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1. Introduction

In a forensic context, age prediction is a useful tool in the identi-
fication of victims as well as unknown donors of crime scene traces.
DNA methylation has recently emerged as an interesting biomarker of
chronological age. This epigenetic phenomenon, in which the addition
of a methyl group to cytosine forms 5-methylcytosine, occurs mainly at
CpG dinucleotides [1]. Biological ageing is reflected in the epigenome
and is characterised by a global hypomethylation [2], but certain re-
gions in CpG islands undergo hypermethylation [3]. Throughout the
genome, many CpG sites have been uncovered of which the methyla-
tion status is highly correlated with chronological age. These CpGs have
been successfully used as markers for forensic age prediction. However,
in previous studies we and others [4–7] have pointed out that the mean
average deviation (MAD) between predicted age and actual age be-
comes larger as age increases. The prediction models used in those stud-
ies were built using on ordinary least squares regression, a linear regres-
sion method which is based on several assumptions, one of which being
that the variance remains constant across the data [8]. This assumption
was not fulfilled in the data of our previous study [4], which was het-
eroscedastic, meaning that there was non-constant variance. This het-
eroscedasticity should be taken into account when developing an age
prediction model based on methylation data, such that the increasing
prediction error can be reflected in the resulting prediction intervals.

To this end, Freire-Aradas et al. [5] have proposed a quantile regres-
sion model, in which an X quantile regression line will be drawn so that
100*X% of the data points are below that line. They predicted chrono-
logical age based on the median (0.50 quantile) and used the 0.10 and
0.90 quantiles for the limits of their prediction intervals. An alterna-
tive method for dealing with heteroscedasticity is weighted least squares
(WLS) regression, in which every datapoint receives a weight based on
the expected variance of that point. Based on the expectation that the
model will fit the data better in areas of lower variance, the weights are
inversely proportional to the variance. Hence datapoints with a low ex-
pected variance will receive a higher weight on the fit of the model [8].

The scope of the current study is to develop these three linear re-
gression models based on the same dataset so that their performances
can be compared. Besides assessing the accuracy in terms of the MAD,
the ability to produce appropriate prediction intervals will also be eval-
uated. When providing an age estimation in support of a police inves-
tigation, it is more convenient to estimate prediction intervals rather
than just reporting an average error. Since the prediction error in-
creases with age, the average is only accurate for people in the mid-
dle of the age spectrum of the study population, whereas prediction
intervals could change in size with increasing age to properly reflect
this growing error. In addition, intervals are more straightforward to in-
terpret and they avoid tunnel vision from the investigators, by provid-
ing a range wherein the age of the victim or suspect is situated with a
large amount of certainty. In this study, 95% prediction intervals will be
used to compare the success rate of the models, whereby a prediction is
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considered to be correct if the actual age falls between the limits of the
predicted interval. The dataset will be that of our previous study [4].

2. Results

Methylation data was obtained through pyrosequencing of bisulphite
converted DNA of 206 blood samples, for a total of 16 CpGs in 4 genes
(ELOVL2, EDARADD, PDE4C and ASPA) (Supplementary table S1). The
most highly correlated CpG of every gene was selected and included
in the dataset: CpG1 for EDARADD, PDE4C and ASPA, and CpG6 for
ELOVL2 [4]. These data were submitted to regression modelling using
three different methods (OLS, WLS and quantile regression), the results
of which are discussed below.

2.1. Quadratic relationships

Evidence of non-linearity of varying degrees was observed in the re-
lationships between methylation measurements and age. Fig. 1 shows
the residuals plots for linear models predicting age in function of the
markers. A parabolic shape indicates that a quadratic regression model,
where the response variable is modelled by the squared predictor vari-
able, is more appropriate than a linear one. The decision of whether a
quadratic term should be included based on these plots is rather subjec-
tive. Since there were only four CpGs to consider as predictor variables,
we opted to include the quadratic term of every CpG in the final dataset.

2.2. Age prediction models

A stepwise variable selection was conducted to select the best pos-
sible combination of predictors, being that which explains most of
the variability in chronological age without overfitting the data. The
selected group of predictor variables included the methylation val-
ues of ASPA CpG1, the squared methylation values of ELOVL2 CpG6,
and both the methylation values and the squared values of EDARADD
CpG1 and PDE4C CpG1. The resulting models predicted chronolog-
ical age according to a regression formula of the form
y=α+β1*x1

2+β2*x2+β3*x2
2+β4*x3+β5*x4+β6*x4

2, where x1 is the
methylation level (in percentage) of ELOVL2 CpG6, x2 is the methyla-
tion level of EDARADD CpG1, x3 is the methylation level of ASPA CpG1
and x4 is the methylation level of PDE4C CpG1. The intercepts (α) and
the coefficients (β) are provided in Table 1. In the quantile regression
model, the limits of the 95% prediction intervals are calculated accord-
ing to two separate formulas for the 0.025 and 0.975 quantiles. To il-
lustrate the increasing error with age, an error plot was made based on
the OLS regression model and this is shown in Fig. 2. Error plots of the
WLS and quantile regression model are provided in Supplemental Fig.
1. A Shapiro-Wilk test was performed on the residuals of each model
and they were found to be normally distributed (p=0.5085 for OLS,
p=0.1189 for WLS and p=0.132 for quantile regression). Normal QQ
plots of these residuals are included in Supplemental Fig. 2.

Fig. 1. Residuals plot for each predictor. The residuals were obtained from linear regression models fitting age in function of the predictor variable in question. For every age estimate
(fitted value) on the x-axis, the deviation with the actual age (residual) is given on the y-axis. The numbers in the plot indicate, by sample number, data points that are flagged by R as
possible outliers. Note to the editor: This is a 2-column fitting image.

Table 1
R output for the three regression models. Intercepts (α) and coefficients (β) of the regression formulas are given for every model, along with the residual standard error (RSE) and adjusted
R2 value for the least squares models. *For quantile regression, an RSE and adjusted R2 were calculated manually. It should be noted that since R2 is a least squares concept, the adjusted
R2 for quantile regression is an analogous R2, calculated using the median age rather than the mean, as described in the methods.

Model OLS WLS Quantile regression

0.5 quantile 0.025 quantile 0.975 quantile

α 28.482919 25.6875818 20.92851 34.42774 47.35468
β1 0.005849 0.0067625 0.00621 0.00654 0.00720
β2 −0.890577 −0.6723617 −0.072758 −1.31748 −0.78918
β3 0.006739 0.0046379 0.00542 0.01082 0.00606
β4 −0.178642 −0.1354516 −0.12192 −0.17347 −0.39766
β5 1.501235 0.9016329 1.30874 1.32473 1.29014
β6 −0.012502 −0.0038442 −0.00905 −0.01558 −0.01204
RSE 4.664 1.698 4.702* n/a n/a
Adj. R2 0.9534 0.9701 0.9527* n/a n/a
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Fig. 2. Prediction error plotted against chronological age for the prediction obtained from the ordinary least squares regression model. Note to the editor: This is a single-column fitting image.

2.3. Validation using a training and test set

The root-mean-square error (RMSE) was used for the validation of
the models since it can be easily calculated based on the predictions
made for new data, rather than the residual standard error (RSE) which
requires a number of degrees of freedom. Since the errors are squared,
larger errors have a disproportionately larger influence on the mean.
Therefore, the variance between errors is also taken into account, which
is not the case when calculating the MAD. Table 2 shows the results of
the model validation when randomly splitting the data into a training
set (n=137, average age 44.52years) and a test set (n=69, average
age 42.77years). A comparison of the RMSEs before and after valida-
tion indicates that there is no overfitting of the data. In fact, for every
method the model fit is slightly better when applying the training model
to the test set, compared to when a model is fitted on and then applied
to the same data.

2.4. Comparison of performances

Model performance was compared in terms of the MAD and of the
ability to correctly predict a subject’s age within the limits of the given
prediction interval. The MAD was used as a measure of accuracy so that
the results may easily be compared to other literature on this subject,
where this is the most often used metric. It is also more straightforward
to interpret than the RMSE as a depiction of prediction error since it
describes the average deviation alone, without the added implication of
taking variance among errors into account. The deviations are consis-
tent (within 0.06years) across all model types, as shown in Table 3. The
average width of a prediction interval is remarkably smaller in quantile
regression compared to OLS and WLS, which results in a success rate
below 95%. The samples which were incorrectly predicted are indicated
by red crosses in Fig. 3.

The major difference between the models, however, was the grad-
ual increase in prediction interval range with increasing age in WLS
and quantile regression, whereas in OLS regression the intervals re

Table 2
Validation results for the three regression models. RMSE=root-mean-square error.

Model RMSE Test RMSE

Ordinary least squares 4.58 4.29
Weighted least squares 4.67 4.44
Quantile regression 4.64 4.46

Table 3
Comparison of the three regression models. MAD=mean absolute deviation.

Model MAD

Average
prediction
interval range

Correct
predictions

%
Correct

Ordinary
least
squares

3.21 19.89years 67 97.10%

Weighted
least
squares

3.20 18.59years 66 95.65%

Quantile
regression

3.26 16.02years 63 91.30%

mained constant across all ages. This difference is illustrated by the
graphs displayed in Fig. 3.

3. Discussion

The OLS, WLS and quantile regression models showed an equally
strong performance in terms of absolute prediction errors. This indicates
that putting a lower weight on datapoints with a higher expected vari-
ance, does not heavily alter the overall fit of the prediction model. In
other words, the datapoints with high variance did not have much effect
the slope of the regression line in OLS regression. It also shows that in
this data there is no difference in predicting the median age (as quan-
tile regression does), in comparison to predicting the average age. In the
OLS and WLS models, where the average age is predicted, the residuals
are normally distributed around the regression line, which explains why
the predicted average and median age are quite similar. If the residu-
als were to fall mostly underneath the regression line due to high out-
liers, for instance, predicting the median age would shift the regression
line downwards to compensate for this as the assumption of normality
is dropped [12].

Although the accuracies in terms of absolute errors are similar across
all three models, there is a notable difference in how the prediction in-
terval limits progress with increasing age. The intervals clearly adapt
to the increasing prediction error by becoming increasingly wider in
WLS and quantile regression, whereas their limits run parallel to the re-
gression line in the OLS model. In WLS regression, predictions are ob-
tained in roughly the same fashion as in OLS regression, but the addi-
tion of weights according to the expected variance allows for predic-
tion intervals to correctly reflect the accuracy of the predicted ages.
However, this did result in a slight drop in success rate, with three
samples being incorrectly predicted, compared to two with the OLS
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Fig. 3. Predictions for the test set with each of the three regression models, plotted against the actual chronological age. The red crosses are samples for which the obtained prediction
interval did not include the actual age of that individual. (A) In ordinary least squares (OLS) regression, the prediction interval range remains constant across age. (B) In weighted least
squares (WLS) regression, the intervals become gradually larger as the prediction error increases with age. (C) In quantile regression, the intervals also become gradually larger and they
are not symmetrical around the predictions allowing a non-normal distribution of the variance. Note to the editor: This is a 2-column fitting image. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

model. Nonetheless, a correct prediction was still obtained for 95.65%
of the samples, an acceptable success rate considering 95% prediction
intervals were used. While predictions obtained through OLS regression
failed for two individuals above the average age of 42years, the three
individuals who received incorrect predictions from the WLS model
were all younger than average (Fig. 3). This suggests that widening the
prediction intervals for older people and thereby improving the success
rate at that end of the spectrum, comes with a sacrifice at the younger

end of the spectrum, where intervals are narrower and the success rate
consequently drops.

In the quantile regression model, the prediction intervals show the
same trend, but overall the age ranges are smaller, and this results in
a notably lower success rate. In contrast to the WLS model, there is no
shift in the age for which predictions are incorrect, but rather an addi-
tion of younger individuals with failed predictions compared to those
in OLS regression (Fig. 3). In the same way that the median is less af-
fected by outliers than the average, quantiles as interval limits are less
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affected by outliers as well, which can explain why the quantile pre-
diction intervals are smaller than those of OLS and WLS regression in
the current study. However, this also implies that outliers are less likely
to be correctly predicted, hence the lower success rate observed in the
quantile model.

Furthermore, in OLS and WLS regression, the variance is assumed
to be normally distributed around the regression line and therefore the
prediction intervals are calculated to be symmetrical around the pre-
dicted age. The quantile regression approach is less strict, dropping this
assumption and allowing the prediction intervals to be asymmetrical
around the predictions. This could be particularly advantageous in cases
where the variance is heavily skewed in regards to the regression line.

While in this paper the focus was on statistical linear regression
models, it should be noted that recent advances in bioinformatics have
brought forth some machine learning methods which can also prove
useful for forensic age prediction modelling. The major advantage of
machine learning is that there are a lot less assumptions to be ful-
filled, allowing more flexible and complex relationships between vari-
ables in the model, although one should be cautious of overfitting in
small datasets [9]. Machine learning can be used to narrow down large
pools of predictor variables to the most significant ones [13], but also in
datasets with only a small selected set of markers it can be used for pre-
diction modelling. Proposed methods in forensic age prediction based
on DNA methylation include support vector regression [9,13], artificial
neural networks [10,14] and random forest regression [11].

4. Conclusion

When providing an age estimate to police officers based on DNA
methylation data, this estimate should be accompanied by a prediction
interval that appropriately reflects the variance in the prediction model.
The purpose of this study was to evaluate three types of linear regression
models to determine which would be most appropriate to yield not only
a high prediction accuracy, but also sufficiently representative predic-
tion intervals in heteroscedastic data. When encountering heteroscedas-
ticity, quantile regression and WLS regression are two viable alterna-
tives for the mostly used OLS regression. They both allow prediction in-
tervals to become wider with increasing age as the prediction error in-
creases. In addition, quantile regression does not assume a normal distri-
bution of the variance either, allowing asymmetry of the prediction in-
tervals in case the variance is skewed to one side. In the current dataset,
weighted regression seems to be the most appropriate alternative since
it yielded a higher success rate than quantile regression. However, based
on the findings presented in this paper, we argue that the choice of
which type of regression model to use in future studies should always
depend on the characteristics of the data at hand.

5. Materials and methods

The dataset, which was adopted from our previous study, was based
on blood samples from 206 individuals between 0 and 91years old.
DNA was extracted, bisulphite converted and pyrosequencing was per-
formed to determine methylation status as described in our previous pa-
per [4]. Methylation levels were measured in four genes (EDARADD,
PDE4C, ELOVL2 and ASPA), including only the most highly correlated
CpG of each gene in the final dataset (Supplementary file S2). These
were CpG6 of ELOVL2 and CpG1 of EDARADD, PDE4C and ASPA. Lin-
earity of the relationship between methylation status and age was eval-
uated for every CpG by modelling age in function of each individual
marker and looking at the residuals plots. The squared values of the
methylation measurements were consequently included to account for
quadrilinear relationships with age, leading to a total of eight prediction
variables.

The most suitable combination of variables was selected through a
stepwise selection, which uses the Akaike information criterion (AIC)
and confirmed by comparison of the Bayesian information criterion
(BIC) and goodness of fit (R2). The selected variables were used to fit
three models through OLS, WLS and quantile regression. Weights for the
WLS model were determined through an auxiliary model which predicts
the expected variance in function of the predictors, based on the rela-
tionship between the residuals of the OLS model and the predictor vari-
ables. For the quantile regression model an analogous R2 was calculated
using the median age rather than the mean, resulting in the following
formula: . The corresponding 95% prediction in-
tervals of the OLS and WLS predictions were calculated by the predict
function in R. In the quantile model, age was predicted as the median
(.5 quantile) and the lower and upper limits of the 95% prediction in-
terval were modelled as the 0.025 and 0.975 quantiles, respectively. In
this way, 95% of the data points supposedly fall between these two lim-
its. A Shapiro-Wilk test was performed on the residuals of every model
to check whether they are normally distributed, along with a visual in-
spection by means of a normal QQ plot.

For validation purposes the dataset was randomly split (ratio 2:1)
into a training set (n=137) and a test set (n=69) and the
root-mean-square error (RMSE) of the original model was compared to
that of the training model when applied to the test set. The performance
of the prediction methods was assessed in the same training and test set
based on their MAD and ability to predict age correctly within an ap-
propriate 95% prediction interval.

Data analysis and prediction modelling were performed in R for Win-
dows 3.4.0 with RStudio v1.0.143 using the leaps v3.0, mgcv v1.8-17,
quantreg v5.33 and caTools v1.17.1 packages. The R script is available
in Supplementary file S3.
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