpack is difficult because the seeded snowfall signal

is small compared to the large and highly variable nat-

ural precipitation. It is impossible to know what the

natural precipitation would have been during a storm

that was seeded. Therefore, a randomized seeding pro-

gram, lasting multiple years and using multiple correlated

target areas, was recommended for theWyomingWeather

Modification Pilot Project (WWMPP; Breed et al. 2014,

hereafter B14) to provide the data needed to perform an

evaluation of the likely amount of extra precipitation

produced as a result of cloud seeding over two mountain

ranges in Wyoming.

The WWMPP following the design of B14 was a 6-yr,

randomized cloud-seeding experiment in operation from

2008 to 2013. The statistical results of the WWMPP, pre-

sented here, fail to reject the null hypothesis that there

is no seeding effect. While the statistical analysis indicates

a small, positive seeding effect, it is not statistically sig-

nificant (p value of 0.28), largely because of the relatively

small effect compared to the large natural variability. The

statistics could possibly be improved by conducting a

longer program, but the costs preclude such an option.

The WWMPP generated a wealth of data and provides

opportunities for further investigations of cloud seeding

based on the quality of the data collected and the length of

the experiment. Here, results of ensemblemodeling of the

WWMPP are presented in addition to the statistical

analysis of the physical experiment in section 2.

The ensemble modeling approach uses large num-

bers of ensemble members to evaluate the likely ground-

based seeding effect on precipitation during the

WWMPP. A modeling approach is possible because of

recent advances in computational and modeling capa-

bilities allowing thousands of simulations to be per-

formed (section 3). The use of multiple simulations of

a single case enables characterization of the seeding

signal within highly variable natural precipitation for

even small seeding effects. By using an ensemble of

model runs that are initialized and configured to rep-

resent the range of recognized uncertainties in the

model setup, an estimate of the seeding effect is pos-

sible using the ensemble mean and running the model

with and without the impact of seeding. However, before

trusting the ensemblemean, themodel has to be shown to

capture the essential physics of cloud and precipitation

formation. This can be accomplished through comparisons

with observations. This is done using the 6-yr quality-

controlled snow gauge dataset from the WWMPP. Dis-

cussion of results and final comments and conclusions

are presented in section 4.

2. Statistical results of cloud seeding from the

WWMPP

The WWMPP was undertaken to determine whether

seeding Wyoming’s orographic clouds with AgI enhances

the natural precipitation process resulting in a measur-

able increase in snowpack. The project design and

background are described in detail in B14, including the

design of the statistical evaluation. The evaluation was

primarily focused on a statistical, randomized crossover

design in which two similar ranges were observed con-

currently. It also included a physical evaluation based on

observations and modeling studies. This approach follows

National Research Council recommendations that evalu-

ations of cloud seeding include statistical, physical, and

modeling components (National Research Council 2003).

For two mountain ranges whose precipitation is well

correlated, a randomized crossover statistical design al-

lows robust results to be computed with fewer experi-

mental units (EUs), as long as the two ranges are well

correlated, compared to two ranges evaluated in-

dependently using a single-target design (Gabriel

1999). In the WWMPP, an EU was chosen to be a 4-h

period of time during whichAgI ground generators on one

of the two mountain ranges are active. The seeded range

was randomly selected. Based on historical SNOTELdata,

the daily snowfall between the Medicine Bow Mountains

and Sierra Madre has a temporal correlation of ;0.5,

sufficiently high to use these two ranges for the statistical

evaluation using a randomized crossover statistical design.

The experimental design (B14) specifies that seeding of

one range was to take place during 4-h EUs when condi-

tions in the two ranges meet certain criteria: 1) 700-hPa

temperature less than 288C (from sounding or model),

2) supercooled liquid water (SLW) present in both ranges

(from radiometers ormodel), and 3) 700-hPawinddirection

between 2608 and 3158 (from sounding or model). The

conditions these criteria characterize are considered opti-

mal for AgI seeding effects as described more fully in B14.

Snowfall measurements using project gauges during

EUs from the 6-yr project showed an average correla-

tion of 0.58 between the two mountain ranges. This is

slightly better than that estimated from SNOTEL data

prior to the experiment, further supporting the use of

the crossover design for this project.

The statistic specified for the evaluation (B14) is the

root regression ratio (RRR; Gabriel 1999). This statistic

requires data collected from covariate gauge sites located

in areas upstream and crosswind of the two ranges. This

allows for better accounting of the natural precipitation

(Fig. 1; Gabriel 1999).

B14 describes the design, instrumentation, approach

to selecting EUs, and proposed evaluation for the
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FIG. 1. Summary of EUs for all 6 years of the WWMPP. (a) History of accumulation of EUs

over the 6 years as a function of project day. Red periods showwhen the project was suspended

because of snowpack conditions exceeding 120% of normal. Figure courtesy of Bruce Boe.

(b) Checkerboard plot of the seeding decision for the Sierra Madre by year. Red indicates

a seeded case and green is an unseeded case. (c) Checkerboard plot of the 4-h precipitation

averaged at both target sites (mm).
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WWMPP. The WWMPP was conducted for six winters

(2008–13) and collected 154 EUs, each consisting of 4-h

blocks of precipitation data at target and covariate sites.

This number was reduced to 118 through quality-control

procedures. Figure 1 provides information about the

EUs over the entire project, and Table 1 gives the dis-

tribution of EUs by month and year, with the eliminated

cases shown in parentheses for each month.

In this study, the primary and associated analyses

of the WWMPP are presented based on the quality-

controlled 4-h snow gauge precipitation data collected

during the 118 acceptable EUs. In Fig. 1a, the number of

EUs is plotted as a function of project day and color

coded according to the year the EU occurred. Pre-

cipitation at each of the target sites is also shown and

visually demonstrates a strong correlation between the

two. A color-coded plot of the seeding decisions by case

and year for the Sierra Madre is shown in Fig. 1b. Since

seeding occurred either in the Sierra Madre or in the

Medicine Bow Mountains (but not both), a similar plot

(not shown) would have the exact opposite shading for

seeding in the Medicine Bow Mountains. Note that the

seed decisions are randomly distributed as expected

from the experimental design.

a. Data collection and quality control

The topography of the Sierra Madre and Medicine

Bow Mountains is shown in Fig. 2, along with instru-

mentation used for the WWMPP. Seeding was conducted

using 16 ground-based AgI generators (B14) located at

the red triangles in Fig. 2. Eight generators are located

upstream (to the west) of each range. Precipitation was

measured in both ranges at the eight gauge sites (black

squares with plus signs within), four sites for each range.

The target site for the Sierra Madre was identified as the

Highway 47 (HY) gauge location and the target site for

theMedicine BowMountains was located at the Glacier

Lakes Ecosystem Experiments Site (GL). The other

gauge sites served as either covariates (upstream or

crosswind sites), or as consistency checks for the target

gauges [Battle Pass (BP) and Towner Lake (TL)]. Each

gauge site was equipped with three snow gauges to

allow for appropriate quality-control procedures to be

applied. The Battle Pass and Towner Lake sites were

initially considered as part of an extended target site

but were later eliminated because of the failure of the

Vaisala VRG snow gauges located at those sites. A de-

scription of the snow gauge deployment and type of

gauges used is presented in B14.

Measuring snow is challenging because of a number of

factors including wind-induced undercatch, snow accu-

mulation (capping) on the gauge leading to random snow

dumps, and temperature-dependent weighing sensors

(Rasmussen et al. 2012). As a result, a key element of the

design (B14) included quality-control protocol for the

snow gauge data to ensure the best possible data was

utilized for the project evaluation. The appendix pres-

ents the snow gauge quality-control methods including

an innovative methodology to eliminate the effects of di-

urnal temperature variability on Electronic Technologies,

Inc. (ETI) gauges.

To reduce the introduction of bias while performing

the gauge analysis, a primary analyst was assigned the

quality-control task at the beginning of the project. All

information on seeding days, times, and ranges was

withheld from the analyst. Three passes through the

precipitation data were conducted. The first pass con-

sidered the daily raw gauge data during all six winters.

This quality-control process categorized each day and

time period as one of good, bad, or questionable data

quality and provided an initial dataset for the statistician

to use to calculate preliminary statistics.

The second pass involved a joint analysis by the pri-

mary analyst and a second analyst for only the gauge

data from days containing EUs, however, still working

without knowledge of which range was seeded and the

time of seeding. This second analysis provided a quality-

control evaluation that modified only about 2% of the

TABLE 1. The number ofWWMPPEUs by year andmonth. In parentheses, the EUs eliminated because of QCon the precipitation data

are shown in regular font and those EUs eliminated because of generator performance issues in boldface font. In situations where an EU

was excluded both by precipitation data QC and by generator performance issues, it is considered eliminated by precipitation data. This

occurred in two months for two cases each (indicated by a plus sign). Months in which suspension criteria were met are indicated by an

asterisk.

Month 2008/09 2009/10 2010/11 2011/12 2012/13 2013/14 Total

Nov 0 (0, 0) 2 (0, 1) 4 (0, 0) 1 (0, 1) 0 (0, 0) 1 (0, 0) 8 (0, 2)

Dec 12 (0, 2) 9 (0, 0) 6 (2, 0) 3 (1, 0) 5 (0, 0) 6 (1, 0) 41 (4, 2)

Jan 8 (1, 0) 7 (0, 1) 5 (0, 2) 3 (1, 0) 6 (0, 0) 11 (1, 0) 40 (3, 3)

Feb 9 (1, 0) 6 (1, 0) 9 (0, 1) 6 (0, 0) 6 (6, 01) 7 (5, 01) 43 (13, 11)

Mar 9 (3, 0) 0 (0, 0) 0* (0, 0) 2 (0, 0) 0 (0, 0) 4 (1, 0) 15 (4, 1)

Apr 1* (1, 0) 6 (2, 0) 0* (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 7 (3, 0)

Total 39 (6, 3) 30 (3, 2) 24 (2, 3) 15 (2, 1) 17 (6, 01) 29 (8, 01) 154 (27, 9)
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cases that were accepted during the first pass by the

primary analyst.

The third and final pass used the temperature-

corrected data resulting from applying the corrections

given in the appendix. This final analysis was conducted

by the primary and secondary analysts as well as the

analyst that conducted the gauge quality control (QC) of

the ETI gauge data. These three analysts were chosen

based on their more than 50 years of combined experi-

ence analyzing snow gauge data (Rasmussen et al. 2012,

1999; Ikeda et al. 2010) from projects associated with the

FederalAviationAdministration (FAA),NationalOceanic

and Atmosphere Administration (NOAA), and the World

Meteorological Organization (WMO).

About 10% of the categorizations made in the second

pass through the data were modified based on the third

analysis. If bad or questionable data existed, or data

were missing at any of the eight gauge sites during an

EU, that EU was eliminated from the dataset. This

quality-control procedure resulted in the elimination of

27 EUs (;17%) and are indicated by the numbers in the

parentheses of Table 1. An additional nine cases were

eliminated as a result of AgI generators failing to per-

form as specified in B14. These are indicated by the

boldface numbers in parentheses in Table 1. The final

number of EUs was thus reduced to 118. This dataset

was used for the primary statistical analysis.

b. Primary statistical analysis

The primary statistical analysis follows the design

described in B14 and consists of a statistical evaluation

using the RRR statistic. In the following section, the

environmental characteristics of the 4-h EUs is exam-

ined first to assess the consistency of the EUs, followed

by the primary statistical analysis results.

Each EU was called by the meteorologists working

for the seeding contractor, Weather Modification, Inc.

(WMI), based on the pre-established criteria (see B14

for details):

d 700-hPa temperatures less than or equal to 288C.
d 700-hPa wind direction between 2108 and 3158.

FIG. 2. Depiction of topography and instrumentation deployment in the Sierra Madre and

Medicine Bow Mountains for the WWMPP. HY was the target site for the Sierra Madre, and

GLwas the target site for theMedicineBowMountains. The covariate sites were SS andER for

the Sierra Madre and BR and CP for the Medicine Bow Mountains. Alternative target sites

were BP for the Sierra Madre and TL for the Medicine Bow Mountains.
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d The simultaneous occurrence of SLW in both ranges

as determined by the microwave radiometers.

These criteria were established by the project design

to produce a consistent set of EUs that would have a

high likelihood of exhibiting a seeding effect, while also

meeting the requirements for a crossover design. In the

following, we examine how well these conditions were

met throughout the years of the project.

Figure 3 uses the Saratoga soundings launched just

prior to or during most EUs to create box-and-whisker

plots of temperature, wind direction, wind speed, and

water vapor mixing ratio (an indication of the moisture

available in the atmosphere). Figure 3a shows that

the median 700-hPa temperature of the EUs ranged

between 298 and 2108C, with most of the values colder

than288C, consistent with case-calling criteria.Observed

wind direction at 700hPa ranged from 2108 to 3108

(Fig. 3b), also consistent with the case-calling criteria.

While not in the EU case-calling criteria, wind speed

and water vapor mixing ratio are shown in Figs. 3c and

3d. Median wind speeds at 700 hPa ranged from 12 to

22ms21with the highest wind speeds occurring in 2013/14

and the lowest in 2008/09. A plot of the ranges of wind

direction and wind speed (Fig. 4) shows the cases to be

relatively consistent from year to year. Atmospheric

moisture (as indicated by the 700-hPa water vapor

mixing ratio; Fig. 3d) per EU was very consistent from

season to season.

Cloud-top temperature was not a criterion for case

calling, yet may be a source of variability in cloud-

seeding efficacy. Therefore, the cloud-top temperature

from infrared satellite measurements was also examined

for each of the EUs (not shown). The results indicate

that the seasonal temperature medians ranged between

2228 and2268C. Cirrus often obscured lower clouds, so

this analysis may not accurately reflect the cloud-top

temperature of the seeded clouds. Other quantities not

considered are aerosol content and updraft velocity. In this

analysis, these quantities are assumed, for a given flow

regime, to be comparable across both mountain ranges.

Radiometer data collected at sites upwind of each

range (one instrument per range) indicate that SLW

was present in the EUs as required by the case-calling

criteria (Fig. 5). It is not possible to directly compare

the measurements at the Sierra Madre site (Savery,

Wyoming) with that of the Medicine Bow (Cedar

Creek) site given the complex geometry of the viewing

angles, siting relative to each range, and other factors.

These physical differences may be more significant

contributors to the observed differences between the

sites than the SLWdifferences themselves. Nonetheless,

FIG. 3. Box-and-whisker plots of 700-hPa (a) temperature, (b) wind direction, (c) wind speed, and (d) water vapor

mixing ratio from the Saratoga sounding for the EUs with available sounding data (115 of the 118 total EUs) during the

WWMPP by winter season. The red line indicates median values, the blue boxes represent the 25% and 75% inner

quartiles of the data, and the whiskers illustrate data beyond the inner-quartile range that are not considered outliers and

defined as anything beyond 1.5 times the interquartile range. The number of data points included in each season (one per

EU with data) are listed in (a) in blue. The gray shading indicates seeding criteria for temperature and wind direction.
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the results show that SLW above 0.02mmwas present in

the vast majority of EUs in both ranges.

Finally, the range of median precipitation from year

to year for the 4-h EUs (Fig. 6) was between 1.5 and

2.0mm, with a very small range in the monthly values.

There is a large difference (a factor of 3–5) in the

number of precipitation events occurring in December–

February compared with November, March, and April.

Yet, there is almost no difference in the precipitation

amount, probably reflecting the colder temperatures

and low water content during the winter months.

c. Primary statistical evaluation

The environmental analysis of the EUs shows that the

case-calling criteria were generally met, allowing us to

proceed to the primary statistical analysis using quality-

controlled snow gauge data from the EUs to perform the

primary statistical evaluation, as described in B14.

The requirements for confidence in a statistical test of

precipitation enhancement for theWWMPPwas set at a

(one tailed) statistical significance level of 0.05 tominimize

the potential for false-positive results and a statistical

power of 0.8 to control for false-negative results. The

RRR test statistic was used to compare precipitation

during seeded and unseeded events (Gabriel 1999; List

et al. 1999). The equation for the RRR statistic is given

below. A detailed description of the RRR statistic and

its derivation is given in B14.

A key aspect of the current program design is the use

of covariate gauge sites. Data at these sites are used to

create a statistical model that predicts differences in

measured natural precipitation between the targets.

This model does not use information about seeding ac-

tions and is used to estimate differences in precipitation

at the target sites due to natural variation. Accounting

for this difference reduces the impact of natural vari-

ability in the precipitation and thus makes differences

due to seeding easier to detect. This adjustment can be

accomplished by estimating the coefficients b1 and b2,

which minimize the value of the squared error:

[y
i
2 x

i
2 b

1
(z

1i
2 1)2 b

2
(z

2i
2 1)]2 , (1)

where yi and xi denote relative precipitation values

measured at the two target gauge sites (Y and X) and

FIG. 4. Inner-quartile range of 700-hPa wind speed and wind

direction of the 118 EUs for the six winter seasons of the project.

Center points represent the median of each distribution.

FIG. 5. Box-and-whisker plots (as in Fig. 3) of the radiometer

liquid water path (LWP) during EUs when data were available for

(a) the Sierra Madre radiometer and (b) the Medicine Bow radi-

ometer by winter season. The number of data points included in

each season (up to 240 per EU using 1-min data) are listed atop

each panel in blue.
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z1i and z2i denote relative precipitation values measured

at the two covariate gauge sites (Z1 and Z2). This results

in a multiple regression equation that relates the differ-

ences in relative precipitation at the two targets to the

relative precipitation at the two covariates (Gabriel 1999).

If the precipitation values from the covariate gauge sites

are not correlated with the precipitation values at the

target gauge sites, the coefficients b1 and b2, which rep-

resent weights of the covariate gauges, will approach zero.

This information is used to scale the root double ratio

(RDR) equation:

RDR5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n

i51

u
i
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�
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i51

(12 u
i
)y

i
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n

i51
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i
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n

i51
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v

u

u

u

u

u

u

t

: (2)

The precipitation values at the two targets for EU event

i are denoted by xi and yi. For this ratio test statistic,

ui 5 0 when target X is seeded and ui 5 1 when target Y

is seeded.

Equation (2) is scaled by the square root of product of

the covariate single ratios to provide the RRR equation,

RRR5
RDR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SR
b1

covariate1SR
b2

covariate2

q . (3)

The true, but unknown, population parameters b1 and

b2 are estimated by b1 and b2, which minimize Eq. (1).

In the denominator, SRcovariate1 and SRcovariate2 are the

single ratios for covariate sites 1 and 2. The entire de-

nominator in Eq. (3) adjusts the RDR statistic, the esti-

mated seeding effectwithout covariates for a double-barrier

design (B14). The adjustment depends on information from

the covariates, which are weighted by the strength of

the relationship between the precipitation differences at the

covariate and target gauge sites. For the analysis of the

WWMPP, the coefficients were determined at the end of

the experiment with the precipitation data that passed

the quality-control steps (118 experimental units). The

test statistic—RRR—is used to perform the null hy-

pothesis testing described next.

d. Statistical hypothesis

An RRR value of 1.0 indicates that there is no dif-

ference between seeded and unseeded populations.

Thus, for this study, evaluating the null hypothesis for

the ratio test statistic would beH0: RRR5 1.0. Since we

are interested in whether seeding leads to an increase in

precipitation, the alternative hypothesis is HA: RRR .

1.0. Thus, if the null hypothesis is rejected, the alternate

hypothesis (RRR. 1.0) is accepted indicating that there

is likely a seeding effect.

The evaluation of the p value, the probability that the

null hypothesis is correct, was done using a rerandom-

ization procedure as recommended in Brillinger et al.

(1978). The rerandomization procedure, also known as a

permutation test, is a nonparametric test, meaning that

it does not make any distribution assumptions. In the-

ory, the value of the test statistic is calculated under all

possible permutations of the seeding decision—that is,

every possible ordering of the seeding decision while

maintaining the same number of cases. The resulting

p value is the proportion of permutations that give a

ratio test statistic that exceeds that found by the exper-

iment. In practice, it is unrealistic to calculate all possi-

ble values of the test statistic, which is 118 factorial, a

number larger than 10190. Therefore, the seeding de-

cision is instead permuted a large number of times, in

our case, 100 000. For statistical significance, the p value

should be less than the chosen significance level (,0.05),

meaning there would be less than a 5% probability that

the null hypothesis is rejected by chance.

FIG. 6. Box-and-whisker plots of the 4-h precipitation from each of the eight WWMPP snow gauge sites for the

118 EUs during the WWMPP by (a) winter season and (b) month over all six winter seasons.
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The target-to-target (HY to GL) correlation was 0.58

(Table 2), with some variability from year to year. This

compares well with the estimated correlation prior to

the randomized seeding experiment (RSE) of 0.5 from

SNOTEL data and validates the randomized crossover

design statistical approach used in this study.

The RRR for the final dataset was 1.03 (p 5 0.28;

Table 2). The probability distribution of RRR values

arising from the 100 000 rerandomization cases is shown

in Fig. 7, overlain in red with the RRR from the

WWMPP, 1.03. Note that 28% of the rerandomization

cases fall to the right of RRR5 1.03, indicating that the

probability that the RRR value could have occurred by

chance is 28%, much higher than the p value of 5%

needed to reject the null hypothesis and accept the al-

ternate hypothesis that seeding is effective as specified

in the design of the experiment. Thus, the statistical

analysis fails to show that cloud seeding is effective. This

does not mean that there is no effect of cloud seeding as

the RRR value was 1.03, only that with the number of

EU cases collected (118) one cannot distinguish between a

small 3% seeding effect and background weather noise. If

there is actually a 3% effect, this small signal could be

detected by collecting more randomly determined cases,

but the number needed would likely be over 1000 based

on examination of the data.

While the WWMPP statistical experiment was not

able to show a cloud-seeding signal above the observed

weather noise, it did create a unique dataset of carefully

controlled double-barrier seeded and unseeded cases.

These data are valuable for further analysis such as an

ensemble modeling approach to evaluate the impact of

cloud seeding presented below. Such an approach is

effective because the direct seeding effect can be esti-

mated by running a model with and without seeding,

alleviating the need for large numbers of cases to reduce

the background weather noise as encountered in the

above statistical approach. However, large numbers of

simulations (ensemble approach) are still needed to

reduce the uncertainty of model forcing, model physics,

and transport dynamics in estimating the seeding effect.

While the model can be used to perform these types of

calculations, it needs to be grounded in the reality of sur-

face snowfall observations as well as upper-air soundings

and radiometer liquidwater tomake the results believable.

The unique set of observations collected by the WWMPP

provide these observations for the current study. The

following section describes the combined model–

observations ensemble approach to evaluate cloud

seeding during the WWMPP RSE.

3. Evaluation of the WWMPP using an ensemble

modeling approach

a. Description of ensemble modeling approach

The traditional statistical approach to cloud-seeding

evaluation involves a randomized seeding program in

which a target is randomly selected to either be seeded

or not seeded and a covariate measurement to account

for natural storm variability. This approach was applied

to the quality-controlled snow gauge data from the

WWMPP and resulted in a value of RRR 5 1.03 that

was not statistically significant (Table 2). While a sta-

tistical approach can provide robust results in cases in

which the seeding effect is relatively large, the number

of cases needed becomes quite high when the seeding

effect is small. This was the case for the statistical

analysis of the WWMPP program.

As part of the WWMPP, a cloud-seeding module

was developed by Xue et al. (2013a,b) and implemented

into the Weather Research and Forecasting (WRF)

Model through the Thompson (Thompson et al. 2008;

Thompson and Eidhammer 2014) microphysical

scheme. This allowed simulations of each EU with and

without seeding. The seeding effect could then be esti-

mated as the net increase in precipitation realized by

differencing the model runs with and without the

TABLE 2. Final summary statistics for the RSE.

Winter

seasons No. of EUs

Correlation

between targets

Ratio statistics

RRR P

2008–14 118 0.584 1.033 0.283

FIG. 7. Probability distribution of the RRR calculated by randomly

assigning seeding to each EU with replacement 100 000 times, using

the quality-controlled gauge dataset from theWWMPP (blue line).

The red line gives the RRR value calculated from the actual

seeding cases.
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seeding module activated. However, because of varia-

tions in precipitation due to model initial condition and

model uncertainty, one deterministic pair of simulations

for each of the EUs provides only one possible outcome

of the model-estimated seeding effect. To really char-

acterize the possible seeding effect from such a model

analysis requires accounting for variations in initial

conditions and model uncertainty through an ensemble

of model simulations.

An ensemble modeling approach applied to the EUs

of the RSE involves performing many simulations of

each EU using different initializations and model physics

configurations. Results from the ensemble modeling is

provided by the ensemble mean and the spread of the

ensemble members.

The ensemble approach has become standard practice

in weather forecasting since the 1990s based on Lorenz’s

(1963) groundbreaking results showing that small per-

turbations in the initial condition of the atmosphere can

lead to significant changes in the forecast, and thus a

single deterministic forecast is not likely representative

of the actual weather. Ensemble forecasting requires the

use of probabilistic methods to analyze the results of

running the ensemble members forced with appropriate

perturbations to cover the most likely possible inputs.

For the ensemble spread to accurately estimate confi-

dence and realistic variability (Slingo and Palmer 2011),

the ensemble needs to appropriately sample the likely

uncertainty in 1) the initial conditions driving the model

and 2) the uncertainty in the model formulation.

In the following, we use these guidelines in creating an

ensemble that estimates the impact of cloud seeding for

the RSE. Three requirements were established to opti-

mize the ensemble analysis of seeding effect:

1) The model physics need to accurately estimate pre-

cipitation over orographic barriers.

2) The seeding effect needs to be well characterized.

3) Sufficient numbers of ensemble members need to be

created to reliably estimate the likely seeding effect

and its variation.

Regarding the first requirement, Ikeda et al. (2010) and

Rasmussen et al. (2011, 2014) have shown that the WRF

model configured with the Thompson microphysics

(Thompson et al. 2008) is able to estimate orographic

precipitation inColorado andWyomingwithin 5%–10%.

Regarding the second requirement, Xue et al. (2013a,b)

developed a cloud-seeding module to estimate the

impacts of orographic cloud seeding using AgI for both

ground and airborne seeding. While the scheme has

been verified for AgI dispersion (Boe et al. 2014; Xue

et al. 2014), the seeding effect, while reasonable, has

not been directly tested. The various seeded ensemble

members investigated here attempt to capture this un-

certainty, recognizing that more research is needed to

have full confidence in the scheme. The recent Seeded

and Natural Orographic Wintertime Clouds: The Idaho

Experiment (SNOWIE) project (French et al. 2018;

Tessendorf et al. 2018) was largely motivated to reduce

this uncertainty, and data from this field program is

currently being analyzed and used to evaluate and im-

prove the seeding algorithm.

Details to satisfy the third requirement are included

in section 3b below (and Table 4). Briefly, for each

EU there are two boundary conditions, two planetary

boundary layer (PBL) schemes, and six microphysical

initializations (see Table 4) leading to eight model

configurations for each run. Three reanalyses were

used for model initialization, leading to 24 control

ensemble members for each EU for the natural/un-

seeded members. For the seeded members, three

possible seeding configurations were used to model

the likely impact of AgI on the cloud, leading to 72

ensemble members to bracket the range of seeding

effects for each EU. This results in the creation of

2832 (24 control configurations 3 118 EUs) unseeded

simulations and 8496 seeded simulations (3 seeding

configurations3 2832 control simulations) to estimate

the impact of seeding for the 118 EUs.

b. Ensemble formulation

Based on the above discussion, the WRF Model was

used to conduct model simulations for each EU by

running a 24-h simulation for the outer 2.7-km-grid-

spacing domain (Fig. 8a) and a 12-h simulation centered

on the time of the EU for the inner 900-m domain

(Fig. 8b). The inner domain is initialized 12 h into the

outer domain simulation. Table 3 provides further in-

formation on the model configuration used.

Since each EU is only 4 h long, the probability

of a single high-resolution simulation capturing the

snow gauge accumulation of precipitation for that

specific time period is quite low (Rossa et al. 2008).

However, by capturing the likely variability in ini-

tial conditions and model physics using an ensemble

approach, the model simulation of snow gauge accu-

mulation is significantly improved. Part of this im-

provement is because biases in the time-dependent

forcing of precipitation (i.e., moisture flux, synoptic

or mesoscale forcing) are reduced by the averaging

process used to produce an ensemble mean, and the

forcing due to orographic uplift is reinforced (Rasmussen

et al. 2011).

The following modeling approach and analysis method

(summarized in Table 4) was used to address these

requirements:
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1) Uncertainty in model forcing

ECMWF interim reanalysis (ERA-Interim), Cli-

mate Forecast System Reanalysis (CFSR), and North

American Regional Reanalysis (NARR) products are

used as initial and boundary conditions for all the

conditions in Table 4. These reanalyses represent

three of the most commonly used estimates of the

four-dimensional (4D) historical atmospheric condi-

tions currently available.

2) Uncertainty in boundary-condition treatment

Boundary conditions with and without hydrome-

teors are used. Traditional WRF boundary condition

treatment does not include hydrometeors at the

boundary between model domains; this capability

was added to the model for this experiment; bound-

ary condition column in Table 4.

3) Uncertainty in model physics for natural cloud and

precipitation processes

(i) Different PBL schemes are used to examine

any spread in the results because of the

treatment of turbulence in the boundary

layer (second column under control simula-

tion in Table 4).

(ii) Different cloud condensation nuclei (CCN)

concentrations are listed in the CCN column

in Table 4. The standard climatology (CCN in

Table 4) was based on 7 years of GOCART cli-

matology following Thompson and Eidhammer

(2014). The range of possibleCCN is represented

by 1/5 and 5 times the climatology for a clean and

polluted background.

(iii) Different ice nuclei (IN) parameterizations are

listed in the IN column in Table 4. The Cooper

(1986) ice nucleation parameterization (IN1)

and Meyers et al. (1992) ice nucleation param-

eterization (IN2) are used to represent different

ice initiation processes.

(iv) The ID column in Table 4 is used to reference

subsets of the PBL and microphysical schemes

listed in the three previous columns in Table 4

and both the seeding module configurations

described next.

FIG. 8. Outer and inner domains used for model simulation of each EU. (a) The outer domain has 27-km grid spacing and is run for

24 h per EU. (b) The inner domain has 0.9-km grid spacing and is run for 12 h per EU.

TABLE 3. Model configuration.

Domain (m) 2700 900

Horizontal grids 720 3 360 231 3 180

Vertical levels 81 terrain-following eta levels

Time step (s) 12 5

PBL scheme Mellor–Yamada–Nakanishi–Niino (MYNN) 2.5 order MYNN/Yonsei University (YSU)

Microphysics scheme Thompson and Eidhammer (2014) scheme Thompson and Eidhammer (2014) with the seeding

parameterization
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4) Uncertainty in seeding processes

(i) The different PBL schemes will impact the

seeding effect through AgI dispersion.

(ii) In the AgI nucleation column in Table 4 three

schemes are listed. AgI nucleation option 1

(AN1) follows the DeMott (1995) and Meyers

et al. (1995) parameterization. To capture the

likely uncertainties due to activation rate, the

default rate was decreased by a factor of 5

(0.2AN1) and increased by a factor of 5 (5AN1).

(iii) The AgI scavenging column in Table 4 includes

in AgI scavenging option 1 (AS1) AgI self-

coagulation, scavenging of AgI by hydrometeors,

and AgI dry deposition (Xue et al. 2013a). This

removal rate was decreased (increased) by a factor

of 5, that is, 0.2AS1 (5AS1), to capture the likely

uncertainty associatedwithAgI removal processes.

5) Uncertainty in spatial and temporal distribution of

precipitation

Precipitation in 3 3 3 grids surrounding the gauge

sites was analyzed to address spatial uncertainty of

the precipitation.

c. Verification of the ensemble modeling approach

The WRF Model results are compared to the RSE

gauge data to establish confidence that the model is able

to provide a reasonable estimate of precipitation over

the Sierra Madre and Medicine Bow Mountains using

the configuration presented in section 3a.

The distribution of differences between paired errors of

snow gauge observations and model-estimated precipitation

at the gauge sites acting as either control or target (re-

member that the target and control location varies fromEU

to EU because of the random assignment of seeding in the

crossover design) are shown in Figs. 9 and 10. The differ-

ences are nearly equally distributed about zero for every

model configuration. The results are given as box-and-

whisker plots and mean differences. The same paired error

analysis was conducted for each of the model configu-

rations for the covariate gauge sites and further supports

these conclusions (not shown). This indicates that there

was no single model configuration in the ensemble bi-

asing the statistical results. Moreover, these results show

that the ERA-Interim model initialization had the least

spread of error compared to the NARR and CFSR.

Figure 11 provides for the two target snow gauges

(HY and GL) and the four covariate gauges [Sandstone

(SS), Barrett Ridge (BR), Elk River (ER), and Chimney

Park (CP)] the distribution of the 4-h precipitation accu-

mulation differences of the ensemble mean to the obser-

vations for each EU. For each gauge, themodel ensembles

are separated by the three reanalyses used. The data pairs

are for the specific EU ensemble simulation (24 members

for each reanalysis) with the corresponding EU gauge ac-

cumulation. The results show that the model ensemble

mean is within 0.5mm of the 4-h observations 50% of the

time (boxplots). However, there are some outliers that

extend to ;3-mm difference when considering 5%–95%

of the data (whiskers). Overall, the ensemble mean pro-

vides a reasonable estimate of the observed precipitation

in that differences between the model ensemble mean

and the observations are near zero for all snow gauge sites,

and the distribution of the differences is nearly symmetric

about zero.

A direct comparison of the actual values of precipi-

tation to the model ensemble results from each EU is

TABLE 4. Matrix of ensemble simulations. The top row indicates whether the simulation is a control or seed simulation. The leftmost

column indicates the ensemble case for the control runs (C1–C8). The second column from the left indicates the type of boundary

condition used (HYD BC 5 hydrometeors in the boundary; NO HYD BC 5 no hydrometeor). The third column indicates the PBL

scheme used (MYNNorYSU). The fourth column indicates the CCN concentration used and the fifth column indicated the ice nucleation

scheme used. For example, ensemble C1 uses the MYNN PBL scheme, a CCN concentration of 100 cm23 and the IN1 scheme for the

control simulation. The sixth column (ID) indicates the ensemble case for the seeded simulations. The seventh column indicates the AgI

nucleation methodology used for the ensemble member, while the eighth column indicates the AgI scavenging approach used. AN1

nucleation is based onMeyers et al. (1992) and AS1 scavenging is based on Xue et al. (2013a). For example, ensemble seed simulation S1

usesMeyers et al. (1992)AgI ice nucleation (AN1) andXue et al. (2013a) scavenging (AS1) applied to all eight control simulations C1–C8.

Control simulations Seed simulations

ID Boundary condition PBL scheme CCN IN ID AgI nucleation AgI scavenging

C1 HYD BC MYNN CCN IN1 S1 AN1 AS1

C2 YSU CCN IN1

C3 MYNN 0.2 CCN IN1

C4 MYNN 20 CCN IN1 S2 0.2AN1 0.2AS1

C5 MYNN CCN IN2

C6 MYNN 0.2 CCN IN2

C7 MYNN 20 CCN IN2 S3 5AN1 5AS1

C8 NO HYD BC MYNN CCN IN1
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shown in Fig. 12a for GL and in Fig. 12b for HY. The

uncertainty in the observed 4-h precipitation at these

sites is less than 0.2mm, the width of the circles plotted.

While the observed precipitation amount is usually

contained within the spread of the ensemble, as

discussed above, in a number of cases it is not. While the

ensemble mean in most cases improves the precipitation

estimate over randomly choosing an ensemble member,

there are a number of cases where it does not. Thus,

while the present ensemble-mean approach improves

FIG. 9. Paired errors, observations2 ensemblemean, for the control site for all 118RSE cases (control in this case

can be either the HY or GL sites, depending on which range was not targeted for seeding). Error is observed 4-h

gauge-measured precipitation minus the model 4-h precipitation. (a) All 24 ensemble members per RSE case

initialized with CFSR, (b) all 24 ensemble members per RSE case initialized with ERA-Interim, and (c) all 24

ensemble members per RSE case initialized with NARR.
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the seeding estimate over choosing just one determin-

istic simulation, there are still some uncertainties in the

precipitation estimation. These uncertainties may be

reduced by increasing the ensemble size even further but

may also be due to the inherent difficulty of simulating

precipitation at a point in space for a very short period of

only 4 h. It should be noted, however, that the cases with

large uncertainty are relatively rare, as shown in Fig. 11.

Figure 13 shows, for each EU at the seeded target

gauge site, the difference between the mean of the

72 ensemble members characterizing the precipitation

estimated with the active seeding module and the mean

FIG. 10. Paired errors, observations2 ensemblemean, for the target sites for all 118RSE cases (target in this case

can be either theHYorGL sites, depending onwhich rangewas the target for seeding) for all 118RSE cases. (a)All

24 ensemble members per RSE case initialized with CFSR, (b) all 24 ensemble members per RSE case initialized

with ERA-Interim, and (c) all 24 ensemble members per RSE case initialized with NARR.
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FIG. 11. Distribution of EU paired errors by subtracting 4-h observed precipitation accumulation at each gauge

from the ensemble mean of the 24 ensemble members’ accumulation at each gauge. Each box-and-whisker plot

represents the paired differences of the 118EU cases for a particular EU snow gauge location (see Fig. 1 for details).

HY is the target in the Sierra Madre; GL is the target in the Medicine BowMountains; SS is the upwind covariate

site in the Sierra Madre; BR is the upwind covariate in the Medicine BowMountains; ER is the southern covariate

for the Sierra Madre; and CP is the southern covariate for theMedicine BowMountains. The box represents 25%–

75% of the differences, while the whiskers represent 5%–95% of the data. Outliers are shown as plus signs. The

mean difference is represented by the horizontal red line. Results are shown in each plot for the three different

analyses (CFSR, ERA-Interim, and NARR).
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FIG. 12. (a) Comparison of the ensemble-modeled 4-h precipitation for

each EU (box-and-whisker plot, median indicated by the open circle with

a dot at the center, 25% and 75% of range indicated by the thick blue

horizontal bar, 5% and 95% of the range by the light blue horizontal bar)

to the observed 4-h precipitation (open red circle) at the GL site (for both

target and control conditions). Thewidth of the red circle representing the

observations (0.2mm) is greater than the uncertainty of the data point

(typically 0.1mm). (b) As in (a), but for the HY site.
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FIG. 12. (Continued)
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of the 24 ensemble members representing the natural

precipitation expected for that target and that EU.

While there are a variety of seeding effects, the seeded

precipitation exceeded 0.4mm for only 3 EUs and ex-

ceeded 0.2mm on only 13 cases, about 10% of the EUs.

Smaller amounts are much more frequent. In a few ca-

ses, the seeding effect is slightly negative.

The frequency plot of the model-estimated seeding

(Fig. 14) shows that the seeding effect resembles a de-

creasing exponential distribution above 0.05mm. This

result is similar to the near-exponential shape of the

distribution of radiometer-measured andmodel-simulated

integrated liquid water (not shown), consistent with the

seeding effect being proportional to the amount of

supercooled liquid water present.

d. Evaluation of the WWMPP using the ensemble

modeling approach

The model ensemble-mean seeding effect for the

Sierra Madre and Medicine Bow target gauge sites, in-

dividually and combined, is given in Fig. 15. The results

show a mean model-estimated seeding effect of ;5%

for the two ranges. The 25th percentile is 3% and the

75th percentile is 7%. The actual statistical result from

the physical experiment is comparable to these results,

falling at the 25th percentile level (3%). Interpreting these

percentage increases requires some caution. They repre-

sent the possible increases in precipitation resulting from

seeding of the EUs generated by the WWMPP. They do

not represent the percentage increases in annual snowfall

from winter orographic seeding. Answering that question

requires understanding the fraction of precipitation that

may occur from the cases considered as EUs (Ritzman

et al. 2015). Ritzman et al.’s conclusionswere that the cases

considered by the WWMPP represent about 30% of the

annual precipitation expected over the two ranges from

snowfall. Taking these results at face value, along with the

results of Fig. 15, suggests that the expected impact from

seeding these two ranges, applying the criteria of the

WWMPP, is on the order of a 1.5% increase in the total

annual precipitation.

4. Summary and conclusions

The first part of this paper describes the statistical eval-

uation of the WWMPP randomized seeding experiment

(RSE), including a detailed description of the qual-

ity control processes used to screen the snow gauge

data. As part of the quality-control effort, a new and

robust method to correct ETI snow gauge data was

developed and discussed in the appendix.

FIG. 14. Number of ERA-Interim model-estimated seeding

effects for the target gauge sites, either GL or HY, estimated

from the model ensemble mean as a function of the estimated

effect (mm).

FIG. 13. ERA-Interim model-estimated seeding effect (seeding simulation 4-h precipitation accumulation minus control simulation

precipitation) for the targeted gauge site (mm), either GL or HY, in each EU from the model ensemble mean.
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There were 118 EUs that met quality-control and

seeding criteria. The statistical results using these

118 EUs collected over six years revealed that there was

insufficient statistical evidence (p value of 0.28) to reject

the null hypothesis that there was no effect of ground

seeding. While it may be possible to statistically reject

the null hypothesis by collecting on the order of 1000

cases for a 5% signal, the time and expense required

makes this prohibitive.

Instead of collecting additional cases at large expense,

an ensemble modeling approach to estimate the impact

of ground-based seeding was conducted and presented

in the second part of this paper. The modeling approach

has the advantage that both the conditions with and

without seeding can be simulated, allowing the differ-

ence of the model simulations to estimate the seeding

effect. An ensemble approach allows one to better ac-

count for uncertainty in initial conditions, model biases,

and random errors in the model simulations. A pre-

requisite to using a model, however, is that the simula-

tions must reasonably represent reality. The WWMPP

RSE comprehensive snow gauge, sounding, and radi-

ometer data were used to perform this function. The

comparison of the model ensemble simulations and the

snow gauge data per EU showed reasonable agreement,

with the model mean and median errors being close to

zero, and the distribution of errors in the paired com-

parison symmetric about zero error in most cases.

It should be noted, however, that while in the majority

of cases the ensemble mean improved the estimate of

precipitation over a single deterministic simulation, in

some cases the observed 4-h precipitation was signifi-

cantly different than the ensemble mean. Since the

seeding effect is calculated from the difference of a

seeded and unseeded simulation, the estimated seeding

effect may still be reasonable. As these cases are ran-

domly distributed (Fig. 11), any bias in the results con-

tributed by these relatively few cases is estimated to be

small.

The model ensemble seeding effect was estimated

with the 24 model ensemble members for each of three

reanalysis forcing datasets, with a total of 8946 simula-

tions to simulate each of the 118 EUs. This approach

minimized potential biases due to time variation of

forcings of precipitation for each EU and emphasized

the orographically forced component of precipitation.

The results of the model ensemble in which the paired

seeding effect was estimated for each ensemble member

produced a mean precipitation enhancement of 5%,

with an inner-quartile range of 3%–7%. These results

provide an estimate of the impact of ground-based cloud

seeding in the Sierra Madre and Medicine BowMountains

in Wyoming for the RSE EUs that accounts for key

uncertainties in both initial conditions and model

physics. As indicated by Ritzman et al. (2015), the RSE

cases account for only 30% of the total precipitation, thus

the overall seeding impact on annual precipitation over

this region is ;1.5%.

a. Next steps

This study estimated the additional precipitation

likely produced by ground-based seeding with AgI over

the Sierra Madre and Medicine Bow Mountains in

Wyoming using a seeding module within the WRF

Model. The next step is to use additional observations to

further verify that the model estimate of the seeding

effect is reasonable. This would require specific field

studies for both ground and airborne seeding. The re-

cent SNOWIE field effort (Tessendorf et al. 2018;

French et al. 2018) has provided an excellent dataset for

such an evaluation.

b. Application of the ensemble approach to other

mountain ranges

It is tempting to apply the ensemble approach to other

mountain ranges to estimate potential seeding effects.

However, verifying that themodel is estimating snowfall

and supercooled liquid water correctly through observa-

tional comparisons is still necessary. It is also important to

verify that the model-generated wind and thermodynamic

structure of storms are reasonable through comparison

with appropriate data from the mountain range of in-

terest. If such a comparison is performed and the com-

parison reasonable and the model-generated seeding

effect is also verified, then the ensemble modeling ap-

proach provides a powerful tool to estimate the likely

seeding effect of AgI seeding in orographic clouds for

both ground and airborne seeding. While this approach

FIG. 15. Distributions of the fractional increase in precipitation at

the Medicine Bow Mountains target (GL), the Sierra Madre target

(HY), and both (average of the two) based on the difference be-

tween seeded and unseeded model ensemble simulations (8946 EU

cases simulated). The horizontal bar is the median and the red 3

is the mean value. The top and bottom of the boxes represent the

quartile ranges.
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requires a significant investment of time and money, the

statistical approach to evaluate cloud-seeding programs

using snow gauge observations from either ground or

airborne seeding can often require over 1000 cases to

detect the signal from the noise, depending on the

strength of the a priori unknown seeding signal.
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APPENDIX

Precipitation Gauge Data Quality Control

This appendixdescribes anewmethodologyusedaspart of

the precipitation gauge quality-control procedures to remove

diurnal temperature variations from the ETI gauge dataset.

The load cell used tomake the weightmeasurement of

snow accumulation for the ETI gauges has a significant

temperature dependence, leading to biased precipitation

estimates under changing environmental conditions. For

instance, a diurnal temperature change is obvious in the

raw precipitation data, especially on clear days (Fig. A1).

This section describes a methodology to remove much of

the temperature effect on the raw ETI weight measure-

ments. The methodology calculates a correction factor for

each ETI gauge for every seeded and unseeded day be-

tween November 2008 and April 2014.

The main steps in the methodology are as follows:

1) Find a nonprecipitating 24-h period before and after

a precipitation event containing a 4-h experimental

unit (EU).

FIG. A1. (a) Time history of raw ETI precipitation accumulation (blue line) and temperature measurements

(green line) on a clear day (relatively humidity ,80%) at SS. The raw precipitation data decrease with a temper-

ature decrease between 0000 and 0500 UTC [1700 and 2200 mountain standard time (MST)] and increase with

a temperature increase from 1400 UTC (0700 MST). (b) Scatterplot of anomalous ETI precipitation accumulation

vs anomalous temperature on the same day. Anomalous measurements are the departures from the 24-h average

values. Red line is the least squares fit of the data. For this dataset, the slope of the best fit f is 0.11mm 8C21 and the

correlation coefficient is 0.997. (c) Time history of raw and corrected ETI precipitation accumulation. (d) FFT of

the raw ETI precipitation data, indicating frequency and wave amplitude of the raw ETI precipitation.
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2) Subtract 24-h average ETI accumulation and tem-

perature from the raw data to discern departures

from the mean.

3) Fit a least squared line through the anomalous

raw precipitation P0 and temperature T0 data to

obtain a linear equation relating the precipita-

tion perturbation to the temperature perturbation:

P0
5 fT 0

1 b. The slope f represents the change in

precipitation accumulation with respect to a change

in temperature.

4) Examine the quality of the clear-day data (described

below). Repeat steps 1–3 until at least two good clear

days are found.

5) Finally, correct the raw precipitation measurement

for each EU (in between the two nonprecipitation

days) by

P
f
5P

r
1DP ,

where Pf is the corrected precipitation accumulation

and Pr is the raw precipitation accumulation—both be-

ing zeroed out at the beginning of the 4-h EU. The value

of DP is the temperature-induced measurement re-

sponse computed from

DP5 f 3 (T
r
2T) ,

where f is the correction factor from 3), Tr is the tem-

peraturemeasurement, andT is the average over the 4-h

evaluation period (f is the time-weighted average value

from the two values found in step 3).

Figure A1b shows the raw and corrected ETI mea-

surement on a clear day at Sandstone as an example. The

4-h accumulation was determined after a 9-min running-

mean filter was applied to the datasets.

The quality of the clear-day ETI data chosen was

checked based on the goodness of the least squared fit

(residual of the fit and correlation coefficient) and by

examining the fast Fourier transform of the raw pre-

cipitation data. The clear-day ETI data, from which the

correction factor f is derived, was rejected if

1) The correlation coefficient was ,0.95

2) Residual of the fit was.350mm (i.e., large scatter in

the data)

3) The amplitude of raw precipitation data oscillation

for subhourly frequencies was .0.01mm.

Figure A1d shows an example of fast Fourier trans-

form (FFT) plot from good clear-day data. For this day,

the amplitude of the precipitation measurement excur-

sion induced by the diurnal temperature change is as

large as 0.55mm (see vertical line indicating wavelength

of 1 day). As a contrast, measurement noise related to

natural variability of the sensing transducer is much less

than 0.01mm (see vertical line indicating wavelength of

1 h). Figure A2b is the FFT plot from rejected clear-day

data. The subhourly precipitation oscillation is much

larger than the previous example, and the time series

(Fig. A1a) clearly shows a problem in the data. Obviously,

the correlation coefficient would be less than the threshold

value if there were no temperature-induced precipitation

measurement excursion. In this case, f is zero.
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