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Abstract

Path models with observed composites based on multiple items (e.g., mean or sum
score of the items) are commonly used to test interaction effects. Under this prac-
tice, researchers generally assume that the observed composites are measured with-
out errors. In this study, we reviewed and evaluated two alternative methods within
the structural equation modeling (SEM) framework, namely, the reliability-adjusted
product indicator (RAPI) method and the latent moderated structural equations
(LMS) method, which can both flexibly take into account measurement errors.
Results showed that both these methods generally produced unbiased estimates of
the interaction effects. On the other hand, the path model—without considering
measurement errors—led to substantial bias and a low confidence interval coverage
rate of nonzero interaction effects. Other findings and implications for future studies
are discussed.
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Testing interaction effects is an important and common practice in social and beha-

vioral research, as researchers are interested in determining whether the relationship
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between two variables stays the same or changes depending on the level of a third

variable (i.e., the moderator). In practice, both the predictor and the moderator are

measured by either a single item (e.g., socioeconomic status, age, or gender) or a

scale containing multiple items. For the applications of testing interaction effects with

multiple-item exogenous variables, methodologists have proposed several statistical

methods within the structural equation modeling (SEM) framework to test this type

of interaction effects. These statistical methods are capable of modeling the latent

interaction effects while simultaneously taking into account any measurement errors

in the items (Jöreskog & Yang, 1996; Kenny & Judd, 1984; Klein & Moosbrugger,

2000; Klein & Muthén, 2007; Lin, Wen, Marsh, & Lin, 2010; Little, Bovaird, &

Widaman, 2006; Marsh, Wen, & Hau, 2004; Moulder & Algina, 2002; Wall &

Amemiya, 2001).

Despite methodological advancements in recent years, however, applied research-

ers still generally use observed composites (e.g., the mean or sum from a multiple-

item scale) for both the predictor and the moderator when testing interaction effects.

For example, a review of the articles (N = 120) published in the Journal of Applied

Psychology in 2015 identified 22 (18.3%) articles testing at least one interaction

effect using observed composites.1 Of these 22 articles, only 2 corrected for the mea-

surement errors of the exogenous variables, but in neither study did the authors con-

sider measurement errors in the interaction terms (Eby, Butts, Hoffman, & Sauer,

2015; Mitchell, Vogel, & Folger, 2015). In the remaining 20 (90.9%) articles, all the

manifest variables and the corresponding interaction effects were assumed to be mea-

sured accurately (i.e., without any measurement errors). These findings echo those of

Cole and Preacher (2014), who reviewed 44 issues of seven American Psychological

Association journals published in 2011, and found that more than one tenth of the

studies conducted path analyses without correcting for measurement errors in the

manifest variables. Thus, ignoring measurement errors of the manifest variables and

the corresponding interaction effects in path analyses is still quite common. Yet, per-

fectly reliable manifest variables rarely exist in real data (Cohen, Cohen, West, &

Aiken, 2003) and, as a result, path analyses with observed variables uncorrected for

measurement errors could result in biased (either under- or overestimated) path coeffi-

cients (e.g., Aiken & West, 1991; Busemeyer & Jones, 1983; Cole & Preacher, 2014)

and lead to reduced statistical power (e.g., Marsh, Wen, Nagengast, & Hau, 2012).

Given the potential problems raised by failing to properly address measurement

errors when observed composites are used, in this study, two alternative methods

were reviewed and evaluated: the latent moderated structural equations (LMS)

method and the reliability-adjusted product indicator (RAPI) method, both of which

can properly take into account measurement errors when testing interaction effects

based on observed composite measures. The LMS method, developed by Klein and

Moosbrugger (2000), originally focused on testing interaction effect with multiple-

indicator exogenous variables. In the present study, we illustrated how to impose

error variance constraints on the exogenous variables while using the LMS method

to estimate interaction effects based on observed composite variables. With regard to
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the RAPI method, even though it can be traced back to the 1980s (Bohrnstedt &

Marwell, 1978; Busemeyer & Jones, 1983), it has seldom been used in applied

research.

To our knowledge, the performance of these two alternative approaches in terms

of the estimation accuracy of interaction effects with observed composites has yet to

be investigated. Therefore, in the present study, we compared the LMS and the RAPI

methods with the commonly used path analysis approach, which assumes no mea-

surement error for all the observed composites and the corresponding interaction

effect, under conditions of varying sample sizes, reliability levels, and magnitudes of

the interaction effects.

Methods for Estimating Interaction Effect With Composite
Scores

As mentioned, the most common way to estimate interaction effects with observed

composite scores is by using the traditional path models, assuming that all variables

in the model are measurement-error free. Thus, under the traditional path model (see

Figure 1), both the predictor and the moderator are presented as observed variables

and are assumed to be measurement-error free. On the contrary, the distribution ana-

lytic method (see Figure 2) and the reliability-adjusted product indicator (RAPI)

method (see Figure 3) can take into account the measurement errors of the exogen-

ous variables while estimating interaction effects. A key feature of these alternative

approaches is the application of a reliability adjustment of each observed composite

by constraining the corresponding error variance. Below we first discuss how to

impose the error-variance constraint with the use of reliability. We then present

examples of applying these reliability adjustments to both LMS and RAPI methods.

Reliability Adjustment for the Interaction Effect Between Observed
Composites

In the classical testing theory (CTT) framework (Crocker & Algina, 1986; Lord &

Novick, 1968), score reliability of a composite variable, X, is defined as the propor-

tion of variance in X that can be attributed to the true score. Multiple approaches have

been proposed to estimate reliability coefficients under conditions where the true-

score variance cannot be directly obtained (Crocker & Algina, 1986). Among these

approaches, structural equation modeling (SEM) is one of the techniques that yield

more precise estimation of reliability coefficients (Raykov, 1997; Yang & Green,

2010). Let Xi be the ith observed item of a scale measuring the latent construct, jX ,

with the measurement model written as below:

Xi = tX + lXi
jX + dXi

, ð1Þ

where tX is the intercept, lXi
is the (unstandardized) loading of the ith indicator

on jX , and dXi
is the corresponding random measurement error term. Under the SEM
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framework, the factor structure reliability formula for this scale is written as (Bollen,

1989; Kline, 2011; Raykov, 1997; Raykov & Shrout, 2002):

rXX 0 =

P
lXi

ð Þ2Var jXð ÞP
lXi

ð Þ2Var jXð Þ+
P

Var dXi
ð Þ

h i , ð2Þ

where Var jXð Þ is the variance of the latent variable jX and Var dXi
ð Þ represents the

variance of the measurement error for the ith indicator.

If information about the individual item is unknown or unavailable (e.g., use of

secondary data), one can only use the composite score, X = SXi, as the single indica-

tor for the latent variable, jX . Thus, the corresponding reliability formula for X based

on Equation (2) can then be rewritten as:

Figure 1. The path model for estimating one interaction effect with single predictor variable
(X) and single moderator (M). Both X and M are composites from multiple items; XM is the
product term of X and M.

Figure 2. The latent moderated structural equations (LMS) method (Klein & Moosbrugger,
2000) for estimating one interaction effect with single predictor variable (X) and single
moderator (M). Both X and M are composites from multiple items. The equations for
defining the variances of dX and dM are cited from Bollen (1989).

184 Educational and Psychological Measurement 78(2)



rXX 0 =
Var jXð Þ

Var jXð Þ+ Var dXð Þ½ � , ð3Þ

given that the only factor loading between X and jX (i.e., lX ) is constrained to 1.0 for

identification purpose. Hence, the latent score jX is equal to the true score in CTT

(Borsboom, 2005). The error variance, Var dXð Þ, can be estimated by using Equation

(3), in which the reliability of a measure is the function of true-score variance and

error variance as (Bollen, 1989):

Var dXð Þ= 1� rXX 0ð ÞVar Xð Þ: ð4Þ

Given the reliability coefficient, rXX 0 , the error variance of X is a function of

1� rXX 0ð Þ, which is the proportion of the variance due to measurement error in X.

The true score variance, Var jxð Þ, can be rewritten as a function of the reliability

coefficient and the observed variance, namely,

Var jXð Þ= rXX 0Var Xð Þ: ð5Þ

Equations (4) and (5) are the key elements in specifying the error variance constraints

for the interaction effects under the RAPI method. Note that the discussion is equally

applicable to mean composite scores, which is simply a rescaled version of the sum

composite score.

Distribution Analytic Approach. Researchers can apply the distribution analytic

approach to estimate interaction effects by either the LMS method (Klein &

Moosbrugger, 2000) or the quasi-maximum likelihood (QML) method (Klein &

Muthén, 2007) under the SEM framework with specific data distributional assump-

tions. Figure 2 shows the simplest scenario in which a one-indicator predictor com-

posite and a one-indicator moderator composite predict a single outcome. By using

Equations (4) and (5) to constrain the error variances of the observed composites

according to the corresponding reliability coefficient such as Cronbach’s alpha

(Bollen, 1989) or factor structure reliability (Raykov, 1997), one can estimate the

latent interaction effect with the observed composite scores via the distribution ana-

lytic approach, which takes into account the measurement errors for the observed

composites (Figure 2).

Based on Equations (4) and (5), Var dXð Þ and Var dMð Þ can, respectively, be

defined as

Var dXð Þ= 1� rXX 0ð ÞVar Xð Þ,
Var dMð Þ = 1� rMM

0
� �

Var Mð Þ,

while Var jXð Þ and Var jMð Þ can be defined as

Var jXð Þ = rXX 0Var Xð Þ,
Var jMð Þ= rMM 0Var Mð Þ:
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Although this is a very powerful approach, access to both the LMS and QML

methods is quite limited. For example, the LMS method is exclusively built into

Mplus (Muthén & Muthén, 1998-2013) whereas the QML method is a stand-alone

program available only from the developer Andreas Klein (Kwok, Im, Hughes,

Wehrly, & West, 2016). Additionally, the overall model chi-square test and the com-

monly used model fit indices (e.g., comparative fit index [CFI], root mean square

error of approximation [RMSEA], and standardized root mean square residual

[SRMR]) are not available in these methods.

Reliability-Adjusted Product Indicator Method. Researchers can also create a latent inter-

action effect factor by having the observed interaction effect term (i.e., the product

of the predictor and the moderator) loaded on it (see Figure 3). Similar to the distri-

butional analytic approach, the reliability-adjusted constraints can be directly applied

to the exogenous variables (i.e., the predictor X and moderator M) under the RAPI

approach, with the use of the same error-variance constraints as presented in

Equations (4) and (5).

As for the observed interaction variable, XM, which is the product term of X and

M, the variance of this interaction effect can be defined as the following equation

(reproduced from Equation A7 in Appendix A), under the assumption of independent

measurement errors and double mean-centered variables (Lin et al., 2010):

Var XMð Þ = E jXM
2

� �
� E jXMð Þð Þ2

h i
+ E jX

2)E(dM
2

� �
+ E dX

2)E(jM
2

� �
+ E dX

2)E(dM
2

� �

= Var(jXM ) + Var jXð ÞVar dMð Þ + Var jMð ÞVar dXð Þ+ Var dXð ÞVar dMð Þ
,

ð6Þ

Figure 3. The reliability adjusted product indicator (RAPI) method for estimating one
interaction effect with single predictor variable (X) and single moderator (M). Both X and M
are composites from multiple items; XM is the product term of X and M. The equations for
defining the variances of dX and dM are cited from Bollen (1989). The proof for defining
Var dXMð Þ is described in Appendix A.

186 Educational and Psychological Measurement 78(2)



The procedure to create the double mean centered variable is straightforward. First

both X and M are mean-centered, then the product term of the mean-centered X and

M are mean-centered. The variance of the observed interaction variable, Var XMð Þ,
can be decomposed into (a) the true- score variance, Var(jXM ), and (b) the error var-

iance, Var dXMð Þ, which equals the last three components of Equation (6), or

Var dXMð Þ= Var jXð ÞVar dMð Þ+ Var jMð ÞVar dXð Þ+ Var dXð ÞVar dMð Þ: ð7Þ

The corresponding derivations are described in Appendix A. Accordingly, in

Equation (6), we can substitute the measurement error variances and the true-score

variances of X and M with their corresponding reliability estimates and observed var-

iances. Hence, the error variance of the latent interaction effect is (Bohrnstedt &

Marwell, 1978; Busemeyer & Jones, 1983) as follows:

Var dXMð Þ= rXX 0Var Xð Þ 1� rMM
0

� �
Var Mð Þ + rMM 0Var Mð Þ 1� rXX 0ð ÞVar Xð Þ

+ 1� rXX 0ð ÞVar Xð Þ 1� rMM
0

� �
Var Mð Þ: ð8Þ

Equation (8) is the key equation to set up the nonlinear constraint for the error var-

iance of the latent interaction effect when using the RAPI method.

Purpose of the Study

This study compared three methods of examining the interaction effects with

observed composite scores to determine the estimation accuracy of the interaction

effects. A Monte Carlo simulation study was conducted to compare methods with

and without the consideration of measurement errors of the manifest variables. Both

the LMS and RAPI methods were compared with the conventional path model. We

chose the LMS method because it is currently the only distributional analytic

approach that is feasible in a general SEM program (i.e., Mplus).

Method

In this Monte Carlo study, we compared different methods for estimating the magni-

tude of the interaction effect UXM , with the use of the data generation model shown

in Figure 4. Specifically,

Xi = tXi
+ lXi

jX + dXi
, ð9aÞ

Mi = tMi
+ lMi

jM + dMi
, ð9bÞ

Y = tY + YX jX + YM jM + YXM jXM + εY , ð9cÞ

where Xi = X1, X2, X3 and Mi = M1, M2, M3 were observed indicators, as shown in

Figure 4. tXi
, tMi

, and tY , respectively, represented the intercepts for Xi, Mi, and Y;

all these intercepts were assumed to be zero. lXi and lMi were the factor loadings for
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the ith indicator on the two latent variables, jX and jM , respectively. dxi
and dmi

were

the unique factors of the ith indicator on Xi and Mi, respectively. jXM was the latent

interaction variable between jX and jM . Finally, YX , YM , and YXM were the path

coefficients from the corresponding latent variables to the observed outcome Y, and

eY was the error term for Y. We chose a situation where mean composite scores were

used in estimating the latent interaction effect. The results from this study are

expected to be applicable to other forms of composite methods such as sum scores.

Monte Carlo Simulation Study

The model shown in Figure 4 was used to generate the population data. The two

latent variables, jX and jM , and the two unique factors, dXi
and dMi

, were assumed to

follow a standard normal distribution (i.e., mean equals to 0 and variance equals to

1.0) in the population. Both jX and jM were latent predictors with variance set at 1

and Corr(jX , jM ) = 0:5. YX and YM were fixed to 0.3 (Evans, 1985). Var εYð Þ was

defined to make the variance of Y equal to 1 under the YXM = 0 condition. Therefore,

Var εYð Þ= 1� 2 � 0:32 + 2 � 0:5 � 0:32
� �

= 0:73, indicating that the predictors as a

whole explained 27% (large effect size; Cohen, 1988) of the variance in Y.

The items corresponding to jX and jM were assumed to be tau-equivalent items.

Tau-equivalent items are defined as having equal loadings but possibly unequal error

variance across items (Lord & Novick, 1968). Raykov (1997) showed that, if all the

items (e.g., Xi and Mi in Figure 3 of the present study) under the common factor are

tau-equivalent items, the estimated factor structure reliability equals Cronbach’s

alpha coefficient (Cronbach, 1951). In the present study, both lXi and lMi were fixed

to 1.0. In terms of error variance of the exogenous variables, based on Equation (2),

the sum of the error variances for the three items for each latent factor was 3.85 and

Figure 4. The pseudo population model for generating simulation data sets.

188 Educational and Psychological Measurement 78(2)



1.00, corresponding to .70 and .90 reliability, respectively. To achieve tau-equivalent

items, we varied the error variances of the three items proportionally for both jX and

jM . The error variance of the first item covered 55% of the total error variances in

each latent predictor, followed by 33% of the second item, and 12% of the third

item.2 In other words, we manipulated the error variances as (2.12, 1.27, 0.46) for .70

reliability, and (0.55, 0.33, 0.12) for .90 reliability. The design factors were described

below.

Sample Size, N. Based on the conditions used in past simulation studies (Cham,

West, Ma, & Aiken, 2012; Chin, Marcolin, & Newsted, 2003; Lin et al., 2010;

Marsh, Wen, & Hau, 2004; Maslowsky, Jager, & Hemken, 2015), we chose 100,

200, and 500 to represent small, medium, and relatively large sample sizes.

Reliability, r. We manipulated the reliability, r, for both X and M to be either .70 or

.90. A reliability of .70 represents 49% of the total variance being the true score var-

iance and has been viewed as the acceptable lower boundary of reliability for group

comparison in clinical research. Low reliability conditions (i.e., r \ .70) were not

considered in our simulation setting.

Interaction Effect, YXM . We manipulated the magnitude of the interaction effect YXM

to be either 0 (no interaction effect) or 0.50. The value of zero was designed to test

the methods’ performance when the null hypothesis was true (Cham et al., 2012).

The value of .50 was used in a previous simulation study (cf. Chin et al., 2003).

Mplus 7.11 (Muthén & Muthén, 1998-2013) was used to generate 2,000 data sets

for each condition. Given that the data were generated at the item level (i.e., three

items per latent factor), we computed the mean composite scores for X and for M by

averaging the corresponding items. Hence, we had three new observed composite

scores; namely, the two observed composite variables X and M, and the correspond-

ing product (or observed interaction effect) term XM. The data sets were then ana-

lyzed by fitting the three methods as shown in Figures 1, 2 and 3, respectively. For all

three methods, double-centering strategy (Lin et al., 2010) was applied. Therefore,

before analyzing the data using the three methods, X and M were first mean-centered;

the product term XM was first computed using the mean-centered X and M and then

mean-centered afterward. The annotated Mplus syntax for specifying the models with

these three methods is presented in Appendix B.

Path Model. The first method tested was the conventional path model (see Figure 1),

with one predictor, one moderator, and the product term predicting one outcome vari-

able. The measurement errors of the manifest exogenous variables were assumed to

be zero. The three exogenous variables were allowed to be correlated.

Latent Moderated Structural Equations Method. For the second method, the LMS

method, no product indicator was created, as depicted in Figure 2. Instead, a
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maximum likelihood estimator with robust standard errors using numerical integra-

tion was used to estimate the latent interaction effect, based on the information of X

and M. The measurement error variances for both X and M were constrained by using

Equations (4) and (5). The two latent factors, jX and jM , were correlated. Both the

common factor loadings were fixed to 1 for model identification purpose while the

factor variances were freely estimated.

Reliability-Adjusted Product Indicator Method. In the RAPI method, we utilized the relia-

bility of each composite to constrain the corresponding measurement error. These

non-linear constrains are shown in Figure 3. All the common factor loadings were

fixed to 1 for model identification purposes whereas the factor variances were freely

estimated. All the latent factors were allowed to be correlated.

Evaluation Criteria. Four criteria were applied to evaluate the performance of the three

methods in examining the interaction effects with observed composite scores. The

first two criteria, a 95% confidence interval (CI) coverage rate and the standardized

bias, were used to evaluate bias—the average difference between the estimator and

the true parameter. For the 95% CI coverage, the Wald interval was obtained, with a

coverage rate . 91% considered acceptable (Muthén & Muthén, 2002). The standar-

dized bias was the ratio of the average raw bias over parameter standard errors.

Therefore, the standardized bias can be interpreted in a standard deviation unit, like

Cohen’s d. The standardized bias of the latent interaction effect estimates was com-

pared with the cutoff value of 0.40. An absolute value \0.40 was regarded as accep-

table (Collins, Schafer, & Kam, 2001).

The third criterion was the relative standard error (SE) bias of the interaction

effect estimates; it was designed to evaluate the precision of the interaction estima-

tors. Estimators with smaller relative SE bias show less variability across simulation

replications. As recommended by Hoogland and Boomsma (1998), relative SE bias

values \10% were considered acceptable.

Finally, the root mean square error (RMSE) was calculated to evaluate both the

accuracy and precision of the parameter estimations for the three methods. The

smaller the RMSE values, the more accurate the parameter estimations were across

the 2,000 replications.

Results

The results of the conventional path model (without considering any measurement

errors of the exogenous variables) and the models applying the RAPI and the LMS

methods were compared in terms of the 95% CI coverage rate of the interaction

effect, the standardized bias, relative standard error bias, and RMSE of the interac-

tion effect estimates. The simulation results for YXM = 0 are displayed in Table 1 and

the results for YXM = 0:50 are shown in Table 2.
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Convergence and Inadmissible Solutions

All the simulation replications were converged without any issues. Only 12 inadmis-

sible solutions occurred with the RAPI method under the condition of non-zero inter-

action effect (YXM = 0:50), low reliability value (r = :70), and small sample size

(N = 100). All 12 (out of 2,000 replications) nonpositive definite matrices were due

to the non-significant negative error variance in Y, accompanied with an inflated

interaction effect YXM . These 12 inadmissible solutions were excluded from the sub-

sequent analyses. No inadmissible solution was found for either the conventional

path model or the model using the LMS method.

Coverage of 95% Confidence Interval of YXM

As shown in Table 1, for conditions with interaction effect (YXM ) equal to zero, the

coverage rate for the three methods were adequate, with a range from 93.7% to

94.7% for the conventional path model, from 94.1% to 97.0% for the RAPI method,

and from 91.0% to 93.8% for the LMS method, regardless of sample size and the

magnitude of reliability.

When the interaction effect was nonzero, the conventional path model without tak-

ing measurement errors into account generally resulted in lowest coverage rate. For

example, as shown in Table 2, coverage rates were considerably low for the conven-

tional path model, with a range from 0% to 79.2%. By comparison, under the same

conditions, the coverage rates for the RAPI method continued to range from 93.3% to

97.1%. Similarly, the coverage rates for the LMS method were higher than those for

the conventional path model, ranging from 90.0% to 94.6%. In other words, when the

true interaction effect existed, the model that did not directly take measurement errors

into account (i.e., the conventional path model) had the lowest chance of identifying

the true effect.

Standardized Bias of YXM

When the true interaction effect, YXM , was set to zero, all three methods resulted in

unbiased parameter estimates. That is, regardless of sample size and the magnitude

of reliability, the standardized biases were adequate (i.e., |standardized bias| \ 0.40):

ranging from 20.04 to 20.02 for the path model, from 20.03 to 20.01 for the model

utilizing the RAPI method, and from 20.04 to 20.03 for the model using the LMS

method.

When the true interaction effect was not zero (=0.50), the standardized biases of

the interaction effects differed for the three methods across simulation conditions.

For the conventional path model, substantial underestimations of the interaction

effects were observed, with a range from 26.50 to 20.91 across all the conditions.

By contrast, interaction effects were slightly overestimated for the RAPI method.

These overestimations, however, were still within the acceptable criteria across all

conditions. Standardized biases were larger (ranged from 0.16 to 0.30) under the low
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reliability (.70) condition, compared with those (ranged from 0.03 to 0.07) under the

high reliability (.90) condition when using the RAPI method. On the other hand,

slightly underestimated interaction effects were found for the LMS method, with

standardized biases ranging from 20.13 to 20.07 under the low reliability (.70) con-

dition, and from 20.07 to 20.04 under the high reliability (.90) condition.

Relative Standard Error Bias of YXM

As shown in Table 1, the absolute values of relative SE bias when YXM = 0 were all

below 10% across all the simulation conditions for the conventional path model (ran-

ged from 24.57% to 0.72%) and the model with the RAPI method (ranged from

25.13% to 20.49%). A negative SE bias indicates that the sample-estimated SE is,

on average, smaller than the empirical standard error. Compared with the other two

methods, the relative standard error biases were relatively higher for the LMS

method. Additionally, under the high reliability (.90) and low sample size (100) con-

ditions, the relative SE bias for the interaction effect estimates was the largest:

211.13% (i.e., underestimated by 11.13%). The relative SE biases for the other con-

ditions from the LMS method ranged from 29.70% to 21.47%.

When YXM = 0:50, results of the relative SE biases varied among the three meth-

ods. As shown in Table 2, for the conventional path model, the relative SE biases

were over 10% in absolute value (ranged from 214.82% to 211.50%) under the low

reliability (.70) conditions regardless of sample size. The relative SE biases were

below 10% in absolute value for all the conditions with high reliability (.90). For the

RAPI method, all the relative SE biases were below 10% in absolute value. For the

LMS method, the relative SE bias for the interaction effect estimates was 210.29%

under the high reliability (.90) and small sample size (100) condition. For other con-

ditions, the relative SE biases were all below 10% in absolute value (ranged from

28.58% to 21.47%). Although most of the SE biases for the RAPI and LMS meth-

ods were negligible, a trend of smaller SE bias in absolute value occurred for lower

reliability (.70) conditions.

Root Mean Square Error in Estimating YXM

Generally, the RMSE values decreased as sample size or reliability increased. Under

the condition of YXM = 0, the RMSE values were the highest with the RAPI method

(ranged from 0.04 to 0.19), followed by the LMS (ranged from 0.04 to 0.12) method

and the path model (ranged from 0.03 to 0.08).

On the other hand, different RMSE patterns were observed when YXM = 0:5, in

which the RMSEs of the PM method were overall the highest across all three meth-

ods. One exception was when the sample size was small (100) and the reliability was

low (.70), here the RMSE of the parameter estimates under the RAPI methods

(RMSE = 0.33) was higher than that of the path model (RMSE = 0.24). For all the

other simulation conditions, the RMSEs for both RAPI and LMS methods were
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lower than those from the path model. Overall, the parameter estimates yielded from

the LMS method were the most precise and accurate (i.e., RMSE ranged from 0.04

to 0.14) among the three methods. Finally, sample size had less influence on the

RMSE values of the path model.

Discussion

Despite the existence of the SEM approach for decades, applied researchers still com-

monly test interaction effects with the presumably measurement error–free observed

composite scores. In this study, we reviewed two alternative methods, namely, the

RAPI and the LMS methods, and compared their performance with that of the con-

ventional path model through a Monte Carlo study.

Our simulation results showed a substantial negative standardized bias and con-

siderably low coverage rate when the conventional path model (without adequately

taking into account measurement errors of the observed composites) was employed

in testing interaction effect. Thus, the interaction effect under the conventional path

model is more likely to be underestimated from the true population value when mea-

surement errors are not adequately taken into account in the analysis. These findings

reaffirm past research, which has shown biased results due to imperfect (reliability)

measurement when testing interaction effects (Dunlap & Kemery, 1988; Evans,

1985; Feucht, 1989). Thus, the conventional path models, which do not adjust for

measurement errors of the manifest predictors, are not recommended for testing

interaction effects.

On the other hand, the two alternative methods discussed here, namely, the RAPI

and LMS methods, can directly adjust the measurement errors of the observed com-

posites by using either the factor structure reliability calculated from the measure-

ment model or the conventional coefficient alpha. The major difference between

these two methods is how the interaction effect is specified/captured: RAPI requires

the creation of a product indicator for the latent interaction effect, whereas LMS does

not. Results from the present study have shown that the RAPI method performed

comparably well to the LMS method in estimating the interaction effects.

Additionally, when the true interaction effects were nonzero, RAPI yielded slightly

overestimated (but still acceptable) coefficients, whereas LMS yielded slightly

underestimated coefficients. Hence, the LMS method may be more preferable for

applied researchers who aim to be more conservative by preventing overestimated

effects.

Both sample size and the magnitude of reliability played important roles in esti-

mating the non-zero interaction effect. The standardized biases became smaller as

sample size increased for both RAPI and LMS methods, suggesting that the

reliability-adjusted measurement error constraints worked better with larger sample

sizes. Reliability had a similar effect on standardized biases. With the same sample

size, higher reliability (.90) produced more accurate interaction effect estimates than

those from lower reliability (.70). Additionally, the RAPI method yielded less stable

194 Educational and Psychological Measurement 78(2)



estimates than the LMS method under the low reliability and small sample size con-

dition. Hence, the LMS method is more preferable when the exogenous variables are

less reliable along with a small sample (e.g., N = 100).

Although our simulation results showed the benefits of controlling for measure-

ment errors when testing interaction effects, this step sometimes comes at the price

of increasing variability. For example, comparing four latent interaction modeling

approaches, Cham et al. (2012) found that latent variable models can correct for bias

but sometimes lose statistical power. When estimating the nonzero interaction effects

in our simulation, the relative SE biases of the interaction effects from RAPI and

LMS were higher than those from the path model under the high reliability (.90) con-

dition. Given the reciprocal relationship between measurement error and reliability,

these results suggest that constraining measurement errors for highly reliable vari-

ables may lead to over-correction, especially when the sample size is small.

However, if we consider precision and bias together, the RMSE results showed that

both the RAPI and LMS methods in general outperformed the conventional path

model. Hence, these measurement error adjustment methods are recommended for

testing interaction effects with composites, with the recognition that the RAPI

method may produce less precise or less accurate estimates than the LMS method

under conditions with small sample and less reliable measures.

Practically speaking, there are several situations where researchers will find both

the RAPI and LMS methods more preferable than the multiple-item latent factor

model in empirical data analyses. For example, if the predictors or the moderators

are measured by a large number of items, fitting the hypothesized structural model at

the item level may lead to convergence issues due to the complexity of the model.

Another example would be when researchers analyze secondary data and have

limited or no access to the original items. As mentioned earlier, the factor structure

reliability in SEM is comparable to the conventional internal consistency reliability

(i.e., Cronbach’s alpha or coefficient alpha) with tau-equivalent items (i.e., items

with equal factor loadings and possibly unequal error variances). Hence, as long as

the reliability information of the composites is available, we advocate the use of this

information to constrain the error variances for the observed composites and con-

ducting the analyses with either the RAPI or LMS method to obtain interaction effect

estimates.

Limitations and Future Research Directions

Two limitations in the present study must be addressed. First, since the interaction

effect is the product term of the predictor and moderator, having a low reliability on

either or both variables can amplify the measurement error of the interaction effect

(Aiken & West, 1991). It is, therefore, worth investigating how changes in the relia-

bility of the interaction term influence the interaction effect estimation. Second, the

scope of this study was the traditional single-level interaction effect. Future study is
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needed to investigate the impact of ignoring measurement errors when testing inter-

action effect with observed composites under more complex data structures, such as

multilevel data.

Conclusions

When examining an interaction effect based on the observed composite scores with-

out properly taking measurement errors into account, the result may be a consider-

able underestimation in the interaction effect. Thus, we encourage researchers to

apply either the LMS or the RAPI method, which can directly take into account the

measurement errors in the manifest variables. For researchers who have very limited

access to SEM programs, the RAPI model is by far the most feasible way (i.e., can

be implemented in most of the SEM programs) to generate unbiased interaction esti-

mates. Moreover, the overall model chi-square test and other commonly used model-

fit indices are only available for the RAPI method. On the other hand, the LMS

method produces relatively more conservative interaction effect estimates.

Additionally, for those who have small data sets (with low sample sizes) or less reli-

able measures, the LMS method would be more preferable.

Appendix A

Error Variance of the Latent Interaction Effect

The following is a summary of the derivation based on Bohrnstedt and Marwell

(1978) and Busemeyer and Jones (1983). Let X (predictor) and M (moderator) be

observable random variables with true scores jX and jM and error random variables

dX and dM . We assume the following measurement models for X and M, respectively:

X = tX + lX jX + dX , ðA1Þ

M = tM + lM jM + dM : ðA2Þ

Both X and M are mean-centered variables so that E Xð Þ= E Mð Þ= 0. For identifica-

tion purpose, both E jXð Þ and E jMð Þ are fixed to zero. Thus, the two intercepts, tX

and tM , would be equal to zero. lX and lM are factor loadings that are constrained

to one for identification purpose; these constraints allow the observed variables and

the true scores to share the same metric. dX and dM are assumed to be independent

from each other as well as independent from jx and jM , with E dXð Þ= E dMð Þ = 0. The

variance of jX is defined as:

Var jXð Þ = E jX
2

� �
� E jXð Þð Þ2 = E jX

2
� �

, ðA3Þ

and the variances of jM , dX , and dM can all be, respectively, found using the defini-

tion in Equation (A3): Var jMð Þ= E jM
2

� �
, Var dXð Þ= E dX

2
� �

, and Var dMð Þ = E dM
2

� �
.
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The observed interaction variable, XM, is defined as the product term of the two

observed composite variables X and M. The corresponding latent true score of XM,

jXM is defined as the product term of jX and jM , so jXM = jX jM . As Lin et al. (2010)

pointed out, the use of double-mean-centering strategy can produce more accurate

results when estimating latent interaction effect. Therefore, we adopted the double-

mean-centering strategy; XM is also a mean-centered variable. The variance of this

observed interaction variable XM is defined as:

Var XMð Þ= E X 2M2
� �

� E XMð Þð Þ2, ðA4Þ

in which,

E X 2M2
� �

= E jX + dXð Þ2 jM + dMð Þ2
� �

= E jX
2 + 2jX dX + dX

2
� �

jM
2 + 2jM dM + dM

2
� �� �

= E jX
2jM

2
� �

+ E jX
2dM

2
� �

+ E dX
2jM

2
� �

+ E dX
2dM

2
� �

+ 2E dMð ÞE jX
2jM

� �
+ 2E dX )E(jX jM

2
� �

+ 2E dXð ÞE jX dM
2

� �
+ 2E(dM )E jM dX

2
� �

+ 4E dXð ÞE jX jM dMð Þ
= E jXM

2
� �

+ E jX
2)E(dM

2
� �

+ E dX
2)E(jM

2
� �

+ E dX
2)E(dM

2
� �

+ 0 + 0 + 0 + 0 + 0

,

ðA5Þ

and

E XMð Þð Þ2 = E jX + dXð Þ jM + dMð Þð Þð Þ2

= E jX jM ) + E(jM dXð Þ + E jX dM ) + E(dX dMð Þð Þ2

= E jXMð Þ+ 0 + 0 + 0ð Þ2
: ðA6Þ

In Bohrnstedt and Marwell (1978) and Busemeyer and Jones (1983), the derivations

of both Equations (A5) and (A6) are based on the assumptions of bivariate nor-

mality in X and M. However, when applying the double-mean-centering strategy

(Lin et al., 2010), Equations (A5) and (A6) may be derived without any distribu-

tion assumption on X and M (other than the assumption that the variances of jX ,

jM , dX , and dM are finite). When substituting Equations (A5) and (A6) back into

Equation (A4), we get

Var XMð Þ= E jXM
2

� �
� E jXMð Þð Þ2

h i
+ E jX

2)E(dM
2

� �
+ E dX

2)E(jM
2

� �
+ E dX

2)E(dM
2

� �

= Var(jXM ) + Var jXð ÞVar dMð Þ+ Var jMð ÞVar dXð Þ+ Var dXð ÞVar dMð Þ
:

ðA7Þ
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Appendix B

Mplus Syntax of the Path Model, the Latent Moderated Structural
Equations (LMS) Method, and the Reliability Adjusted Product Indicator
(RAPI) Method

B2: Latent Moderated Structural Equations (LMS) Method.

TITLE:
Estimate interaction effect with the
latent moderated structural equations (LMS) method

DATA:
File=exrep1996.dat;

VARIABLE:
Names = y xc mc;
Usevariables=y xc mc;

!xc and mc are the mean-centered composites;
!The creation of xc and mc should be conducted outside the Mplus program;
ANALYSIS:

Type=Random;
Algorithm=integration;

MODEL:
fx BY xc;
fm BY mc;

!Mplus default function for LMS method;
fxm | fx xwith fm;
y ON fx fm fxm;

(continued)

B1: Path Model

TITLE:
Estimate interaction effect with the path model

DATA:
File=exrep1996.dat;

VARIABLE:
Names = y xc mc;
Usevariables=y xc mc xm;

!xc and mc are the mean-centered composites;
!The creation of xc and mc should be conducted outside the Mplus program;
DEFINE:
!xm is the product term of xc and mc;
!grand mean center strategy apply to xm;

xm=xc*mc;
center xm (grandmean);

ANALYSIS:
MODEL:

y ON xc mc xm;
OUTPUT:

STDYX;
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B3: Reliability-Adjusted Product Indicator (RAPI) Method

TITLE:
Estimate interaction effect with the
reliability-adjusted product indicator (RAPI) method

DATA:
File=exrep1996.dat;

VARIABLE:
Names = y xc mc;
Usevariables=y xc mc xm;

!xc and mc are the mean-centered composites;
!The creation of xc and mc should be conducted outside the Mplus program;
DEFINE:
!xm is the product term of xc and mc;
!grand mean center strategy apply to xm;

xm=xc*mc;
center xm (grandmean);

MODEL:
!specify the model as shown in Figure 3;

fx BY xc;
fm BY mc;
fxm BY xm;
y ON fx fm fxm;

!give labels for latent factor variance;
fx (vxc);
fm (vmc);
fxm (vxm);

(continued)

!give labels for latent factor variance;
fx (vxc);
fm (vmc);

!give labels for error variance;
xc (v_exc);
mc (v_emc);

Model Constraint:
! define v_ox and v_om to be the sum of the latent factor variance and error variance, or the
total variance;

new (v_ox v_om);
v_ox = vxc + v_exc;
v_om = vmc + v_emc;

!define the error variance to be the function of reliability and total variance
!in this example, reliability is assumed to be .7;

v_exc = v_ox*(1-.7);
v_emc = v_om*(1-.7);

OUTPUT:
STDYX;

B2: (continued)
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Notes

1. We found 23 articles in the initial search, but one of them only included dichotomous pre-

dictors in the interaction effect analyses (Qin, Ren, Zhang, & Russell, 2015). Since interac-

tion with dichotomous predictors was not the focus of the present study, we excluded this

article in our summary.

2. In our simulation study, if any item among the three items under single latent factor con-

tributed less than 12% of the total error variance, nonconvergent results would start to

occur among replications.
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