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Abstract

Traditional RNA sequencing (RNA-seq) allows the detection of gene expression variations between two or more cell popula-
tions through differentially expressed gene (DEG) analysis. However, genes that contribute to cell-to-cell differences are not
discoverable with RNA-seq because RNA-seq samples are obtained from a mixture of cells. Single-cell RNA-seq (scRNA-seq)
allows the detection of gene expression in each cell. With scRNA-seq, highly variable gene (HVG) discovery allows the detec-
tion of genes that contribute strongly to cell-to-cell variation within a homogeneous cell population, such as a population of
embryonic stem cells. This analysis is implemented in many software packages. In this study, we compare seven HVG
methods from six software packages, including BASiCS, Brennecke, scLVM, scran, scVEGs and Seurat. Our results demon-
strate that reproducibility in HVG analysis requires a larger sample size than DEG analysis. Discrepancies between methods
and potential issues in these tools are discussed and recommendations are made.
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Background

Single-cell RNA sequencing (scRNA-seq) technologies allow
RNA-seq to be performed on single cells and thus can investi-
gate RNA expression differences on a cell-by-cell basis [1–3].
Hence, scRNA-seq enables statistical analyses that can yield
more biological insights than traditional RNA-seq. For example,
cell-to-cell variations are often observed within cancerous and
embryonic cell samples. However, these variations cannot be
detected by bulk RNA-seq. Highly variable gene (HVG) detection
is made possible with scRNA-seq data. It allows researchers to
detect genes that contribute to cell-to-cell differences in a
mixed cell population, such as a group of embryonic stem (ES)
cells and cancer cells. Therefore, while existing scRNA-seq ana-
lysis packages often focus on various purposes, a function for
HVG analysis is often included. BASiCS [4], Brennecke [5], scLVM
[6], scran [7], scVEGs [8] and Seurat [9] are commonly used tools
that can perform HVG analysis.

HVG detection methods are often composed of two main
components: normalization and the analysis of variation.
Because batch effects can effectively affect the number of de-
tected HVGs [10], normalization is a crucial step in HVG ana-
lysis. Normalization is often accomplished by DESeq’s
normalization method [5] or the conversion of raw counts into
relative expressions. Both methods use scaling factors to nor-
malize expression values among cells. In DESeq’s method, it
first calculates the geometric mean of all genes’ expression.
Then, for each cell, it calculates the ratios between each gene’s
expressions with the geometric means. For each cell, the scaling
factor is the median of the ratios. If spike-in references are pro-
vided, such as the External RNA Controls Consortium (ERCC)
spike-in, DESeq’s method can calculate scaling factors by using
the spike-ins. For the relative expression normalization
method, the scaling factor is the inverse of a cell’s total sum of
expression values, which can be raw count, reads per kilobase
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of gene per million mapped reads or fragments per kilobase of
gene per million mapped reads. Count/transcript per million are
units that multiply the relative expression by a million. With
the relative expression normalization, each cell is normalized
independently, which eliminates the risk of erroneous normal-
ization caused by outlying cells or cells with low quality. In con-
trast, DESeq considers information across all cells and allows a
higher level of technical noise reduction.

After normalization, the methods identify genes with high
biological variations. Because heteroscedasticity is observed in
expression data [11, 12], variance cannot be used as a direct in-
dicator of HVGs. Existing methods use the relationship between
variance, or its variations, and the mean as an indicator. Each
method then fits their respective mean–variance relationships
onto their respective models. Based on the fitted models, they
perform statistical tests for high biological variations. Many dif-
ferences among methods were observed in this step. For ex-
ample, in scLVM’s LogVar algorithm and scran, variance is
calculated with a logarithmic transformed expression matrix.
Different adaptations of standard deviation (SD), such as vari-
ance (in BASiCS [4]), coefficient of variation (CV) (in scVEGs [8])
and squared coefficient of variation (CV2) (in Brennecke [5]), are
used by different methods.

We compared seven HVG analysis methods from six different
packages, BASiCS, Brennecke, scLVM [6], scran [7], scVEGs and
Seurat [9]. Real scRNA-seq data sets from Gierahn, Klein, Deng,
Islam and Yan were tested. The reliability of their HVG lists was
investigated using clustering. A simulated data set generated by
scDD [13] was used to examine their accuracy. Results between
and within methods were compared and their similarities and re-
producibility were investigated. As heteroscedasticity is an im-
portant issue in method development, each result’s dependency
on the expression mean was also examined. Finally, each meth-
od’s runtime was investigated; and the best tool is recommended.

Methods
Overview of software packages

In this section, a brief overview of the seven HVG discovery
methods is delineated.

BASiCS
BASiCS [4] uses the Bayesian hierarchical model. It first fits the
spike-ins to a hierarchical model that can explain biological
baseline variance and any technical noise. Subsequently, using
all genes in the data set, it extends the hierarchical model to ac-
count for biological cell-to-cell variability. Using the fitted hier-
archical model, it decomposes variance into biological
background, technical variability and biological variability. The
biological variability component is used to test for HVGs. One of
the advantages of BASiCS’ method is that lowly variable genes
can also be discovered.

Brennecke
Brennecke [5] uses DESeq’s method for normalization. This
method uses the CV2 on normalized count data to analyze bio-
logical variation. Technical noise in the data set is modeled by
fitting a generalized linear model onto the mean versus the CV2
plot. Using this model, a coefficient of biological variation is ob-
tained. Testing for high variance is performed on the coefficient
of biological variation using the chi-square distribution. The
reasoning being that extraordinarily high variance indicates
high uncertainty of variation in a gene when the expression

mean is low. Therefore, one advantage of their method is that
genes with high uncertainty can be filtered using a CV2 thresh-
old, which allows better control of false-positive rates.

scVEGs
scVEGs [8] normalizes expression data by using the relative ex-
pression method, which is subsequently multiplied by the
mean of all the sample’s total counts. The authors propose
using the CV to model variations in genes. They model the
mean versus CV relationship in the data set by assuming a
negative binomial distribution. The relationship between mean
and CV is fitted with a modified local regression. After obtaining
the parameters from the fitted model, P-values are obtained by
assuming the normal distribution in the difference between
each gene and the model curve.

Seurat
Seurat [9] performs normalization with the relative expression
multiplied by 10 000. It uses variance divided by mean (VDM). It
assigns the VDMs into 20 bins based on their expression means.
Then, within each bin, Seurat normalizes the VDMs into z-
scores. As VDMs are normalized among genes that share similar
expression levels, this strategy has an advantage in decreasing
its results’ dependency on the mean. Finally, it uses a threshold
to identify HVGs.

scLVM
scLVM [6] normalizes the data set using DESeq’s method. It de-
tects HVG analysis with two different approaches. It either uses
log-mean to log-CV2 relationship with the log-linear fit
(scLVM_Log) or uses locally weighted scatterplot smoothing
(LOESS) with the mean–variance relationship after logarithmic
transformation (scLVM_LogVar). Both of these approaches will
be analyzed discreetly in this evaluation as individual methods.

scran
scran [7, 14] has a specialized scaling factor calculation algo-
rithm for normalization [14] similar to DESeq. However, in
scran’s calculation, multiple scaling factors are calculated for
multiple pools of cells, which are subsets of the data set.
Thereby, a more accurate estimate of the scaling factor for each
cell is obtained through a system of linear equations, which are
calculated from each pool’s scaling factors. This strategy strives
to obtain a more accurate estimate of the scaling factor for each
cell. To perform HVG, it uses LOESS with the mean–variance re-
lationship of log-transformed expression values. After obtaining
a LOESS fit as the model, it estimates technical variance in each
gene. Finally, it subtracts from each variance its inferred tech-
nical component to obtain biological variation.

Summary
In summary, Brennecke, scVEGs and Seurat divided SD or vari-
ance by the mean. Then, the tools fit their respective models onto
the mean versus CV/CV2/VDM plots to eliminate the remaining
effects of the mean on variance. Alternatively, scLVM and scran
performed log-transformation and used regression models on
the mean–variance plots to eliminate the effects of the mean on
variance. Unlike the other methods, BASiCS uses a Bayesian hier-
archical model to obtain biological variations from the data.

Data sets and their processing

The Gierahn data set was downloaded from Gene Expression
Omnibus (GEO) under accession number GSE92495 [15], where the
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tuberculosis-exposed human peripheral blood mononuclear cell
(PBMC) sample was used. It contains 4296 cells, and the mean total
count is 1861. The Klein data set was downloaded from GSE65525
[16], which included a 0-day mouse ES cell sample (File:
GSM1599494_ES_d0_main.csv with 933 samples) and three
samples following leukemia inhibitory factor (LIF) withdrawal
for 2, 4 and 7 days (Files: GSM1599497_ES_d2_LIFminus.csv with
303 samples, GSM1599498_ES_d4_LIFminus.csv with 683 samples,
GSM1599499_ES_d7_LIFminus.csv with 798 samples). This data
set contains 2717 cells, and the mean total count is 20 033.

The Deng, Yan and Islam data sets were downloaded from
GEO under accession number GSE45719[17], GSE36552 [18] and
GSE29087 [1], respectively. Cell types with >10 cells were used.
In the Deng data set, cell types labeled 16cell, 4cell, 8cell,
C57twocell, early2cell, earlyblast, late2cell, lateblast, mid2cell
and midblast were downloaded. In the Yan data set, cell types
labeled 4-cell, 8-cell, Morulae, Late blastocyst and hESC were
downloaded. The Islam data set contains 48 ES cells and 44 are
embryonic fibroblasts. Their average total counts are 15.5 mil-
lion, 25.2 million and 0.58 million, and their total number of
cells are 247, 110 and 92, respectively.

The Deng and Yan data sets’s fastq files were first trimmed
using Trimmomatics [19] with default parameters and were
quantified by Kallisto [20] using Ensembl [21] mm10 and hg38
assemblies, respectively, also with default parameters. The Deng
and Yan data sets are transcript expression data. The gene raw
counts of the other data sets were downloaded directly.

The simulated data set was obtained using the scDD soft-
ware.[13] The simulateSet function was used according to the
user manual, nDE, nDP, nDM and nDB were set to 100, nEE and
nEP were set to 200 and numSamples was set to 200. Hence,
there was a total 400 samples, where 400 genes were differen-
tially expressed and 400 were nondifferentially expressed.

Technical details

BASiCS, Brennecke, scLVM_Log, scLVM_LogVar, scran, scVEGs
and Seurat were run with default parameters as described in
their user manuals. In BASiCS’ BASiCS_MCMC function, N, Thin
and Burn were set to 1000, 10 and 500, respectively.

To obtain P-values from Seurat, we converted the z-scores
from its outputs into P-values by using the Z table. The P-value
threshold of 0.05 is used by Brennecke, scran and Seurat in the
results. scVEGs had an error with the Gierahn data set and de-
tected no HVGs with the Yan and Deng data sets. Seurat had an
error with the simulated data set. BASiCS requires spike-in
genes, and it was not used to analyze the Gierahn and Klein
data sets. Hence, these results were not shown in the figures.

Rediscovery rate

To investigated the rediscovery rate [22] of each method, two in-
dependent experiments were simulated by randomly choosing
cells from the Klein and Islam data sets without replacements
and putting them into two groups, Group1 and Group2; then,
the percentage of HVGs from Group1 that were rediscovered in
Group2 was calculated. This analysis was repeated 30 times for
the Klein data set and 100 times for Islam data set.

Clustering

Each of the data sets were normalized into the relative expres-
sion and multiplied by the median total count. Log plus one
transformation was used. Each method’s detected HVGs were
extracted from the normalized data sets and t-distributed

stochastic neighbor embedding (t-SNE) was performed. The R li-
brary Rtsne was used to perform t-SNE. Principal components
(PCs) 2 to 6 were used for a more accurate assessment, because,
except scLVM_Log, all tools showed better performances at
higher dimensions. K-means clustering was performed, and
purity was calculated using the known cell-type information.
Therefore, given one method and one data set, five purities
would be obtained because 2 to 6 PCs were used. The average
purity (from PC 2 to 6) is reported.

Results and discussion
Accuracy of the methods

t-SNE k-means clustering
In a group of cells that contain multiple cell types, HVGs contain
the variability among cells. Therefore, different cells can be
clustered into their specific cell types by using the HVGs. Using
significant HVGs from each method, t-SNE k-means clustering
is performed on Gierahn, Klein, Deng and Yan data sets. Purity
is used to assess the accuracy of the list of HVGs of each
method. Table 1 contains the purity of each method across all
four data sets. In Figure 1, purities from each data set are nor-
malized into standardized scores to allow comparison across
data sets. Standardized purity >0 indicates better than average
performance. None of the tools performed better than average
in all five data sets. Brennecke performed better than average in
four of the data sets. Seurat performed notably well with the
Gierahn, Deng and Yan data sets, and scran ranked top with
Gierahn and Islam data sets. scLVM and scVEGs showed aver-
age performances. BASiCS performed lower than average in all
three data sets that it analyzed.

Accuracy, precision and sensitivity using simulated data set
Using the scDD R library, an scRNA-seq data set with 800 genes
and 400 cells was generated, where 400 genes were known to be

Figure 1. Standardized clustering purity of t-SNE k-means clustering results by

using HVGs only. Table 1 contains the raw purity results. Standardized purity >0

indicates better than average (mean) performance. Purities from each data set

are standardized separately. BASiCS was not used to analyze the Gierahn and

Klein data sets because of the lack of spike-ins. scVEGs had an error with the

Gierahn data set and called zero HVGs with the Yan and Deng data sets.
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highly variable. Accuracy, precision and sensitivity of each
method are shown in Figure 2 (Supplementary Table S1). In con-
trary to Figure 1, BASiCS showed perfect precision and had the
best performance in all three aspects. scVEGs showed perfect
precision but low sensitivity. Brennecke, scLVM and scran
showed similar precision, but scLVM had better sensitivity.

Number of detected HVGs

Figure 3 shows the number of detected HVGs of each method
(Supplementary Table S2). The Gierahn, Klein and Islam data
sets have 6713, 24 047 and 14 909 genes totally. The Deng and
Yan data sets have 91 518 and 157 954 genes totally. The differ-
ences between tools are notable. The tool that detected the
most HVGs can have 15–139 times more genes than the tool
that detected the least HVGs. Relative to the other methods,
Brennecke detected more HVGs with the Gierahn and Klein data
sets, but less HVGs with the other data sets. In contrast, scLVM
detected less HVGs with the Gierahn and Klein data sets, but
more HVGs with the other data sets. Overall, scran and Seurat
showed stable performance compared with the other methods.

Figure 4 shows the number of the detected HVGs with re-
spect to the number of cells. With the Klein data set, a larger
sample size would increase the number of detected HVGs with
BASiCS, scran and scVEGs. With the Islam data set, BASiCS,
Brennecke, scran and Seurat’s numbers of detected HVGs would
increase with larger sample sizes. Overall, more HVGs were de-
tected in the Klein data set because it had more genes and more
cells than the Islam data set.

Overlap within methods

In Figure 5, we examine the reproducibility of the results of
each method using the rediscovery rate. [22] Supplementary
Figure S1 shows the result of the same analysis using the Deng
data set’s mid stage blastocysts. All methods show higher
rediscovery rates with higher sample sizes. This suggests that a
larger sample size can improve reproducibility in these
methods. Because the Klein data set has more cells than the
Islam data set, it results in a higher reproducibility in each
method.

Overlap between methods

Figure 6A shows the Venn diagram of the most significant 900
HVGs called by Brennecke, scran, scVEGs and Seurat with the
Islam data set. Figure 6B shows the Venn diagram of the de-
tected HVGs called by all tools with the Islam data set. Overall,
the HVG analysis methods do not show good overlaps with
each other. Few HVGs are concurrently detected as significant
by all methods. Overlap analyses with the Deng and Yan
data sets also showed similar results (Supplementary Tables S3
and S4).

In summary, if the same data set is analyzed by two differ-
ent tools, the resulting list of HVGs can be different. This can
lead to conflicting conclusions if downstream analyses are per-
formed using these differing lists of results.

Dependence with the mean

In scRNA-seq count data, expression mean and variance are
positively correlated, and all of the tested methods have de-
veloped strategies to tackle this heteroscedasticity issue. In
Table 2, the percentage overlap between each method’s result
and the same number of top highly expressing genes is calcu-
lated. For example, if a method detects 500 genes as highly vari-
able, the amount of overlap between its list of HVGs and the 500
highest expressing genes in the data set would be obtained. In
this test, some overlaps should be expected because some
highly expressing genes can also be HVGs.

Brennecke and scran show similar results (Table 2), and their
average percent overlaps are 21.5 and 25.99%, respectively.
Seurat is more conservative in declaring a highly expressed
gene as significant, and its average percent overlap with the

Table 1. Purity of t-SNE k-means clustering results by using HVGs
only

Method Dataset

Gierahn Klein Deng Yan Islam

BASiCS NA NA 0.66 0.88 0.92
Brennecke 0.86 0.99 0.64 0.96 0.98
scLVM_Log 0.74 0.99 0.67 0.87 0.97
scLVM_LogVar 0.71 0.96 0.66 0.91 0.95
scran 0.88 0.95 0.64 0.95 0.99
scVEGs NA 0.97 NA NA 0.90
Seurat 0.88 0.75 0.72 0.96 0.90

Figure 2. HVG analysis with the simulated data set. Accuracy, precision and sen-

sitivity of each method.

Figure 3. Number of detected HVGs. BASiCS was not used to analyze the Gierahn

and Klein data sets because of the lack of spike-ins. scVEGs had an error with

the Gierahn data set and called zero HVGs with the Yan and Deng data sets.
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Figure 4. Number of HVGs versus sample size. (A) Klein data set. (B) Islam data set.

Figure 5. Rediscovery rate versus sample size. (A) Klein data set. (B) Islam data set.

Figure 6. Venn diagrams of each tool’s result with the Islam data set. (A) The overlap between the most significant 900 genes from Brennecke, scran, scVEGs and

Seurat. BASiCS and scLVM do not output ranks, and they are skipped. (B) The overlap between all tools, using the P-value threshold of 0.05.
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highest expressing genes is 12.49%. The two scLVM’s results
have higher dependencies on the mean than the other meth-
ods; consequently, they have percentage overlaps that range
from 50.09 to 87.75%. Overall, Brennecke, scran and Seurat show
consistent levels of low to medium amounts of overlap with the
highest expressing genes. This suggests that their dependencies
with the mean are well eliminated.

Runtime

Figure 7 illustrates the differing running time of each tool. In
the Deng data set, from shortest to longest time, scLVM_Log,
Brennecke, scran, Seurat, scVEGs, scLVM_LogVar and BASiCS
took 2.9, 6.7, 11, 16, 82, 285 and 1680 s, respectively. scLVM_Log,
Brennecke, scran and Seurat only needed seconds, but
scLVM_LogVar and BASiCS needed minutes to half an hour.
This analysis is performed on a computing workstation with 32
Intel(R) Xeon(R) CPU E5-2650 v2 processors and 128 GB of RAM.

Conclusion

This study reports a detailed comparison of seven HVG methods
for scRNA-seq data. Five real scRNA-seq data sets, Gierahn,
Klein, Islam, Deng and Yan, were used. Overall, large differences
were observed among the methods, and each tool performed
optimally in different situations.

Clustering analysis was used to access each tool’s accuracy
with real scRNA-seq data sets. Brennecke was shown to have
stable good performances in a wide range of data sets. scran
and Seurat were shown to perform optimally with some of the
data sets. Simulated scRNA-seq data sets were used to further
access the performance of each method. Interestingly, BASiCS
had the best performance with the simulated data set despite
its lower performance with the real data sets. This suggests that
the utilization of spike-ins has an advantage when the spike-ins
are true stable genes, as shown by the simulated data set.
However, noises in real scRNA-seq can cause lower perform-
ances in methods that use spike-ins [23].

Type I/II error rates can be inferred from the number of de-
tected genes. By definition, because P-value is equivalent to the
proportion of genes when no HVG exists, scVEGs and Seurat’s
low number of detections signal potential inflated type II error
rates. In contrast, BASiCS and Brennecke would call much more
HVGs than the other methods in some data sets. This signals
potential inflated type I error rates if the other methods are
assumed to have good type I/II error rates.

Heteroscedasticity is an important issue in HVG detection al-
gorithms. We showed that both scLVMs’ performances are

similar to selecting the highest expressing genes as ‘highly vari-
able’, which raises a concern. On a side note, this test showed
that expression mean is more reproducible than expression vari-
ance (Figure 5 and Table 2). This suggests that statistical analyses
that depend on the expression mean, such as differentially ex-
pressed gene analysis [11, 24–29], would show higher reproduci-
bility than HVG analysis.

In conclusion, high discrepancies between methods were dis-
covered. Overall, all methods, except scran, raised issues of con-
cern in the results. In comparison with the other methods, scran
has a good performance in clustering, stable number of detected
HVGs, good independency from the mean and good running time.
Nevertheless, some considerations should be taken to ensure re-
producibility of independent experiments. First, downstream data
analysis packages, such as SC3 [30], can be used to improve cluster-
ing analysis results. Second, HVG analysis requires large sample
sizes to be reproducible. Many methods show increasing rediscov-
ery rates as the sample size increases. Third, the rediscovery rates
results suggest that higher sequencing depth can also improve re-
producibility (Figure 5 and Supplementary Figure S1). Finally, util-
ization of overlaps between more tools is suggested. The
stringency of assigning P-value between each tool is different,
which can result in different numbers of detected genes when dif-
ferent tools are used.

Supplementary Data

Supplementary data are available online at https://aca
demic.oup.com/bib.
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Table 2. Percent overlap between a method’s detected genes with
the same number of highest expressing genes

Method Dataset Average (%)

Deng (%) Islam (%) Yan (%)

Brennecke 23.22 25.49 15.78 21.50
scLVM_Log 82.84 63.68 87.75 78.09
scLVM_LogVar 68.28 50.09 63.44 60.60
scran 22.65 29.29 26.04 25.99
scVEGs NA 1.10 NA 1.10
Seurat 10.03 22.17 5.27 12.49

Note: Results from the Deng, Islam and Yan data sets are reported. BASiCS is not

tested because of its low stability.

Figure 7. Runtime of each method with the Islam, Deng and Yan data sets. This

analysis is performed on a computing workstation with 32 Intel(R) Xeon(R) CPU

E5-2650 v2 processors and 128 GB of RAM.
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Key Points

• BASiCS’ results ranked top with simulated data sets but
ranked last in real data set. This shows that noises in
real scRNA-seq can cause lower performances in meth-
ods that use spike-ins.

• Reproducibilities are low, among different tools and
among different samples analyzed by the same tool. A
higher number of cells can improve rediscovery rates.

• BASiCS, Brennecke, scVEGs and Seurat are shown to
have high type I/II error rates.

• The two scLVM algorithms can have high amount of
overlaps with the highest expressing genes, casting
concerns in their results.

• BASiCS and scLVM_LogVar are much slower than the
other methods.
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