
Abdulsalam and Fahad Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2438-2446

 DOI: 10.24996/ ijs.2017.58.4C.19

*Email: hala_aljumaily@yahoo.com

2438

Evaluation of Two Thresholds Two Divisor Chunking Algorithm Using

Rabin Finger print, Adler, and SHA1 Hashing Algorithms

Hala Abdulsalam*, Assmaa A. Fahad
Department of Computer Science, College of Science, University of Baghdad, Baghdad, Iraq.

Abstract
 Data deduplication is a data reduction technology that is worked by detecting

and eliminating data redundancy and keep only one copy of these data, and is often

used to reduce the storage space and network bandwidth. While our main

motivation has been low band-width synchronization applications such as Low

Bandwidth Network File System (LBNFS), deduplication is also useful in archival

file systems. A number of researchers have advocated a scheme for archival. Data

deduplication now is one of the hottest research topics in the backup storage area. In

this paper, A survey on different chunking algorithms of data deduplication are

discussed, and studying the most popular used chunking algorithm Two Threshold

Two Divisor (TTTD), and evaluated this algorithm using three different hashing

functions that can be used with it (Rabin Finger print, Adler, and SHA1)

implemented each one as a fingerprinting and hashing algorithm and then compared

the execution time and deduplication elimination ratio which was the first time this

comparison performed and the result is shown below.

 Keywords: Big Data, Deduplication, Rabin Finger print, Adler, SHA1.

 بأستخدام ثلاث خوارزميات هاش مختلفة (TTTDتقييم خوارزمية)

هلا عبد السلام ،*جاسم أسماء عبد الله فهد
 ، كمية العموم، جامعة بغداد، بغداد، العراق.قسم عموم الحاسبات

 الخلاصة
البيانااات الم كاااررت و حااا اس كشااا ميااح حجااام البيانااات عاا رياااق البيانااات المكاااررت ىاا نياااة الغااا

وكمياة البياناات ، وغالباا ماا سا خدم لم مياح ما مسااحة ال خا ي الاح فاظ بنسخة واحده ف ا ما ىا ه البياناات و
كمياة البياناات المن ولاة عبار الشابكات ىاو الحاد ما ف حاي كاا الادافل الرييسا لادينا المن ولة عبر الان رنيت.

رشاافة البيانااات. مااة افاا ظنظ نيااة حاا البيانااات المكااررت ساا خدم اي ااا، (LBNFS) بي ااات م ااح بأساا خدام
مبنيااة عمااع اساااة نيااة حاا ال اا كااو خوار ميااات شرشاافو البيانااات ال اوصااع عاادد ماا الباااح ي باساا خدم

ال خا ي الاح ياا . فا ىا ا مجااح ف البيانات المكررت م اىم العناوي نية ح ع بر البيانات المكررت .
 ، ودراسااة خوار ميااةفاا نيااة حاا البيانااات المكااررتالمخ مفااو وعاارخ خوار ميااات ال ياال البحاا ، اام مناقشااة

 بديماوخوار مياات ىاا مال ا واخ بار وعرخ ن ايج ى ت الخوار مياة ، (TTTDالاك ر اس خداما) ال يل
اجريات ىا ت الدراساة .Adler , Rabin Finger Print (SHA1 ,) ةيمكا اسا خداميا مال ىا ه الخوار ميا

شوح ماارت واساا خدمنا ىاا ت الخوار ميااات كخوار ميااات ياال و خوار ميااات ىااا باانفة الوقاات والن ااايج وسااو
 نعرخ الن ايج ف ى ت البيبر.

ISSN: 0067-2904

Abdulsalam and Fahad Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2438-2446

2439

1. Introduction

 Over the last several years, we have witnessed an unpredictable growth of the volume of stored

digital data universe. A recent study pointed that the amount of digital data that are generated in 2002

was about 5 exabytes, which is nearly double the volume of data created in 1999 [1].And with the

heading toward digitization and Internet of Things (IoT) the digital universe is doubling every two

years in term of size, and by 2020 it reaches 44 zettabytes, or 44 trillion gigabytes, which is about 50

time by it now [2]. Most of these digital data is redundant, which is formed as Archival or backup data

or any other redundant data, One study point that about to 70% of data collected from 1000 computer

of an enterprise, and about to 60% of Network outgoing and 30% on incoming traffics is redundant

[3] .The archival data is an increasing part of digital universe, which is unchangeable data that keep

stored for long time for the sake of legal or archival purposes. As the researchers observed we can

take advantage of these data, in order to improve the storage efficiency. Deduplication techniques was

proposed for this purpose.

 Data Deduplication technique are mainly used in the disk-based backup system because of its cost-

effective space utilization, it proposed to eliminate Enter-file redundancy by exploiting the high

degree of similarity among archival data in order to improve storage efficiency because traditional

data compression technique can only find the intra-file redundancy [4] .Deduplication may be occur

either inline or post-process. In in-line the duplication process (hash calculations and lookup) done in

the real-time. With post-process or (offline) deduplication, the whole data is stored on the storage

device when it arrived and then duplication process at a later time will be performed. Deduplication

process take good amount of time causing the degradation of system performance, post process will

solve this problem by the way it work. On the other hand storing redundant data on a system that

nearly reached its full capacity is not recommended and may cause a problem and this can be consider

as an advantage of in-line deduplication over post process deduplication.

 The data set used in this work is a different versions of Linux kernel that continent text files with

different size and types which is suitable to test the efficiency of deduplication system.

The aim of this paper can be summarized as follows: (i) provide a brief survey on data deduplication

algorithm and its development (ii) explain in detail the TTTD algorithm and its performance with

different hash function (Rabin Fingerprint, Adler and SHA-1) (iii) discussing the results.

2. Deduplication System:

The full deduplication system is consists of three parts:

1. Chunker: the Chunker is the most important part in this system, it splits the data into numbers of

chunks and assign each chunk a unique hash value identifier.

2. Lookup table: save the file as a key with its hash value. For example:

“C:\\File1\\chunk0 Hash0”.

3. Matching: This part compare the new file with the chunks of file that has the same file name and

type which is already stored in the database of the system. If the identifier of the chunk is found, the

chunk will be deleted and a logical reference is added to the matched one. Otherwise it will be

considered as a new chunk, and added to the system database and the lookup table. The key objective

of good deduplication system is number of chunks in it , which effect of the performance of the

system .

3. Chunking Algorithms

 The main challenges of deduplication system is chunking, there are several chunking strategies

such as the File level, fixed-sized, content-defined and content aware. The essential idea of these

chunking strategies is to break a file into small chunks and then find out the redundancy by fingerprint

comparison.

 Fingerprint is a hash value that is specialized for the specific chunk, since the hash functions are

collision resistant, having the same fingerprint means (with a very high probability) the two data

blocks are identical. So to avoid wasting resources on storage of duplicate data only one of them will

be stored. If the data block is different from another their fingerprint would be different, so both of

them will be store
.
[5]

.

In general we can classify it in two categories:

Abdulsalam and Fahad Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2438-2446

2440

3.1- Single Instant Store (File Level Deduplication): For SIS entire files are given a hash signature

using hash function such as MD5 or SHA-1. This method used in Windows 2000 [6]. It avoids

maximum metadata lookup overhead and CPU usage. Also, it reduces the index lookup process. The

problem of the SIS is its low deduplication Ratio because it fails when a small portion of the file is

changed, the whole file will be consider as new file.

3.2- Chunk level deduplication: breaks the file into number of chunks according to the algorithm

that use, there are three kind of it:

3.2.1- Fixed-size chunking: splits files into equally sized chunks. The chunk boundaries are based on

offsets like 4, 8, 16 kB, etc. This method used in Venti and Oceanstore [6], it improved Deduplication

Ratio significantly compared with SIS. However, the effectiveness of this approach is highly sensitive

to the sequence of edits, for example, an insertion of a single byte at the beginning of a file can

change the content of all chunks in the file resulting in no sharing with existing chunking.

3.2.2- Content aware Chunking: based on similarity detection between data objects, and then found

the deltas between them using delta encoding and store it instead of entire data.

3.2.3- Content Defined Chunking (CDC): employs hash function to choose partitioning points in the

object. CDC restrict the effect of inserting or deleting characters to the regions where changes have

been made that cause one or two chunk only to consider new but the rest of chunks may remain as it

was. CDC was first applied in LBFS, lots of chunking algorithms are developed based on it to

improve Deduplication Ratio. CDC algorithm uses more CPU resources. Based on the characteristics

of the file such as content, size, image, color, etc. but it the most used because it has the best

Deduplication Rate, below the most famous kind of CDC [7]:

 Basic Sliding Window (BSW): Fingerprint computed by a hash function such as Rabin then a

predefined condition is tested if the value of fingerprint satisfy that condition it consider as a

breakpoint (chunk boundary), two main factors used to define that condition window size and a

divisor D if (Hash [window size string] % D = D-1) then it a breakpoint, If not then slide the window

size one byte until a breakpoint found.

 The Two Threshold Two Divisor (TTTD): an improvement of BSW, it define three more

factors, two of them work as threshold (Tmin and Tmax) and the third is a second divisor (Ddash).

TTTD guarantees that no chunk smaller than (Tmin) and no chunk larger than maximum size (Tmax).

Ddash variable is used to avoid any large abnormal block size [5].

 Two Thresholds and Two Divisors with SwitchP (TTTD-S): presented as an improvement on

the TTTD , it reduce 50% of large chunks size and 7% of the running time, TTTD take an expensive

calculation and running time, only the second divisor Ddash take about to 10% of total running time,

so the new divisor (SwitchP) appears as the solution, it will switch main divisor D and the second

divisor Ddash values to 1/2 of the original when the algorithm reaches a specific point , then return it

to original after finding a breakpoint increasing the main divider probability to happen earlier led to

skip some calculation and saving time [8].

 Bimodal chunking algorithm: Bimodal algorithms perform content-defined chunking in a

scalable manner, it can dynamically change the expected chunks size. It combine chunk that have

different size together. For non-duplicated chunks it divide it into smaller ones in order to find more

redundancy [9].

 Multimodal Content Defined Chunking (MCDC) Algorithm: it consider as improvement to

bimodal chunking algorithm.at the beginning they divide the data into fixed size chunks and find the

Compression ratio (CR) for each one apart from the others. This method led to shift boundary

problem which is solved by dividing the data stream into variable size block using Uni-modal

chunking and compute the compression ratio for each one after that second level will start for each

chunk, start variable size chunking by using fingerprint by this way system overhead will be reduced

and about to 29.1% to 92.4% of chunk numbers will be reduced as well, but the deduplication ratio

will sill efficient.

 Leap-based CDC Algorithm: Leap based chunking algorithm improves the deduplication

performance of BSW. The leap based added two parameters M and Pw, these Parameters determine

the performance and chunk size of leap based CDC, where M is the number of satisfied window and

the Pw is the probability that window satisfied. They found that the optimal value of M=24 and Pw

=3/4. By adding a secondary judgment function the computational overhead is reduced and the

deduplication ratio is maintained [10].

Abdulsalam and Fahad Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2438-2446

2441

4. Two Threshold Two Divisor Algorithm:

TTTD was first proposed by HP laboratory in 2005, it take four basic variables that determine its

behavior (Min, Max, D and Ddash) parameter values. The optimal values of these parameters are

(460, 2800, 540, ad 270) respectively [9]. The TTTD algorithm is consists of the following steps [9]:

 Read file as one character at time.

 Skip first Min boundary.

 When reach Min value start to compute finger print value for last window size.

 If (finger print) mod D = D-1 then consider it as a chunk boundary and add breakpoint And go to 2

 Else if (finger print) mod Ddash =Ddash -1 then consider it as backup breakpoint and continue

reading next character and update window size by deleting first character and append new one and

compute new (finger print).

 If Max boundary reached, if there is any backup break point use it, else use max as a break point

boundary; then go to 2.

Figure-1 shows these steps.

5. Alternative Hash functions Used with TTTD:

 Basically TTTD works using a specific kind of hashing algorithm; Rolling Hash, to find if the text

matching the pattern or not. Using Hash function may lead to hash collision then a byte to byte

comparison operation for the substring and the pattern must be performed, which takes long time.

For a given data block of size S bytes, rolling hash calculates the fingerprints over a sliding window

of size W, where (W smaller than or equal to S). The size of the sliding window is variable, and can

be within the range of 12 to 64 bytes reading one byte at a time [9]. The first W bytes send to hash

then a sliding window rolling one byte removing the first byte of the W size and append the new one

and send it again to hash algorithm to update its fingerprint or hash value. Fingerprint is considered as

the chunk boundary or breakpoint.

 In this paper, three hash algorithms will be implemented and the results will be discussed.

Fingerprint Mod

D = R ?

 Rabin Fingerprint

(W)

W

Beginning

of the File

End of the

File

Compute Hash

Compare with

previously stored data

Store on Disk
Reference will be

created

Shift One

Byte

Duplicate

 Chunk?

NO

Yes

NO Yes

Skip Min

Boundary

Fingerprint Mod

D_dash = R_dash ?

MAX

Boundary

Reach MAX

 Boundary ?

NO

found breakpoint

 by D_dash ?

Impose hard threshold

using Max boundary

Yes

Yes

NO

Figure 1- TTTD Deduplication Algorithm

5.1- Rabin Fingerprint: The most used hash with TTTD is Rabin Fingerprint, it is string matching

algorithm used in LBFS,[11] it work as follow:

Abdulsalam and Fahad Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2438-2446

2442

- Calculates a rolling Fingerprint over data. For first substring of length K where (K is Substring

size) Fingerprint is computed by using the formula:

Fingerprint (Substring of length k) = (Substring [0] × Prime ^K-1) + (Substring [1] × Prime^k-2) +

(Substring [2] × Prime ^ k-3)..... (Substring [0] × Prime ^ 0).

- Calculating a Fingerprint according to a previous one as follows:

 Subtract first byte value that has slid out while rolling the sliding window, the value equal to

[ASCII Code of character * Prime ^ K] because it rolling about K time before it eliminate.

 Multiply the result from first step by the prime number.

 Add the value of the new character that has appended to the substring. The value of the new byte

equal to [ASCII Code of byte * Prime ^0] as it is the first arrive to it.

5.2- Adler-32 checksum: is part of the widely used zlib compression library. The Adler checksum

uses a prime modulus in an attempt to get better mixing of the checksum bits. A is initialized to 1 and

each addition is done modulo 65521 it work as follow :

- Calculates a rolling Fingerprint over data. For first substring of length K where (K is Substring

size) Fingerprint is computed by using the formula:

For (index = 0 to K)

{a = (a + Substring [index]) % MOD_ADLER;

b = (b + a) % MOD_ADLER}

Fingerprint = (b << 16) | a;

- Calculating a Fingerprint according to a previous one as follows:

a = Old hash value;

b = (a >> 16) & 0xffff;

a &= 0xffff;

a = (a - Substring [0] + ASCII (New Char)) % MOD_ADLER;

b = (b - (K* Substring [0]) + a - 1) % MOD_ADLER;

5.3- Secure Hash Algorithms (SHA-1): is a cryptographic hash function designed by the National

Security Agency (NSA). SHA-1 hash function is the most widely used of the existing SHA hash

functions, it takes a variable length input message and produces a fixed size (160 bit length) output

message called the hash or the message digest of the original message. The basic SHA-1 algorithm is

presented as follows: [12]

- Initializing the five sub-registers of the first 160-bit register X labeled H0, H1, H2, H3, and H4 as

follows:

H0=67452301; H1=EFCDAB89; H2=98BADCFE; H3=10325476; H4=C3D2E1F0;

- Iterates each of 512 message bits blocks (m0, m1, m2 … mn-1). For each one do :

 Write mj as a sequence of sixteen 32-bit words, mj = W0 || W1 || W2 || … || W15

 Compute the remaining sixty four 2-bit words as follows:

Wt = (Wt-3 xor Wt-8 xor Wt-14 xor Wt-16)

Cyclic shift of Wt by 1 i.e. S
1
(Wt)

 Copy the first 160 bit register into the second register as follows:

A= H0; B= H1; C=H2; D=H3; E= H4;

This step involves a sequence of four rounds, corresponding to four intervals 0<=t<=19, 20<=t<=39,

40<=t<=59, 60<=t<=79. Each round takes as input the current value of register X and the blocks Wt

for that interval and operates upon them for 20 iterations as follows:

For t = 0 to 79 do:

{T=S
5
 (A) + ft (B, C, D) + E + Wt + Kt

E=D; D=C; C= S
30

 (B); B=A; A=T}

 Once all four rounds of operations are completed, the second 160-bit register (A, B, C, D, E) is

added to the first 160-bit register (H0, H1, H2, H3, H4) as follows:

H0 = H0 + A; H1 = H1 + B; H2 = H2 + C; H3 = H3 + D;

H4 = H4 + E;

- Once the algorithm has processed all of the 512-bit blocks, the final output of X becomes the 160-

bit message digest.

6. The Data Sets

The Data Sets used in this paper are:

Abdulsalam and Fahad Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2438-2446

2443

1. Five versions of GNU (Emacs) files including versions 22.1, 22.2 22.3, 23.1 and 24.1, the total

data size was about 580 MB consist of 16,296 Files, 327 Folders continent different type.

2. Eight versions of 3DLDF files of GNU including versions 1.1.3 ,1.1.4 ,1.1.5 ,1.1.5.1 , 2.0 ,2.0.1 ,

2.0.2 and 2.0.3.The total data size was about 2.27 GB consist of 5,795 Files and 63 Folders continent

different type.

The files within the data sets are with different sizes starting from zero byte to very large file in order

to test all cases;

Table 1 shows the characterization of each data set.

Table 1-Characteristics of the used Data Set

Data Set On line link
No. of Files and

folders

Total input

size

Versions of Emacs of

GNU
http://www.gnu.org/

16,296 Files, 327

Folders
580 MB

Versions of 3DLDF of

GNU
https://www.kernel.org/

5,795 Files, 63

Folders
2.27 GB

7. Experimental Result and discussion

 In this paper TTTD deduplication algorithm is implemented using three different hashing

algorithms: Rabin finger print, Adler, and SHA-1, with two different datasets are used: Versions of

Emacs of GNU, and Versions of 3DLDF of GNU. The three hash methods are implemented in an

Intel core i7 CPU, 16 GB RAM and 1TeraByte HDD in Windows 10 environment with C++ language

in Visual Studio 2017 development tool.

The results in Table-2 are produced by implementing TTTD deduplication algorithm with Rabin

Fingerprint, Adler and SHA-1 hashing algorithms using Versions of Emacs of GNU data set.

Table 2- Result of data Set 1

 Hash

performance
Rabin Finger

Print

Adler Rolling

Hash
SHA1

Size of input Data in bytes 608,528,261 608,528,261 608,528,261

Size of output Data in bytes 342,963,573 348,633,873 342,094,332

Deduplication Rate 1.7743 1.745 1.778

TTTD Elapsed Time in second 2208 1743 7712

Whole program time in second 3571 3343 9339

Total Number of chunk 623922 619761 622457

Total Number of chunk Using D 598801 594975 597524

Total Number of chunk Using D

Dash

8510 8337 8398

Total Number of chunk Using Max 315 153 239

Abdulsalam and Fahad Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2438-2446

2444

Table -3 shows the results produced by implementing TTTD deduplication algorithm using Versions

of 3DLDF of GNU data set.

Table 3- Result of Data Set 2

Hash

performance
Rabin Finger Print

Adler Rolling

Hash
SHA1

Size of input Data in bytes 2442270245 2442270245 2442270245

Size of output Data in bytes 860227050 862132181 860373952

Deduplication Rate 2.839 2.832 2.838

TTTD Elapsed Time in second 3192 1073 29428

Whole program time in second 9798 5783 38017

Total Number of chunk 2468026 2477446 2440705

Total Number of chunk Using D 2424864 2440286 2397265

Total Number of chunk Using D

Dash
35686 30843 37031

Total Number of chunk Using Max 1681 522 614

 As noticed the same results are obtained approximately for the three hashes. For each data set the

experiments repeated 10 times in order to obtain reliable results. Because of the natural of the TTTD

algorithm and its dependency on the content of the file, the number of chunks will be considered

during the test operation, when the dataset remains unchanged, the algorithm will produce the same

results. But for the execution time the average of the resulted time of tests was considered as the final

execution time.

 From the results shown in Table -2 and Table -3, it is notes that if the main devisor D used to find

the breakpoint it will produce minimum number of chunks with larger chunk size than the chunks

produced by D Dash; this case will leads to minimum CPU overhead, but at the same time it will

reduce the deduplication rate because large chunk size miss to find matches as the small chunk size.

In another side maximum number of chunk, with small chunk size produces maximum CPU overhead

with high deduplication rate. It important to mention out the three special cases that appeared during

this work:

 The files with size “Zero“, will be considered as one empty chunk in order to reconstruct this file

during the decompression operation.

 The size of the file is smaller than the minimum threshold, this file will be considered as one

chunk.

 The remaining part after the last breakpoint is small than the minimum threshold, will be

considered as one small chunk.

8. Conclusion
 From the above, if the deduplication system focuses on deduplication rate SHA-1 is the most

suitable hashing algorithm that can be used with TTTD algorithm. Otherwise if the system prefers

speed over the deduplication rate then Adler rolling hash is the best. Between the two Rabin

Fingerprint consider as the middle of the two it produce deduplication rate near to SHA-1 with less

time that is almost as much as Adler Rolling hash.

Abdulsalam and Fahad Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2438-2446

2445

Figure 2- Result of Data set 1

Figure 3-Result of Data set 2.

Abdulsalam and Fahad Iraqi Journal of Science, 2017, Vol. 58, No.4C, pp: 2438-2446

2446

References

1. Quinlan, S. and Dorward, S. 2002. Venti: A New Approach to Archival Storage. FAST, 2: 89-101.

2. Gantz, J., & Reinsel, D. 2012. The digital universe in 2020: Big data, bigger digital shadows, and

biggest growth in the far east. IDC iView: IDC Analyze the future, 2007, 1-16.

3. Kim, D., Song, S. and Choi, B.-Y. 2016. Data deduplication for data optimization for storage and

network systems. Springer International Publishing Switzerland 2017.

4. You, L. and Karamanolis, C. T. 2004. Evaluation of Efficient Archival Storage Techniques.

MSST, pp. 227-232.

5. Kave, E. and Khuern, T. H. 2005. A framework for analyzing and improving content-based

chunking algorithms. International Enterprise Technologies Laboratory, HP Laboratories Palo

Alto, Tech. Rep.

6. Wang, L., Dong, X., Zhang, X., Guo, F., Wang, Y. and Gong, W. 2016. A Logistic Based

Mathematical Model to Optimize Duplicate Elimination Ratio in Content Defined Chunking

Based Big Data Storage System. Symmetry, 8(7): 69.

7. Venish, A. and Sankar, K. S. 2016. Study of Chunking Algorithm in Data Deduplication.

Proceedings of the International Conference on Soft Computing Systems, 13-20.

8. Moh, T.-S. and Chang, B. 2010. A running time improvement for the two thresholds two divisors

algorithm. Proceedings of the 48th Annual Southeast Regional Conference, (p. 69).

9. Kruus, E., Ungureanu, C. and Dubnicki, C. 2010. Bimodal Content Defined Chunking for Backup

Streams. Fast, pp. 239-252.

10. Yu, C., Zhang, C., Mao, Y. and Li, F. 2015. Leap-based content defined chunking—theory and

implementation. Mass Storage Systems and Technologies (MSST), 2015 31
st
 Symposium on, (pp.

1-12).

11. Dang, Q. 2013. Changes in federal information processing standard (FIPS) 180-4, secure hash

standard. Cryptologia, 37: 69-73.

12. Eshghi, K. and Tang, H. K. 2005. A framework for analyzing and improving content-based

chunking algorithms. Hewlett-Packard Labs Technical Report TR, 30.

