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Differential Item Functioning (DIF) occurs when examinees with the same ability 

have different probabilities of endorsing an item. Conventional DIF detection methods 
(e.g., the Mantel-Hansel test) can be used to detect DIF only across observed groups, 
such as gender or ethnicity. However, research has found that DIF is not typically fully 
explained by an observed variable (e.g., Cohen & Bolt, 2005). True source of DIF may be 
unobserved, including variables such as personality, response patterns, or unmeasured 
background variables.  

The Factor Mixture Model (FMM) is designed to detect unobserved sources of 
heterogeneity in factor structures, and an FMM with binary outcomes has recently been 
used for assessing DIF (DeMars & Lau, 2011; Jackman, 2010). However, FMMs with 
binary outcomes for detecting DIF have not been thoroughly explored to investigate both 
types of between-class latent DIF (LDIF) and class-specific observed DIF (ODIF).  

The present simulation study was designed to investigate whether models 
correctly specified in terms of LDIF and/or ODIF influence the performance of model fit 
indices (AIC, BIC, aBIC, and CAIC) and entropy, as compared to models incorrectly 
specified in terms of either LDIF or ODIF. In addition, the present study examined the 
recovery of item difficulty parameters and investigated the proportion of replications in 
which items were correctly or incorrectly identified as displaying DIF, by manipulating 
DIF effect size and latent class probability. For each simulation condition, two latent 
classes of 27 item responses were generated to fit a one parameter logistic model with 
items’ difficulties generated to exhibit DIF across the classes and/or the observed groups. 

Results showed that FMMs with binary outcomes performed well in terms of fit 
indices, entropy, DIF detection, and recovery of large DIF effects. When class 
probabilities were unequal with small DIF effects, performance decreased for fit indices, 
power, and the recovery of DIF effects compared to equal class probability conditions. 
Inflated Type I errors were found for invariant DIF items across simulation conditions. 
When data were generated to fit a model having ODIF but estimated LDIF, specifying 
LDIF in the model fully captured ODIF effects when DIF effect sizes were large. 
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Chapter 1: Introduction 

In the past half century, as use of high stakes measures including college 

admission tests, employment tests, and mental health inventories has increased, fairness 

has become a principal concern in educational and psychological testing. While fairness 

can be a complex construct to assess, it is fundamentally a commitment “to absence of 

bias and to equitable treatment of all examinees in the testing process” (AERA, APA, 

NCME, 1999, p. 74). Fairness clearly requires that examinees’ test scores should be 

comparable regardless of group memberships (for example, gender and ethnicity). If 

performance on certain test items is easier for members in one group than in another 

group after controlling for ability then the test could be unfair and associated test-based 

inferences will be unfair.  

When an item is so constructed that it performs differently on the basis of an 

individual’s group membership, the item is considered to exhibit differential item 

functioning (DIF) (Dorans & Hollad, 1993; Holland &Thayer, 1988; Holland & Wainer, 

1993). When the purpose of testing is to compare subgroups, the detection of DIF is 

particularly critical to meaningful group comparison. Thus, DIF analyses are frequently 

included in large-scale assessments in education and in social and health sciences 

(Penfield & Camilli, 2007).  

Several commonly used models and associated test statistics have been developed 

to detect DIF as a function of membership in observed groups (like gender or ethnicity), 

including the Mantel-Hansel test (Holland & Thayer, 1988), the standardization method 

(Dorans & Kulick, 1986), the logistic regression model (for example, Swaminathan & 
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Rogers, 1990), the IRT-based chi-square test (Lord, 1980; Wright & Stone, 1979), the 

likelihood ratio test (IRT-LRT; Thissen, Steinberg, & Wainer, 1988; Wang & Yeh, 2003), 

and the multiple indicators multiple causes (MIMIC: Muthén, 1985; 1989) model. 

Typically, such approaches focus on comparing differences in items’ functioning 

between observed groups. For example, researchers use pre-existing groups, such as 

gender or ethnicity, to investigate whether responses to some items function differently 

on the basis of the observed group characteristics (after controlling for ability). The 

approaches are based on the assumption that individuals within an observed group are 

more likely to be homogeneous than individuals across the observed groups (Samuelsen, 

2005). However, numerous studies have suggested that using an observed group (for 

example, gender) that is frequently considered a source of DIF does not result in fully 

detecting DIF, because some unobserved or unmeasured factors can lead to DIF (for 

example, Cohen and Bolt, 2005; De Ayala, Kim, Stapleton, and Dayton, 2002). That is, 

there may also be a high level of heterogeneity within each observed group. If a 

researcher fails to consider heterogeneity by making an assumption of homogeneity 

within each observed group, it can be possible to be lead to erroneous conclusions about 

DIF (Samuelsen, 2005). In addition, Cohen and Bolt (2005) have cautioned that more 

traditional approaches do not provide information to explain why DIF occurs, because the 

focus is not on the dimension causing DIF but simply on the observed examinee 

characteristic of interest.  

Recently, mixture modeling—designed to assess heterogeneity in factor structures 

across unobserved subpopulations—has been used for identification of DIF. Mixture 
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modeling involves classifying examinees ex post facto into latent subpopulations as a 

function of examinees’ response patterns rather than classifying examinees a priori into 

their observed groups. The unobserved sub-populations known as latent classes arise 

among individuals as a result of qualitative differences, for example distinctions in 

groups’ use of different problem solving strategies, different response styles, or different 

levels of cognitive thinking (Samuelsen, 2005).   

Within the family of mixture models, the factor mixture model (FMM) integrates 

both continuous and categorical latent variables in its framework. Individuals are 

classified into one of the latent classes, and the within-class factor structure and factor 

mean differences across latent classes are investigated. Because a latent class variable is 

unobserved in mixture models, the true number of classes is unknown. Thus, researchers 

should pre-specify the number of latent classes. Typically, selection of mixture models is 

decided based on various fit indices, such as the Akaike Information Criteria (AIC; 

Akaike, 1987), the Bayesian Information Criteria (BIC, Schwartz, 1978), the adjusted 

BIC (aBIC; Sclove, 1987), and the consistent AIC (CAIC; Bozdogan, 1987). In addition, 

unknown class membership is estimated based on the probabilities of individuals’ most 

likely latent class assignment, through use of entropy and the highest posterior 

probability of latent class membership.  

Background variables such as gender, ethnicity, or SES as covariate variables can 

be modeled in FMM, and modeling background variables as covariate effects in FMM 

helps in the interpretation of latent class membership (Lubke & Muthén, 2005; 2007). 

There are two kinds of covariate effects that can be specified in mixture models: class-
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specific and between-class. While the class-specific covariate effect explains variability 

in latent ability within latent classes, the between-class covariate effect explains between-

class variation across classes due to the influence of the covariate on the latent class 

variable. That is, the class-specific covariate effect reflects a direct effect on a continuous 

latent factor, and the between-class covariate effect reflects an indirect effect of the 

covariate on the continuous latent factor (through the latent class mediator). Most studies 

that have investigated covariate effects in FMM have addressed only between-class 

covariate effects, and they have supported including even small between-class covariate 

effects to improve the probabilities of assigning individuals to their true classes (Lubke & 

Muthén, 2007).  

FMMs have been extended to measure binary outcomes, and an FMM with binary 

outcomes—known as a mixture IRT model—can be used for identifying DIF between 

latent groups. Binary responses (0 or 1) to items that are estimated within a confirmatory 

factor analytic model can be compared to assess whether measurement invariance holds 

across latent classes. If individuals’ responses to an item differ as a function of latent 

classes after controlling for latent ability, the item is identified as exhibiting between-

class latent DIF. Many studies have found that FMMs with binary outcomes performed 

well in detecting sources of DIF in comparison to more traditional approaches that 

consider sources of DIF using pre-specified observed groups. More specifically, use of 

both FMMs with binary outcomes and more traditional DIF methods identified DIF items 

well when a source of DIF was observable, but FMMs with binary outcomes 
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outperformed traditional methods in determining a source of DIF if the source was 

unobservable (Cohen & Bolt, 2005; De Ayala et al., 200; Samuelsen, 2005).  

However, unless latent classes are largely separated, it is difficult to interpret the 

qualitative meaning of latent class memberships identified by the models using FMMs 

with binary outcomes. In addition, the observed response data alone might make it 

difficult to estimate parameters precisely, especially for complicated statistical models 

(Embretson, 2006; Jackman, 2011; Smit, Kelderman, & van der Flier, 1999). So, 

previous studies have included observed groups in using FMM with binary outcomes, 

and researchers have found that inclusion of observed grouping variables improved 

recovery of the composition of the latent classes, the recovery of item parameters (Smit et 

al., 1999), and detection rates for between-class latent DIF items (Maij-de Meij, 

Kelderman, & van der Flier, 2011). Most such studies have focused on investigating 

whether inclusion of observed grouping variables improved the probability of placing 

members in their correct class, resulting in enhanced recovery of between-class latent 

DIF.  

Even though sources of DIF can be detected by using latent class models, there 

might be some variability that cannot be explained as a function of latent classes but that 

can be explained as a function of observed groups. Thus, including observed groups that 

might have different effects on some items across latent classes makes it possible to 

detect class-specific observed DIF. For example, Tay, Newman, and Vermunt (2010) 

investigated whether different item responses by respondents, controlling for latent 

ability, could be captured as a function of a latent grouping variable on a union 
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citizenship scale (an eight-item test). They found that the model with two latent classes 

provided the best fit to the data. Additionally, they found that some items had functioned 

differently based on latent group memberships, but one item had functioned differently 

based on a latent group membership as well as an observed group membership—gender. 

These results suggested that including class-specific observed group can make it possible 

to detect different functioning based on observed group membership within latent classes. 

As an example of an applied study, Cho, Lee, and Kingston (2012) investigated the effect 

of testing accommodation on a math assessment for students with disabilities by 

comparing accommodated versus non-accommodated groups. Unlike findings in 

numerous studies that accommodation was a source of DIF, they found that latent math 

ability was an unobserved source of DIF (that is, between-class latent DIF) when the 

mixture IRT model was used. In addition, they found that accommodation was the source 

of DIF in only a low math-ability class, not in a high math-ability class (that is, class-

specific observed DIF). 

Because in real-world situations the unknown but true underlying pattern might 

be more complicated than the simply hypothesized pattern that contains only unobserved 

sources or observed sources of DIF, it is important to analyze various sets of simulated 

data that fit models that have between-class latent DIF (that is, LDIF) and class-specific 

observed DIF (that is, ODIF). However, there has been no simulation study to investigate 

both unobserved and observed sources of DIF by including an observed group that has 

class-specific effects in FMM with binary outcomes. Therefore, it is reasonable to 

conduct a study to evaluate models by manipulating between-class latent DIF (LDIF) 
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and/or class-specific observed DIF (ODIF) in FMM with binary outcomes, to assess 

performance of fit indices, success in recovery of item parameters and latent class 

membership, and detection rates for between-class DIF and/or class-specific observed 

DIF.  

Almost all simulation studies investigating DIF in mixture models have generated 

correctly specified models to examine how well between-class latent sources of DIF 

detect or how well item parameters estimate under various simulation conditions 

including sample size, latent class membership proportion, magnitude of DIF effect, and 

number of invariant and DIF items. In addition, it is assumed that an observed group is 

correctly specified when an observed grouping variable is modeled in FMM with binary 

outcomes. However, it is possible to mis-specify a model by mis-specifying an observed 

grouping variable’s effect. Maij-de Meij et al. (2011) simulated data to examine how a 

mis-specified observed grouping variable influenced detection of between-class latent 

DIF. They included an observed grouping variable that was not associated with latent 

class membership, and then they compared between-class latent DIF detection rates in 

circumstances when an observed grouping variable was incorrectly included and when an 

observed grouping variable was excluded in FMM with binary outcomes. They found 

that even an observed grouping variable that had no effect on latent class membership 

influenced between-class DIF detection either positively or negatively, depending on 

latent class proportions. However, it is unknown how an incorrectly specified observed 

source of DIF influences the performance of FMMs with binary outcomes (for example, 

parameter recovery, DIF detection rates and correct class membership). That is, it is 
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possible that an observed grouping variable is one of the sources of DIF, but a researcher 

assumes that the observed grouping variable predicts latent class membership and then 

helps find between-class latent DIF.  

Likewise, there are many possibilities for how observed and unobserved sources 

of DIF in FMMs with binary outcomes might be mis-specified in real world situations. 

For example, both between-class latent DIF and class-specific observed DIF may exist, 

but a researcher may estimate a model that includes only one of these sources of DIF 

(between-class latent DIF or class-specific observed DIF). On the other hand, there may 

be only between-class latent DIF, but a researcher may estimate a model that includes 

both between-class latent and class-specific observed DIF. In addition, there may be only 

an observed source of DIF (for example, gender), but a researcher may estimate a model 

that has between-class latent DIF. Lastly, a researcher might estimate a model assuming 

that there is neither between-class latent DIF nor class-specific observed DIF when, in 

fact, there truly is both between-class latent DIF and/or class-specific observed DIF. 

Therefore, it is reasonable to examine how models that are incorrectly specified by 

including, excluding, or differently specifying between-class latent DIF and class-specific 

observed DIF impact fit indices, correct class membership, parameter recovery, and DIF 

detection rates (between-class latent DIF/class-specific observed DIF).    

The present simulation study had four goals. First, the study evaluated models 

correctly or incorrectly specified by including between-class latent DIF and/or class-

specific observed DIF, in terms of model fit indices such as AIC, BIC, aBIC and CAIC. 

Previous studies have focused on determining optimal numbers of latent classes by 
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manipulating various simulation conditions, but the present study focused on how well fit 

indices perform in correctly specified models as compared to incorrectly specified 

models when a two-latent class FMM with binary outcomes is specified. Second, to date, 

no study has investigated parameter recovery of correctly identified DIF items in models 

that include both between-class latent DIF and class-specific observed DIF. Thus, the 

present study evaluated the recovery of parameters for between-class latent DIF and/or 

class-specific observed DIF items when models are correctly specified. Third, the study 

evaluated whether items are correctly or incorrectly identified as exhibiting DIF when 

models are correctly and incorrectly specified. While most studies have examined how 

well inclusion of observed groups helped find between-class latent DIF items by 

improving the probabilities of individuals belonging to correct classes, the present study 

included an observed group that has specific effects on some items in each latent class 

and examined how well correctly specified models detect between-class latent DIF and 

class-specific observed DIF items, compared to incorrectly specified models. Fourth, the 

study examined how well correctly specified models, compared to incorrectly specified 

models, correctly assign individuals into their latent class based on entropy value. To be 

included as manipulated conditions in the study were class probability (equal vs. unequal), 

between-class latent DIF effect size (small vs. large), and class-specific observed DIF 

effect size (small vs. large). To be summarized and compared across conditions were the 

relative parameter bias and standard error bias of items’ difficulties for correctly 

identified DIF items and of DIF effects as well as the performance of information criteria 



10 

 

in terms of correct model identification. In addition, the recovery of correct class 

membership was summarized and compared across conditions.  
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Chapter 2: Literature Review 

 

Educational, behavioral, and social science researchers are often interested in 

detecting differences in one or several dependent measures for two or more groups. For 

example, researchers might be interested in investigating whether measure(s) of learning 

strategy skills are different for males versus females or among ethnic groups. To compare 

groups, researchers might use analysis of variance (ANOVA) or a multivariate analysis 

of variance (MANOVA). Often, researchers are interested in detecting group differences 

in an underlying latent variable, which is a construct that is difficult or impossible to 

observe directly. Using a set of items as indicators of the latent construct, researchers can 

make inferences about mean differences in the latent variable across groups using 

structural equation modeling.   

One of the important assumptions made when testing mean differences is 

measurement invariance, which means that the same construct is being measured 

equivalently across different populations. Examinees who have the same level of a latent 

construct of interest should perform equivalently on each in a set of items regardless of 

their group membership, defined by factors such as sex, ethnicity, or culture. However, if 

examinees perform differently on an item—after controlling for the construct measured 

by the item—as a function of group membership, then the item scores are not 

measurement invariant. The item is then exhibiting differential item functioning (DIF) as 

a function of group membership. If DIF is present in one or more test items, then the 
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inference is that the test is measuring groups differently, thereby potentially invalidating 

tests of mean differences between the groups.  

Typically, the group in which examinees are disadvantaged by some test items is 

referred to as the focal group. The other group, in which examinees are advantaged by 

some test items, is referred to as the reference group. For example, if a math item is more 

difficult for females (after controlling for ability) and less difficult for males, then the 

item has gender DIF.  

In order to describe DIF and the types of DIF in more detail, the first section of 

this chapter contains a description of item response theory (IRT) for dichotomous items. 

Although IRT models for polytomous items can be used for DIF detection, the present 

study focuses solely on DIF detection methods for dichotomous items, which are widely 

used in large-scale assessments.  

Dichotomous Item Response Theory 

There are three item response theory (IRT) models that are frequently used to 

model dichotomous items as a function of the ability the items are intended to measure, 

namely: the one parameter logistic (1PL) model (Rasch, 1960; Wright, 1968), the two 

parameter logistic (2PL) model (Birnbaum, 1968; Lord, 1952), and the three parameter 

logistic (3PL) model (Birnbaum, 1968; Lord, 1952).  

Figure 1 illustrates two item characteristic curves (ICCs) for items A and B that 

differ only in item difficulty. For example, the ability level associated with the point of 

inflection is lower for item A than for item B, so item B is more difficult than item A. 
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Figure 1. 1PL model ICCs for two items that differ in item difficulty 

The 1PL model defines the probability of correctly responding to an item as 
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where θj is the ability of examinee j and bi is the difficulty of item i. For each item, it is 

possible to plot an ICC that shows the relationship between the ability scale value (θ) and 

the probability of responding correctly to the item. The item difficulty b represents the 

point on the θ scale that corresponds to the point of inflection of the ICC, where the slope 

is at a maximum. Because the 1PL model includes no discrimination parameter [that is, 

the discrimination parameter (a) is constrained to be equal across all items], the ICCs for 
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all items have the same slope but occupy different locations along the ability scale (see 

Figure 1).   

Figure 2 shows two ICCs for items C and D that differ only in their item 

discriminations. The ICCs occupy the same location along the ability scale but have 

different slopes. The steeper the slope is at the point of inflection, the higher the item 

discrimination power is (Hambleton & Swaminathan, 1985) and the better the item can 

distinguish between examinees who are more proficient from those who are less 

proficient for a given . Thus, in Figure 2, item D better distinguishes the abilities of 

individuals than item C, because it has a steeper slope at the point of inflection.  

 

Figure 2. 2PL model ICCs for two items that differ in discrimination power 
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The 2PL model defines the probability of correctly responding to an item as 
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where ai  is the discrimination power of item i. Unlike the 1PL model, the 2PL model 

allows each item to have unique discriminations, as indicated by the inclusion of the 

item-specific discrimination parameter in Equation 2. The item discrimination parameter, 

a, is proportional to the slope of the ICC at the point of inflection. 

As shown in Figures 1 and 2, a non-zero guessing parameter is not assumed with 

the 1PL and 2PL models. Thus, the lower asymptote of each item’s ICC is assumed to be 

zero, so that the probability of a correct response is 50% under the 1PL and 2PL models 

at the inflection point. If a unique, non-zero guessing parameter is modeled then the 

model is referred to as the 3PL model. However, a guessing parameter is not of interest in 

the present study and so only the 1PL and 2PL models are discussed, here.    

Types of differential item functioning. If, at each ability level, the probability of 

endorsing an item is consistently higher or lower for one group than for another group, 

then the item’s differential functioning is referred to as uniform DIF (see Figure 3). That 

is, the item’s difficulty parameter differs for each group, but the discrimination parameter 

can be assumed to be the same across the groups. As can be seen in Figure 3, the 

probabilities of success on item 1 for group 1 are consistently higher across the ability 

continuum than the probability of success on that item for group 2 
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Figure 3. Uniform DIF between two groups  

On the other hand, if an item’s discrimination parameter differs across groups, 

then the item would be said to exhibit non-uniform DIF (see Figure 4). Under non-

uniform DIF differences in the probabilities of success on item 2 for the two groups are 

not the same at all ability levels. As can be seen in Figure 4, the probabilities of success 

across ability levels on item 2 for low-ability members of group 1 are higher than the 

probabilities of success for low-ability members of group 2. However, the probability of 

success on item 2 for high-ability members of group 1 are lower than the probabilities of 

success for high-ability members of group 2. 
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Figure 4. Non-uniform DIF between two groups   

Traditional DIF Detection Methods 

Many methods have been developed and adapted for identifying DIF. Approaches 

such as the Mantel-Haenszel (M-H; Holland & Thayer, 1988) test and logistic regression 

model are based on statistical models developed for categorical data. The M-H test, based 

on a chi-square distribution, divides the focal and reference groups into ability strata in 

terms of examinees’ overall test scores. The approach is to estimate an odds ratio that is 

typically denoted by 
fifi

riri
i

qp

qp

/

/
 , where p represents the proportion of answering an 

item i correctly and q is otherwise. The subscripts r and f represent the reference and 

focal group, respectively. It tests the overall degree of association.  
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The logistic regression model for DIF (Swaminathan & Rogers, 1990) uses binary 

item responses (0 or 1) as outcomes and grouping variables (such as focal and reference 

groups), total score, and the interaction of the grouping variable and total score as 

independent variables. In the procedure, the main group effect provides a test for uniform 

DIF, and the interaction effect of group and total score provides a test for non-uniform 

DIF.  

The M-H test and the logistic regression model use the total test score to take 

account of an examinee’s ability. Because the observed score (that is, total score) 

contains measurement error, it can be problematic, especially with short scales due to low 

reliability (Gelin & Zumbo, 2005). Rather, Woods (2011) suggested that latent variable 

methods, which account for measurement error, are more likely to provide an appropriate 

approach to detect DIF, such as an IRT-based chi-square test (Lord, 1980; Wright & 

Stone, 1979), the likelihood ratio test (IRT-LRT; Thissen, Steinberg, & Wainer, 1988; 

Wang & Yeh, 2003), and the between-item-characteristic-curves test (Raju, 1988, 1990). 

These approaches test whether item parameters, conditional on ability level, are invariant 

across reference and focal groups. For example, in an IRT-based chi-square test described 

by Lord (1980), differences in item difficulty parameters across two groups of 

participants can be examined using the 2
L  statistic (Maij-de Meij, Kelderman, &Van der 

Flier, 2010):  

,
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where V is the variance of the differences in difficulty parameters of the two groups, b̂ is 

the estimated item difficulty parameter, and the subscripts R and F refer to the reference 

group and focal group, respectively. This statistic is asymptotically chi-squared 

distributed with one degree of freedom. If the 2
L  statistic exceeds the critical value for a 

given level of significance, an item is said to exhibit uniform DIF.  

The IRT-LRT procedure compares the likelihood associated with an item’s 

parameters in the two cases of a model with parameter estimates constrained to be equal 

(that is, the reference group) and a model with parameter estimates allowed to vary (that 

is, a focal group). A likelihood ratio test can be conducted by computing   
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where L(C) represents the likelihood obtained using a model with parameter estimates 

constrained to be equal across groups, and L(A) represents the likelihood obtained using 

a model with freely varying parameter estimates across groups. G2 is distributed 

approximately as a chi-square variable.  

Structural Equation Model (SEM) Framework as DIF Detection Method 

In addition to use of the IRT framework approach for DIF identification, the 

structural equation model (SEM) has been recently extended for DIF identification. 

Several authors have demonstrated the equivalence between the IRT model’s 

parameterization and the confirmatory factor analysis (CFA) model’s parameterization. 

The equivalence has been derived for scenarios with dichotomous items and, thus, with 

categorical factor indicators. (See, for example, Baker & Kim, 2004; du Toit, 2003; 
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Fleishman, Spector, & Altman, 2002; Glockner-Rist & Hoitjink, 2003; MacIntosh & 

Hashim, 2003; Takane & de Leeuw, 1987). This correspondence means that  the CFA 

model with binary outcomes is the equivalent of the 2PL IRT model (Muthén, 

Asparouhov, & Rebollo, 2006).  

In this sense, the CFA model with binary outcomes can also be used for DIF 

detection which is more commonly referred to as measurement non-invariance in the 

SEM framework. In using CFA, the assumption of the equivalence of a factor’s 

measurement across groups should hold before comparing groups’ factor mean 

differences. This means that the assumption of measurement invariance is essential 

before testing latent mean differences across groups (see, for example, Lubke & Muthén, 

2005; Raju, Laffitte, & Byrne, 2002; Reise, Widaman, & Pugh, 1993; Vandenberg & 

Lance, 2000).  

The present study is focused on assessing use of the SEM framework for DIF 

identification ultimately for dichotomous items. However, to facilitate explanation of the 

parameterization of the SEM for DIF with binary outcomes, it is easiest to start with a 

description of SEM with interval-scaled outcomes. Thus, the next section will briefly 

describe SEM with interval-scaled outcomes followed by a discussion of the use of SEM 

for dichotomous items’ DIF identification.  
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Multiple Indicators Multiple Causes (MIMIC) Model 

The multiple indicators multiple causes (MIMIC; Jöreskog, 1971) model in the 

SEM family is designed to test latent mean differences among groups under the 

assumption that all loadings, intercepts, and error variances are equal (that is, strict 

invariance). The value of the path representing the prediction of the factor mean by a 

grouping variable can be used to compare groups on the factor mean. In order to compare 

group mean differences in a MIMIC model, data from different groups are combined into 

a single sample. 

 

Figure 5. MIMIC model 
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Let us suppose that a latent construct  (for example, mathematics ability) is 

indicated by p measured variables with a total of N observations (Allua, 2007). The 

MIMIC model is formulated as follows: 

iiyiy  
                [5] 

where subscript i indexes respondents (i = 1, …, N), yi is a p × N matrix of indicators of 

the latent construct for individual i, y is a p × 1 vector of factor loadings, i is a 1×N 

vector of factor scores, and i is a p ×N matrix of residuals.  

The latent continuous factor  is regressed on the grouping variable X (where, for 

example, X might represent gender) consisting of G (here, G = 2) groups, which can be 

expressed as 

,iii X                   [6] 

where  is a 1 × (G  1) vector of regression coefficients to describe group mean 

differences in . Xi is a (G  1) × N matrix of grouping variables that are dummy-coded, 

and 
i  is a 1 × N vector of disturbances.  

Muthén (1985; 1989) popularized an adaptation of the MIMIC model (termed 

here, the MIMIC DIF model) to investigate measurement non-invariance (that is, DIF). 

Figure 6 contains a factor model in which the factor, θ (here, math ability), is regressed 

on X (gender). In IRT and DIF language,   is often referred to as impact (Ackerman, 

1992; Camilli, 1993). That is, impact refers to potential group differences in factor means 

on the construct of interest (here, θ) across groups. In contrast to impact, DIF refers to 

group differences in the probability of getting an item correct, conditional on the 



23 

 

construct of interest measured by items. As shown in Figure 6, the five items in the 

rectangles represent observed variables designed to measure , here, math ability. In the 

model, item 5 is regressed on gender to test for gender-based DIF in responses to that 

item. Notice that all other factor loadings, variable intercepts and error variances are 

assumed equal (that is, strictly invariant) across the observed groups in the MIMIC model. 

Thus, if gender significantly predicts an item response’s intercept (item difficulty, path 

A), controlling for math ability, there is evidence of uniform DIF. In other words, scores 

on the item cannot be assumed homogeneous across gender. Considerable literature has 

supported the finding that use of the MIMIC DIF model permits detection of uniform DIF 

(for example, Chen & Anthony, 2003; Christensen et al., 1999; Finch, 2005; Fleishman, 

Spector, & Altman, 2002; Gelin, 2005; Grayson, Mackinnon, Jorm, Creasey, & Broe, 

2000; Hagtvet & Sipos, 2004; MacIntosh & Hashim, 2003; Mast & Lichtenberg, 2000; B. 

O. Muthén, Kao, & Burstein, 1991; Oishi, 2006; Schroeder & Moolchan, 2007; Shih & 

Wang, 2009; Wang & Shih, 2010). Thus, Figure 6 depicts only uniform DIF in the 

MIMIC-DIF model. 
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Figure 6. MIMIC DIF model to test observed uniform DIF 

 As mentioned above, the MIMIC model results in only one model for the 

combined data from both groups, so it is assumed that the same measurement model 

holds in both groups. However, the MIMIC model cannot be used for investigating how 

the factor structure and loadings might differ across observed groups. Therefore, the next 

section addresses the structured means model (SMM), which provides a more flexible 

framework for assessing potential measurement heterogeneity between multiple 

observable groups.  
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Structured Means Model (SMM) 

The structured means model (SMM) permits more flexible modeling and testing 

of measurement invariance than under the MIMIC model. Any parameters can be 

estimated uniquely for each of multiple groups provided proper identification. Use of 

SMM does require the use of a unit-constant pseudo-variable (the “1” in a triangle 

appearing in Figure 7) to enable comparison of latent variable means across groups.  

Figure 7 shows a model in which equality constraints (strict invariance) can be 

released for any of the factor loadings and variances, residual variances, and intercepts 

for each grouping variable, X. The ellipse that is shaded represents the model being 

estimated in each group (Hancock, 1997), and the arrow pointing from the shaded box 

(here, containing X) to the ellipse represents the grouping variable. An asterisk * beside a 

path from the unit-constant pseudo-variable to the latent construct within the ellipse 

indicates that factor mean   is freely estimated across grouping variable X.  
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Figure 7. Structured means model (SMM)  

SMM is denoted as follows: 

iiyii vy   ,               [7] 

where 

,ii                   [8] 

and where iv  is a p×1 vector of intercepts, and   is the mean of the construct (where it is 

assumed that only a single factor is of interest). Other matrices and vectors are the same 

as in Equations 5 and 6.  
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Under the SMM approach, the intercept ( v ), factor loading ( ), and residual ( ) 

can be freely estimated or constrained to be equal in order to test measurement invariance 

across the grouping variable X. For this, three degrees of measurement invariance can be 

assessed, including: configural invariance, metric invariance, and scalar invariance. 

Configural factorial invariance assumes that the indicators and their pattern of factor 

loadings are equivalent across groups (Horn & McArdle, 1992). When configural 

invariance is supported, metric invariance (involving the assumption that factor loadings 

are equivalent across groups) can be tested. If metric invariance is supported, then scalar 

invariance (under which the indicators’ factor loadings and intercepts can be assumed 

invariant) can be tested. Many researchers have asserted that scalar invariance must be 

supported before comparing groups’ latent means (Chueng & Rensvold, 1999; Cohen & 

Muller, 2006; Vandenberg & Lance, 2000).  

If support is not found for metric invariance, then this provides evidence of non-

uniform DIF. If an item’s intercept cannot be assumed invariant across groups (as is part 

of the scalar invariance assumption), then evidence has been found for uniform DIF.  

Unobserved Heterogeneity 

Both the SMM and the MIMIC model can be used to model observed group 

membership as a source of DIF. However, neither the SMM nor the MIMIC model can 

be used to identify unobservable sources of DIF. For example, Cohen and Bolt (2005) 

investigated gender DIF for items on a college-level mathematics placement test, using a 

likelihood ratio test. While under the likelihood ratio test five items exhibited DIF by 

gender, under mixture modeling (which will be addressed in the next section) gender was 
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not a significant predictor of latent class membership. More specifically, while about one 

half of the male students were disadvantaged by items that were identified as favoring 

males, one half of the female students were advantaged by the same items. And De Ayala, 

Kim, Stapleton, and Dayton (2002) used five 20-item subtests created from a 50-item 

college qualification test that contained four “Black slang” items that were biased against 

White examinees. They found that not all White examinees were disadvantaged by those 

items; rather, responses to those items for some Black examinees were not different from 

those of White examinees of the same ability. Thus, researchers suggested that grouping 

individuals by observed variables such as gender or ethnicity may not fully explain who 

is being disadvantaged by studied items (Cohen & Bolt, 2005; Dai, 2009). That is, these 

applied studies have indicated that considering only an observed group(s) as a source of 

DIF might not provide a full picture of the source of DIF, because DIF might not be fully 

explained by observed group membership such as gender or ethnicity. Other unobserved 

sources of DIF may exist. Consistent with results obtained by Cohen and Bolt (2005) and 

De Ayala et al. (2002), Van Nijlen and Janssen (2008) have also found that observed 

groups considered to be a main source of DIF such as gender and grade were only 

partially related to unobserved sources of DIF.   

Thus, traditional DIF detection methods that use only observed groups for DIF 

identification might be inappropriate if DIF occurs as a result of something that is not 

observable (De Ayala et al., 2002). In order to investigate a source of DIF that might be 

unobserved, it is necessary to develop a method to model unobserved variables for DIF 
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identification. Therefore, the next section will introduce the factor mixture model (FMM), 

which seeks an unobserved variable as a source of population heterogeneity.  

Factor Mixture Model  

A factor mixture model (FMM) is designed to detect population heterogeneity in 

factor-analytic model parameters between unobserved groups (Lubke &Spices, 2008). 

FMM features a combination of a latent class analysis (LCA) model and a confirmatory 

factor analysis (CFA) model (see, for example, Kim, Beretvas, & Sherry, 2010). LCA, 

introduced by Lazarsfeld and Henry (1968), can be used to classify individuals into 

categories (or latent classes) based on observed item responses (Nylund, Asparouhov, & 

Muthén, 2006). Unlike factor analysis, which uses continuous latent variables (that is, 

factors), the LCA model uses a categorical latent variable, which is called a latent class. 

In addition, it is assumed that each individual belongs to only one of the latent classes, 

and that observed variables are mutually independent within a latent class (Goodman, 

1979a). On the other hand, the CFA model involves the assumption that associations 

among observed variables are explained by a latent continuous factor(s), so the CFA 

model serves to specify a factor structure within a single homogeneous population in 

FMM. Thus, FMM—which involves both categorical latent variable(s) and one or more 

continuous latent variables—explains covariances among within-class variables and 

allows some or all of the factor model’s parameters to vary across the classes.  

Figure 8 provides a picture of a one-factor mixture model where c in the small 

ellipse represents a categorical latent variable, and the five indicators in the rectangles 

indicate observed variables measuring a latent factor. Whereas a conventional factor 



30 

 

model produces estimates assuming a single population, a FMM produces estimates for 

each class. The dashed arrow from the latent class variable to the ellipse represents the 

model being estimated for each latent class. The categorical latent class variable is a 

predictor variable of the latent continuous factor,  . In this FMM, any of the factor 

loading, error variance, intercept and factor mean parameters can be modeled as 

equivalent or varying across classes. Under strict invariance, only the latent mean,  , is 

modeled as varying across latent classes. This is represented in Figure 8 by the asterisk * 

beside a path from the constant (one) to the factor .   

 

Figure 8. Factor Mixture Model (FMM) 
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Consider a latent continuous factor  measured by a p-dimensional vector of y, 

conditional on a K-dimensional vector c (representing the latent categorical variable). 

Here iKii ccc ,...,1 is a multinomial variable where 1ikc  if individual i belongs to class 

k and is 0 otherwise.  

The regression of observed variables on the latent (continuous) factor can be 

represented as 

ikikykkik vy  
,
                                                                                 [9]     

where subscripts i and k index individuals (i = 1, …, N) and varying parameters across 

classes (k = 1, 2, …, K), respectively, iky is the vector of observed indicator scores of 

individual i in class k, νk is the p × 1 vector representing the intercepts of the observed 

indicators in class k,
 yk is a p × 1 matrix of factor loadings for the p indicators, and ik  is 

a 1 × N vector of residuals in class k. 

The regression of the latent continuous factor on the latent categorical class 

variable c is represented as 

ikiik c  
  

                                                                                       [10] 

where indicates a (1×K) matrix containing intercepts of the factor or a latent mean for 

each latent class k, and 
ik is a residual vector for individual i in class k. In order to set 

the scale, one of the columns of  must be fixed to zero (Sörbom, 1974). The other 

columns of  contain the mean differences in a latent continuous factor with respect to 

the arbitrarily chosen reference class with a mean of zero (Lubke & Muthén, 2005). 
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Estimation of latent class membership. As mentioned, a categorical latent 

variable is called a latent class, because class membership in mixture models is 

unobserved, so this parameter, known as the mixing proportion , needs to be estimated 

(Gagné, 2004). Because the two-latent class model is of interest for the present study, 

formulation of the joint log-likelihood of the mixture model is described for only the case 

of two latent subpopulations existing in a population. (For a description of a more general 

formulation, see Gagné, 2004). 

The joint log-likelihood of the two-latent class mixture model (Jackman, 2011) is 

expressed as 

 
 


N

i k
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21 )])1(ln([  ,                       [11]  

where 1iL and 2iL represent the likelihood of individual i being a member of the latent 

class 1 and the latent class 2, respectively,   represents the mixing proportion, and N is 

the total number of individuals. Based on Equation 11, individuals obtain a probability of 

being a member in each of the latent classes, and then they are assigned to the latent class 

for which they have the highest posterior probability of membership. Probabilities that 

each respondent should be assigned to their most likely class are averaged. The smaller 

(closer to zero) that these average posterior probabilities are, the less reliable are the 

model’s estimated classifications by latent class. However, if the average posterior 

probability is close to one, the indication is that respondents are more likely to be 

classified into their correct class.  
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Entropy provides another measure of the classification utility of an FMM. 

Entropy is based on the average posterior probability of belonging to a class. Entropy 

values ranging from 0 to 1 indicate that the higher value is, the better is the classification 

of each respondent into each latent class. For example, if there is a two-latent class 

mixture model, the probability of belonging in class 1 is 1 minus the probability of 

belonging to class 2 and conversely. Generally, when entropy values are less than .60, 

more than 20% of participants are misclassified, so Lubke and Muthén (2007) suggested 

that an entropy value greater than .80 provides at least 90% correct class assignment.  

Model fit criteria for mixture models. In conventional structural equation 

models, the comparative fit index (CFI; Bentler, 1990), the Tucker-Lewis index (TLI; 

Tucker & Lewis, 1973), the Standardized Root Mean square Residual (SRMR; Bentler, 

1995), and the Root Mean Square Error of Approximation (RMSEA; Steiger & Lind, 

1980; Steiger, 1990) are typically used for evaluating the fit of a single model in 

comparison to a baseline model that assumes zero population covariances among the 

observed variables. A corresponding measure of individual model fit is not available for 

FMMs (Kim, 2009). Instead, other indices and statistics can be used for comparing the fit 

of pairs of different mixture models: (a) likelihood-based tests such as the Lo-Mendell-

Rubin adjusted likelihood ratio test (aLRT; Lo, Mendell & Rubin, 2001) and a 

bootstrapped likelihood ratio test (BLRT; McLachlan & Peel, 2000) and (b) information 

criteria (IC) such as Akaike’s Information Criterion (AIC; Akaike, 1987), the consistent 

AIC (CAIC; Bozdogan, 1987), Bayesian Information Criterion (BIC; Schwartz, 1978), 

and the sample size-adjusted BIC (aBIC; Sclove, 1987).  
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Likelihood ratio tests are used to compare nested models (and can be used with 

latent class models) that differ on the basis of a set of parameter restrictions. In the 

context of mixture models, a model with k classes can be compared with the 

corresponding model that only has k1 classes. The likelihood ratio test is defined as  

LR = -2[log Lrestricted  log Lunrestricted )ˆ( u ],            [12] 

where log Lrestricted is the log likelihood associated with the restricted form [here, the 

(k1)-class model] and log Lunrestricted is the log likelihood associated with the unrestricted 

form (here, the kclass model). A significant aLRT test statistic indicates that the fit of 

the k-class model is better than that of the (k1)-class model.  

Use of the BLRT, as operationalized in Mplus software, involves repeated 

generation of bootstrap samples to estimate the sampling distribution of the -2 log 

likelihood difference between the (k1)-class and the k-class models. A statistically 

significant BLRT indicates that the k-class model fits better than does the (k1)-class 

model (see Nylund, Asparouhov, and Muthén, 2007, for further details about the BLRT).  

The AIC, CAIC, BIC, and aBIC are frequently used as indices for comparing the 

fit of non-nested models in mixture modeling (Nylund et al., 2007). The AIC is defined 

as 

AIC = -2 log L + 2p,                     [13] 

where p, here, is the number of free parameters in the model being estimated and log L is 

the log-likelihood function for the estimated model. The CAIC uses an adjusted sample 

size that penalizes fit for models with more parameters as a function of sample size.  

 

http://en.wikipedia.org/wiki/Likelihood
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The CAIC is defined as  

CAIC = -2 log L + p (log (n) + 1).               [14] 

The BIC is defined as 

BIC = -2 log L + p log (n).            [15]                                                                                         

A sample-size adjusted BIC (aBIC; Sclove, 1987) uses an adjustment of the sample size 

used in BIC such that  

aBIC = -2 log L + p log ((n + 2) / 24).              [16] 

Although several simulation and applied studies have focused on whether there is 

agreement among model-fit indices concerning the performance of mixture models, there 

is still no consensus about which model-fit index performs best in terms of consistently 

identifying the correct model. Nylund et al. (2007) tested the performance of several fit 

indices such as aLRT, BLRT, AIC, CAIC, BIC, and aBIC when used with various 

mixture models: the latent class analysis (LCA) model, the factor mixture model (FMM), 

and the growth mixture model (GMM). According to their assessment of model fit for 

mixture models, they found that the BLRT performed the best and that the BIC, CAIC, 

and aBIC performed relatively well in identifying the optimal number of classes for the 

FMM and GMM. On the other hand, Tofighi and Enders (2008) compared GMM under 

various simulation conditions using the aLRT, BIC, aBIC, AIC, CAIC, and adjusted 

sample size CAIC (Bozdogan, 1987). They found that the aBIC and adjusted sample size 

CAIC indices consistently performed well in supporting better fit of the model with the 

optimal number of latent classes when fitting models without covariates. In another 

simulation study, Li and Hser (2010) investigated whether model fit indices used with 
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GMM correctly identified the optimal number of latent classes when a choice is made 

between models correctly specified by including a covariate variable and models mis-

specified in that they excluded a covariate variable. The BIC, aBIC, LMR, and BLRT 

were found to support models with the correct number of latent classes. The BLRT 

performed the worst for mis-specified models.  

Factor Mixture Model with a Covariate Variable 

Covariates can be included in an FMM to help identify potential predictors of 

latent class membership (Lubke, 2010; Lubke and Muthén, 2005; 2007). Even though the 

number of classes is pre-specified before estimating a model, it is unknown which 

individuals belong to which latent class. Inclusion of demographic variables as covariates, 

such as gender, SES, education level, or ethnicity as covariates, can help understand the 

membership of latent classes. For example, researchers may use an FMM to investigate 

unknown sources of heterogeneity in measuring examinees’ math ability and hypothesize 

that two unobserved groups (latent classes) exist in the data. Then a researcher might 

hypothesize further that membership in the classes is partly or wholly a function of 

gender. Here, the gender group might predict the log odds of the probability of belonging 

to one of the latent classes (here, the k class) compared to the probability of belonging to 

the other latent class (Kth class) (that is, between-class covariate effect) (Lubke and 

Muthén, 2005). Otherwise, the researcher might hypothesize that gender explains some of 

the variability in the latent continuous factor (here, math ability) and that the gender 

effect differs by latent classes (that is, class-specific covariate effect). The presentation in 
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the next section describes the potential different FMMs that include between-class or 

class-specific covariates.   

FMM with between-class covariate effects. As mentioned above, an observed 

variable(s) such as gender can be included to predict latent class membership (called a 

between-class covariate). Figure 9 shows the extension of the FMM to include a 

between-class covariate affecting latent class (class membership). 

  

 

  Figure 9. FMM with between-class covariate effects   

As shown in Figure 9, the latent class variable (class membership) is regressed on 

the covariate effect X (for example, ethnicity), modeling that class membership is 
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explained by ethnicity. Note that in Figure 9, the classes are distinguished only by their 

means on the latent variable, . The indirect effect of the covariate, X, on the continuous 

latent variable through the latent class mediator, c, can be denoted as 

    Logit ( ik ) = ikk

iiK

iik X
XcP

XcP










 

)|1(

)|1(
ln ,             [17] 

where k  
is a (K-1)-dimensional parameter vector for a K-class model and represents the 

regression intercept for each class, k, and k  represents the regression weights for the 

covariate for each class. Equation 17 represents a multinomial logistic regression where X 

predicts the log odds of the probability of belonging to class k compared to the 

probability of belonging to the reference class, K. Also, the logit can be converted to an 

odds ratio for the purpose of the interpretation. The odds ratio can be interpreted as a 

measure of the odds of being a member in latent class k relative to latent class K. 

Most studies investigating covariate effects in FMM have used between-class 

covariate effects. Lubke and Muthén (2007) conducted a simulation study that focused on 

whether including an observed group as a between-class covariate variable improved 

detection of correct latent class membership in FMM. The authors found that inclusion of 

between-class covariates with even small effects improved the recovery of correct class 

membership. More specifically, the authors manipulated the degree of class separation 

using the Mahalanobis Distance (MD) by varying the latent classes’ factor mean 

differences (0.5, 1, 1.5, 2.0) and the covariates’ effect sizes (0, .5, 1, and 1.5). The 

performance of the estimation of the FMM was assessed in terms of optimal (high) 

posterior class probability and entropy. In scenarios with more class separation and/or 
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stronger covariate effects, individuals were more frequently assigned to their correct class. 

In addition, Lubke and Muthén indicated that inclusion of even small covariate effects 

improved correct class assignment, even with small degrees of class separation. Similarly, 

Muthén (2004) noted that inclusion of covariate variables in GMMs improved the 

selection of GMMs with the proper number of classes and correct class assignments. 

FMM with class-specific covariate effects. It might be hypothesized that 

covariate effects (for example, ethnicity) explain some of the variability in latent ability 

(for example, math ability) within each class, and the effect can be the same or class-

specific across latent classes. In Figure 10, an asterisk * beside a path from the covariate 

variable (ethnicity) to the latent continuous factor (here, math ability) indicates the 

coefficient k is freely estimated within each class (class-specific). For example, the data 

might fit a two-latent class model in which latent class 1 might function as the high math 

ability class and latent class 2 as the low math ability class. The researcher might 

hypothesize that there is no difference between ethnic majority students and ethnic 

minority students in the high math ability class, while ethnic minority students have even 

lower math ability than do ethnic majority students in the low math ability class. That is, 

ethnicity explains some variability in the continuous factor (here, math ability) within 

classes. Likewise, if a covariate effect does vary across classes, then this is regarded as a 

moderated direct effect of the covariate on the continuous factor by latent class 

membership.    
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Figure 10. FMM with class-specific covariate effects 

The FMM in which a latent continuous factor is regressed on a latent categorical 

class variable c is denoted as  

ikikiik Xc   
.  

                                                                 [18]     

Here,  represents a (1× K) matrix containing factor intercepts or factor means for each 

latent class (k) ,
ik is a residual vector, and k  

is defined as the effect of the covariate on 

the latent factor for each class, k.  

FMM with both between-and class-specific covariate effects. Covariate 

variables (here, for example, ethnicity (X1) and gender (X2) in Figure 11) can be modeled 

as predicting latent class membership and explaining some variability in a latent variable 
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(here, math ability) within each latent class. For example, males might be more likely to 

belong to class 1 (high math ability class) while females might be more likely to belong 

to class 2 (low math ability class). In addition, while there may be no differences between 

two ethnic groups within class 1 (high math ability class), the minority’s math ability 

might be lower on average than the majority’s math ability within class 2 (low math 

ability class). In this case, modeling between-class and class-specific covariate effects in 

FMM is needed, as shown in Figure 11. 

      

 

Figure 11. FMM with both between-class and class-specific covariates  
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Thus far, FMM with interval-scaled outcomes and combinations of covariates has 

been summarized. FMMs with binary outcomes, which have been the focus of the present 

research, have recently been explored in the context of DIF. Therefore, the next section 

contains a description of what has been found for FMMs with binary outcomes.  

FMM with Binary Outcomes (Mixture IRT Model) 

As noted earlier, the CFA model for dichotomous variables is the equivalent of 

dichotomous 1 and 2PL IRT models. In addition, an FMM with binary outcomes can be 

alternatively seen as a mixture IRT model (Asparouhov & Muthén, 2008). A mixture IRT 

model (that is, an FMM model with binary outcomes) involves the assumption that the 

probability of getting an item correct is conditional on ability level, but the assumption of 

an IRT model only holds within each latent class. Thus, in a mixture IRT model, it is 

assumed that respondents are collected from multiple populations and item parameters 

are the same for individuals within the same latent class but some parameters might differ 

across latent classes.  

Model formulation. Muthén and Asparouhov (2002) presented latent variable 

models for categorical outcomes in two ways: postulating a conditional probability model 

and deriving a conditional probability model from a linear model for latent response 

variables under the assumption that observed outcomes are obtained by categorizing the 

latent response variables. In addition, Muthén and Asparouhov explained the equivalence 

of results between these two formulations of factor models with categorical outcomes 

(see Muthén and Asparouhov, 2002).  
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The first approach is to use a conditional probability formulation focusing on 

directly modeling the nonlinear relationship between the observed y and the latent 

continuous factor  :  

)]([)|1( iii baFyP               [19] 

where ia and ib are the item discrimination and difficulty parameters for item i, 

respectively. The distributional function assumed for F is either a standard normal or 

logistic distribution function.  

The second approach of dealing with categorical outcomes is to specify a latent 

response variable (LRV) formulation including the assumption that underlying each 

observed item response y is a continuous and normally distributed latent response 

variable *
y . The continuous latent variable can be considered a response tendency 

(Jackman, 2011). If an individual’s response tendency exceeds a specific threshold, it is 

assumed that it is sufficiently high to answer an item correctly, and the individual will 

indeed answer the item correctly. On the other hand, if it falls below the threshold, then it 

is assumed that the individual will answer the item incorrectly. Based on the LRV 

formulation, the observed item responses can be considered to be a discrete 

categorization of the continuous latent variables. Thus, the relationship between two 

responses y and *
y  can be represented by a nonlinear function: 







 


otherwise

yif
y ii

i
,0

,1
* 

 ,            [20] 

where i represents a threshold (difficulty) parameter of item i.  
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Because of the LRV formulation, the continuous response variable *
y  is assumed 

to be unobserved, so the one-factor model for the continuous latent response variable can 

be respecified as 

,*
iii vy                [21] 

where v is an intercept parameter,   is a factor loading,  is a factor, and   is a residual.  

This leads to the conditional probability of a correct response as a function of   

(Muthén and Asparouhov, 2002):  

)|(1)|()|1( **
iiiiii yPyPyP    

                      ])()[(1 2/1 ii VvF                       [22] 

                       ])()([ 2/1 ii VvF  , 

where F is typically a normal or a logistic function depending on the distributional 

assumption made for the residuals,  .  

When a covariate variable X is included in the model, Equation 21 can be 

extended to be 

iiii kXvy  *

 ,                                             [23]
 

where k is the direct effect of the covariate X on indicator y*. Using the conditional 

probability formulation (Muthén & Asparouhov, 2002), the conditional probability of a 

correct response as a function of   (Equation 23) can be extended by including the 

covariate variable X for a dichotomous item:  

),|1( iii xyP  ])()([ 2/1 iii VkxF  ,         [24] 
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where ikx is a new threshold (difficulty) parameter for the item, which varies across X 

values.  

Model fit criteria. The literature includes studies of mixture modeling with 

binary outcomes that have used AIC, BIC, aBIC, CAIC, and likelihood ratio tests to 

assess models’ fit (e.g., Cohen & Bolt, 2005; Li, Cohen, Kim, & Cho, 2009; Jackman, 

2011; Lau, 2009; Maij-de-Meij et al., 2008; 2011; Tay, Newman, & Vermunt, 2010). 

Similar to the performance of fit indices in FMM with interval-scaled outcomes, fit 

indices in FMM with binary outcomes showed little to no agreement when supporting 

selection of the model with the optimal number of latent classes (Jackman, 2011). That is, 

when the two-latent class model was the true model, the AIC tended to support better fit 

of the three-class model. The BIC consistently supported the one-class model’s fit, while 

the aBIC performed relatively well in terms of choosing the model with the correct 

number of classes.  

Li et al. (2009) also examined model fit indices, including AIC and BIC, along 

with other model fit indices obtained using Bayesian estimation for FMM with binary 

outcomes. They found that the BIC index performed well in terms of selecting the correct 

model under most simulated conditions, but the AIC index performed poorly. In their 

study, the performance of fit indices overall was heavily dependent on the simulation 

conditions, although the BIC index appeared to perform best with correct model selection 

for the FMM with binary outcomes. Similarly, Nylund et al. (2007) indicated that the 

AIC was not able to identify the correctly specified model, regardless of total sample size 

for FMM with binary outcomes. The BIC and CAIC indices were able to correctly 
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identify the correct model in close to 100% of the replications, regardless of total sample 

size. The performance of aBIC improved as total sample size increased. Thus, applied 

studies using real data for DIF detection have encouraged use of the BIC, aBIC, or CAIC 

indices as the preferred model fit criterion for FMM with binary outcomes (see, for 

example, Cohen & Bolt, 2005; Maij-de-Meij et al., 2008; 2011). 

On the other hand, Lubke and Muthén (2005) suggested that model fit could also 

be improved by relaxing within-class restrictions. The authors indicated that imposed 

restrictions within latent class might lead to inaccurate extraction of additional numbers 

of latent classes or might result in distorting a within-class measurement model  Relaxing 

parameters to allow them to be freely estimated across latent classes can be interpreted as 

DIF in an IRT framework, so FMM with binary outcomes can be extended for DIF 

identification. Thus, the next section addresses the extension of FMM with binary 

outcomes to detect DIF. 

FMM with Binary Outcomes for DIF Identification 

As mentioned above, violation of the measurement invariance assumption can be 

referred to as DIF in an IRT framework. When items’ intercepts are non-invariant across 

latent classes, unobserved (latent ) uniform DIF occurs, and referred to, here, as between-

class latent uniform DIF. When loadings are non-invariant across latent classes, 

unobserved non-uniform DIF occurs, and it is referred to as between-class latent non-

uniform DIF. Figure 12 depicts a latent ability (here, math ability) measured by 27 items. 

Item 1 is assumed to have a non-invariant intercept (between-class latent uniform DIF) 

across latent classes as represented by the path from the latent class variable to item 1’s 
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intercept, while item 2 has a latent non-invariant loading (between-class latent non-

uniform DIF) as represented by the path from the latent class variable to item 2’s slope. 

Thus, in order to examine whether the measure has between-class latent DIF in difficulty 

for item 1, path A can be tested. To examine between-class latent DIF in discrimination 

for item 2, path B can be tested. If path A or path B is significantly different between 

latent classes, then it is said to exhibit between-class latent uniform or non-uniform DIF, 

respectively.  

Let us suppose that a researcher might find that there are two latent classes, and 

members of the first class have higher math ability than members of the second class. The 

researcher might also find that the probability of endorsing item 1 is consistently higher 

for individuals in the high math ability class than for those in the low math ability class, 

conditional on math ability. In addition, item 2 might be found to be highly effective in 

discriminating examinees’ math ability in the high math ability class, but the item might 

not be as effective at discriminating examinees’ math ability in the low math ability class, 

conditional on math ability. Note, however, that testing the non-invariance of factor 

loadings (non-uniform DIF) is not of interest in the present study, so the remainder of the 

study will focus only on the testing of non-invariant intercepts (that is, on uniform DIF).  
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Figure 12. Between-class latent uniform and non-uniform DIF in a FMM 

Traditional DIF detection methods vs. FMM with binary outcomes. Previous 

research has compared use of the FMM with binary outcomes versus more traditional 

DIF methods for DIF identification. For example, Samuelsen (2005) compared use of the 

Mantel-Haenszel test with that of the FMM with binary outcomes. The author 

manipulated different levels of overlap between an observed group and a latent class 

variable. Overlap indicates the proportion of cases having the same membership between 

observed groups and latent classes. For example, if all females belong to the latent class 1 

and all males belong to the latent class 2, there is perfect overlap between the observed 
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group and the latent class. In addition to different levels of overlap, the number of items 

exhibiting DIF, the DIF effect size, and the magnitude of the ability distribution means 

within the latent classes were also manipulated. Data were simulated for a twenty-item 

test. The outcomes that were assessed included the number of items correctly identified 

as having DIF (power to detect DIF), recovery of the DIF effect size, and the number of 

items falsely identified as DIF (Type I error).  

As expected, when the M-H test was used, the power to correctly identify DIF 

items decreased for scenarios with less overlap between manifest groups and latent 

groups. However, under the conditions of equal class proportion, large sample size, large 

magnitude of DIF, and more than 80% of overlap between the latent and observed group, 

the M-H tests’ power to correctly identify DIF items was relatively good. In addition, 

total sample sizes and the amount of overlap, and the observed group proportions 

influenced the Type I error rate when an M-H test was used.    

On the other hand, in the case of FMM with binary outcomes, DIF was not 

accurately identified under the condition of a 60% overlap case with a small total sample 

size (500 examinees). However, with sample size increased to 2,000 examinees, all DIF 

items were correctly identified regardless of the degree of overlap between the observed 

and latent grouping variables. Under the condition of a 60% overlap with a large total 

sample size (2,000), only one of the non-DIF items was incorrectly identified as 

exhibiting DIF (a Type I error). Overall, Samuelsen (2005) suggested that FMM with 

binary outcomes is a better approach for determining a source of DIF that might be 

unobserved.  



50 

 

Unlike in the study by Samuelsen (2005), which compared FMM with binary 

outcomes with traditional DIF methods, Jackman (2010) focused on evaluating the 

performance of FMM with binary outcomes in the context of various simulation 

conditions using Mplus software. The simulated data were generated to fit a CFA model 

with 15 dichotomous items for two latent classes with conditions that involved 

manipulating the total sample size, the magnitude of the DIF effect, values of item 

discrimination parameters, and the existence of the latent mean difference (representing 

impact). The simulation study assessed the recovery of the true number of latent classes 

using model fit indices such as AIC, BIC, and aBIC. As mentioned above in the 

discussion of model fit criteria in FMM with binary outcomes, many inconsistencies were 

observed in the fit indices’ performance. The researcher assessed the overall Type І error 

rates for item difficulty parameters of invariant items and the overall power to correctly 

identify DIF items. The Type I error rate for each condition was assessed by computing 

the proportion of times that the nine DIF-free items out of fifteen items were incorrectly 

identified as displaying DIF (One item was the reference indicator, so the difficulty 

parameters for the item were constrained to be equal across latent classes). Likewise, the 

power for each condition was computed by dividing the total number of times any one of 

DIF items (five DIF items) was correctly identified by the total number of replications. 

The results indicated that the FMM with binary outcomes estimated in the study did not 

perform well in controlling the Type I error rate. That is, Type І error rates exceeding the 

nominal alpha level of .05 for invariant items were observed under all study conditions, 

especially when the total sample size and the magnitude of DIF were small. Regarding 
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power, only under the conditions with a large sample and large DIF magnitude was an 

acceptable level of power (.80) achieved. However, Jackman’s study included an issue 

related to data generation: there was 80 % overlap between an observed group and latent 

classes. That is, data were generated such that DIF was exhibited for only 80% of 

individuals in one of the latent classes (the focal group) without the inclusion of any 

observed group in the study. The author indicated that this might be one reason why the 

FMM with binary outcomes model performed poorly in the study. 

DeMars and Lau (2011) assessed the recovery of latent class membership and the 

recovery of item parameters for both invariant and DIF items, with three factors: (1) 

existence of impact, (2) number of DIF items, and (3) number of invariant items. Mplus 

software was used to estimate parameters for a two-latent class FMM with binary 

outcomes. The authors reported that the recovery of correct class membership was poor 

under all conditions tested, regardless of whether data were generated with impact or with 

no impact. Discrimination parameters for invariant items and for DIF items were 

estimated relatively well when data were generated with no impact. When data were 

generated with impact, discrimination parameters for DIF items were positively biased. 

However, under most simulation conditions, discrimination and difficulty parameters 

were estimated relatively well.  

DeMars and Lau (2011) also assessed the bias in the estimation of the DIF effect 

(that is, estimation of the difference in difficulty parameters across latent classes). The 

study focused on the accuracy of estimates of DIF effect size, not on a test of each item 

as DIF or not DIF. When there were only four DIF items generated with no impact 
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condition, DIF effect sizes were overestimated. However, as the number of DIF items 

was increased from 4 to 8, the DIF effect size was estimated well. Even though a small 

number of DIF items was generated (4 DIF items), as the number of invariant items was 

increased (from 10 to 20 invariant items) under the impact condition, estimates of DIF 

effect size improved.  

In general, the results obtained from DeMars and Lau’s (2011) study indicated 

that for a test with more DIF items, better estimates of DIF effect sizes will result. In 

addition, they found that invariant item parameters were estimated fairly well, but 

estimates of DIF items’ parameters depended on the existence of impact. Correct latent 

class membership was not well-recovered under all simulation conditions tested. 

Therefore, they suggested that, based on previous studies’ results (for example, Bandalos 

and Cohen, 2006; Lubke and Muthén, 2007; Meij-de Meij et al, 2008; 2010), including 

an observed variable that may contribute a piece of information in the mixture model can 

help improve the recovery of correct class membership and DIF item identification. The 

next section discusses inclusion of an observed variable in FMM with binary outcomes, 

and then describes inclusion of an observed group in FMM with binary outcomes for DIF 

identification. 

Including an Observed Group in FMM with Binary Outcomes 

An observed grouping variable can be included in FMM with binary outcomes as 

a between-class covariate effect. Smit, Kelderman, and van der Flier (1999) investigated 

the effect of including a dichotomous observed variable as a between-class covariate in 

FMM with binary outcomes. The results indicated that prediction of correct class 
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membership as well as estimation of the standard errors of item parameter estimates 

could benefit from the inclusion of the between-class covariate. In particular, even when 

the total sample size was relatively small (500 examinees), including a between-class 

covariate that was associated with a latent class variable improved estimation of the item 

difficulties’ standard errors as well as correct class membership identification. Because 

previous studies have indicated that parameter recovery and correct class membership in 

mixture models can benefit only if either a latent mean difference or a total sample size is 

relatively large (Kelderman & Macready, 1990; Lubke & Muthén, 2007), the results of 

this study have motivated applied researchers to include covariate effects in FMM with 

binary outcomes.  

On the other hand, Clark (2011) focused on investigating how total sample size 

and entropy are related to the recovery of a between-class covariate effect parameter by 

looking at its mean squared error (MSE), confidence interval coverage, and power. Clark 

manipulated two total sample sizes (250 and 1,000) and four entropy values (.4, .6, .8, 1) 

using the intercept difference of observed indicators. The researcher generated two latent 

classes using ten dichotomous items. The researcher also set the generating value of the 

covariate effect parameter to 0.5. Generally, it was found that the greater the values of 

entropy, the smaller MSEs were and the better coverage rates were. More specifically, 

when the value of entropy reached .80, MSEs were much smaller, and the coverage was 

much better. MSEs of the covariate effect parameter were much smaller with a total 

sample size of 1,000 than with a total sample size of 250. When the value of entropy 

was .80 even when total sample size was 250, an acceptable level of power (.80) was 
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achieved. In addition, the study found that even when the total sample size was 1,000 and 

the value of entropy was a little lower than .80 (.60), the power was greater than 80%. 

Therefore, the study suggested that the true value of a covariate effect could be well 

estimated if the value of entropy is .80 or .60 with a total sample size of 1,000.  

In general, previous studies (Smit et al., 1999; Clark, 2011) have demonstrated 

that inclusion of an observed group(s) as the between-class covariate effect in FMM with 

binary outcomes have helped improve correct class membership identification and 

recovery of item parameters. In addition, a covariate effect parameter has typically been 

well estimated when using a total sample size of 1,000 or when the value of entropy has 

been 0.80.  

The next section will describe whether inclusion of an observed group in FMM 

with binary outcomes has a benefit in identifying (observed and/or unobserved) sources 

of DIF.  

Including an Observed Group in FMM with Binary Outcomes for DIF 

Identification 

An observed group can be included in FMM with binary outcomes as a covariate 

effect for DIF identification. When the observed group predicts latent class membership 

(between-class covariate effect), correct class assignment can be improved, helping find 

between-class latent DIF. When some items function differently based on observed group 

membership within latent classes, and when the effect of the observed group on some 

items differs by latent classes, the result can be referred to as class-specific observed DIF. 
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Thus, this section focuses on discussion of including an observed grouping variable as a 

covariate in FMM with binary outcomes.  

Helping find between-class latent DIF. Figure 13 depicts a model in which an 

observed grouping variable is included as a between-class covariate effect in FMM with 

binary outcomes. That is, including the observed group X can help identify correct class 

membership, resulting in improved detection of between-class latent DIF. As shown in 

Figure 13, difficulty parameters for item 1 are assumed to be different across latent 

classes, so path A can be tested to detect between-class latent uniform DIF.    

  

 

 Figure 13. Inclusion of an observed group to detect between-class latent DIF 
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Maij-de Meij, Kelderman, and van der Flier (2011) used an observed variable that 

is related to between-class latent DIF to examine whether including the observed group 

can help in the detection of between-class latent DIF in an FMM with binary outcomes. 

That is, even if DIF is not fully explained by gender, a gender variable can be related to 

the source of DIF. So, in order to investigate the advantages of using a mixture model to 

detect uniform DIF rather than using typical DIF detection methods employing observed 

variable(s), the researchers conducted a simulation study to compare a traditional DIF 

method (here, Lord’s chi-square test) with an FMM with binary outcomes including an 

observed group as a between-class covariate effect. To compare the two approaches 

directly, they also used Lord’s chi-square test—which is used to test the differences 

between the difficulty parameters across two groups of examinees—for an FMM with 

binary outcomes. They manipulated four factors: the degree of overlap between latent 

class membership and the observed group (0%, 60%, 70%, 80%, 90% and 100%), total 

sample sizes (5000, 25000), levels of significance (  .05 or .01), and latent class 

proportions (equal: 50 vs. 50, unequal: 25 vs. 75). The researchers said that because 

including the observed group with even small effects in FMM with binary outcomes was 

preferred to FMM with binary outcomes without the observed group in terms of DIF 

detection, the study only compared FMM with binary outcomes including the observed 

group and the traditional DIF approach. 

As expected, the results indicated that the identification rates of correct DIF for 

the traditional DIF approach that uses the observed group depended heavily on the 

associations between the observed group and the latent class. In contrast, FMM with 
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binary outcomes when including the observed group performed well regardless of the 

degree of associations between the observed group and the latent class. In particular, 

when the association between the observed group and the latent class was low, FMM 

with binary outcomes including the observed group performed better in identifying 

between-class latent DIF in comparison to the traditional DIF approach. However, the 

two approaches performed equally well with respect to correct classification rates for DIF 

and invariant items when the association between the observed group and the latent class 

was high.  

Studies previously mentioned (for example, Maij-de Meij et al., 2008; 2011; Smit 

et al., 1999) have used an observed group as a predictor of latent class membership 

(between-class covariate effect), meaning that they focused on whether inclusion of 

between-class covariate effects improved latent class membership or detection of 

between-class latent DIF. However, it is possible that using latent class variables to 

capture unobserved sources of DIF cannot capture all sources of DIF. That is, an 

observed source of DIF, such as gender, can exist within latent classes, and the effect of 

the observed source of DIF might be different between latent classes. Thus, it is possible 

to investigate whether modeling an observed group within latent classes improves 

parameter estimates or identification of items that exhibit DIF in FMM with binary 

outcomes. 

Class-specific observed DIF within latent classes. As mentioned above, using 

either solely unobserved or observed groups may not capture all possible sources of DIF 

(Tay, Newman, & Vermunt, 2010). It is possible that some items are functioning 
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differently based on latent class membership, while other items are functioning 

differently based on an observed group membership.  

Figure 14 depicts a model in which an observed group is included within the 

shaded ellipse, and the effect of the observed group is class-specific as indicated by an 

asterisk * beside the path from the observed group X to item 27. The dashed arrow 

pointing to the intercept of item 27 indicates class-specific observed uniform DIF (path 

B). Thus, if path B is significantly different from zero (group mean difference), and the 

effect of the observed group on item 27 significantly differs across latent classes, the item 

is said to exhibit class-specific observed DIF. The advantage of the model in Figure 14 is 

that it enables the detection of both observed and unobserved sources of DIF. For 

example, a researcher might hypothesize that an unobserved source of DIF can exist in 

some items, but an observed source of DIF can also exist in other items. As shown in 

Figure 14, the researcher hypothesized that item 1exhibited between-class latent uniform 

DIF. The researcher also hypothesized that the difficulty parameter of item 27 differed by 

gender (male vs. female) in the low math ability class, controlling for math ability, but 

not in the high-math-ability class (that is, class-specific observed uniform DIF). Notice 

that the observed group is not a predictor of latent class membership in the model as 

shown in Figure 14, so it is assumed that the proportion of each observed group 

membership is the same across latent classes.  
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Figure 14. Inclusion of class-specific observed group in an FMM with binary outcomes  

An empirical study using public school employee data conducted by Tay et al. 

(2010)  included observed grouping variables—gender and work experience to detect 

whether between-class latent DIF and class-specific observed  DIF existed in an 8-item 

union citizenship scale. The researchers specified the number of latent classes in the data, 

and initially they used the unconstrained model, which allows all item discrimination and 

difficulty parameters to be freely estimated. They found that the two-latent class model 

was a much better fit with the data than were the one- or three-latent-class models. In 

addition, they found that 68% of individuals belonged to latent class 1 (called  politicos 
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class) and 32% of individuals belonged to latent class 2 (called non-politicos class). Four 

items exhibited between-class DIF and one item exhibited class-specific observed DIF. 

Interestingly, one item (item 8) exhibited between-class latent DIF as well as class-

specific observed DIF. That is, sources of DIF for item 8 were not fully captured by latent 

class, and males had a greater probability of endorsing item 8 within the non-politicos 

class, but there was no difference between males and females within the politicos class. 

The result that both unobserved and observed sources of DIF can be exhibited by a single 

item suggested that detecting the true source of DIF might be more complex than 

indicated in previous studies that used either traditional DIF detection methods that 

consider only observed source of DIF or conventional FMM with binary outcomes that 

considers only unobserved sources of DIF. However, until now, no single simulation 

study has investigated parameter recovery, correct class membership identification and 

DIF detection rates in models that include both between-class latent DIF and class-

specific observed DIF simultaneously in FMM with binary outcomes. Therefore, it is 

necessary to investigate the effect of including an observed group in the performance of 

FMM with binary outcomes.  

Incorrectly Specified Observed Group in FMM with Binary Outcomes 

Almost all simulation studies investigating DIF in mixture models have produced 

estimates with the assumption of correctly specified models, to examine how well the 

parameters of DIF items are estimated and how well unobserved (latent) sources of DIF 

are detected. In addition, it is typically assumed that an observed group is correctly 

specified when an observed group is modeled in FMM with binary outcomes. That is, 
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there has not been an investigation of whether a mis-specified observed group effect 

influences latent DIF detection rates, except in the study by Maij-de Meij et al. (2011). In 

that one study the researchers included an observed grouping variable as a predictor of 

latent class membership, but the observed group was not related to the latent class at all 

(zero correlation between the observed group and the latent class). Thus, including the 

observed group as the between-class covariate effect in the model being estimated made 

it a mis-specified model. Then, Maij-de Meij et al. compared a model including the 

observed grouping variable to a model excluding the observed grouping variable when 

there was zero correlation between the latent class and the observed group. In order to do 

this, they examined Type I and Type II errors with two sizes of total samples.  

When the model was mis-specified by including the observed grouping variable, 

the outcome resulted in increasing Type II error rates when the class proportions were 

equal, but there was not much difference in the Type I error rates for non-DIF items 

between conditions when the observed grouping variable was correctly specified and 

when it was mis-specified. When the total sample size was increased by 25,000, correct 

classification rates of DIF items and invariant items were above 96% under almost all 

conditions tested. Interestingly, when latent class proportions were unequal, the Type II 

error rates for DIF items were even lower for the mis-specified model that included an 

observed group, but the Type I error rates for non-DIF items were higher for the mis-

specified model than those for the correctly specified model. However, when the total 

sample size increased, the Type I error rates were reduced for the mis-specified model, 

resulting in no difference between conditions when the observed grouping variable was 
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correctly specified and when it was mis-specified. Nevertheless, the Type II error rates 

for DIF items were still lower for the mis-specified model than for the correct model. 

Thus, it seems that, under the condition with a large total sample size, inclusion of an 

observed group as a between-class covariate effect does not negatively impact detection 

of between-class latent DIF; rather, it provides a benefit in helping find between-class 

latent DIF even though it is not relevant to latent class membership.  

However, Maij-de Meij et al. (2011) only examined whether inclusion of an 

observed grouping variable that is not relevant to latent class membership impacted 

detection of between-class latent DIF. In a real-world scenario, it might be possible that 

an observed grouping variable is a potential source of DIF within latent classes. Yet it is 

assumed to be a predictor of latent class membership (between-class covariates) rather 

than being modeled as an observed source of DIF (class-specific observed DIF). For 

example, Samuelsen (2005) examined whether observed grouping variables--gender and 

ethnicity--were significant predictors of latent class membership in two-latent class FMM 

with binary outcomes. It was found that none of the observed grouping variables 

significantly influenced latent class membership. As a result, observed groups were 

excluded in the model. However, it was observed that Asian students in latent class 1 had 

significantly higher latent means than did Hispanic students, and the same pattern 

appeared for Asian and Hispanic students in latent class 2, Thus, ethnic group differences 

in factor means on the construct of interest (observed impact) might have existed in the 

data, or some of the items functioned differently within the latent class based on ethnicity. 
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However, it is unknown how modeling observed groups within a latent class in the model 

influenced the study’s results.  

The literature review has revealed that detecting observed source of DIF has not 

been of interest in DIF studies when using FMM with binary outcomes. That is, when 

FMM with binary outcomes has been specified to identify sources of DIF, only between-

class latent DIF has been focused upon. Thus, an observed grouping variable has only 

been included in models to help find latent DIF. However, it is possible that class-specific 

observed DIF exists within latent classes. For example, if there is class-specific observed 

DIF but a researcher only examines whether between-class latent DIF exists, the 

researcher would mis-specify a model by excluding an observed group. In addition, if a 

researcher assumes that there is class-specific observed DIF, but only between-class 

latent DIF exists, the researcher would mis-specify a model by including an observed 

group. Likewise, there are many possibilities for mis-specifying FMM with binary 

outcomes to identify sources of DIF.  

However, no study has been specifically designed to investigate whether a mis-

specified source of DIF (unobserved/observed sources) can impact the performance of 

FMM with binary outcomes in terms of model identification, parameter recovery for DIF 

items correctly or incorrectly identified, and detection of when items are correctly or 

incorrectly identified as displaying DIF. Thus, it is appropriate to further examine 

whether mis-specified between-class DIF items and class-specific observed DIF items 

influence the performance of FMM with binary outcomes.  
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Statement of Purpose 

Research has already indicated that FMM with binary outcomes that uses latent 

variable(s) has outperformed traditional DIF detection methods that use observed 

variable(s) when the source of DIF is not fully explained by an observed variable. Most 

studies using FMM with binary outcomes have focused on how well between-class latent 

DIF is detected under various simulation conditions including sample size, latent class 

membership proportion, magnitude of DIF effect, and number of invariant and DIF items.  

The results obtained from such studies have generally indicated that a large total 

sample size and a large factor mean difference between latent classes can help identify 

class membership correctly in mixture models (Kelderman & Macready, 1990; Lubke & 

Muthén, 2007). In addition, a combination of large sample size (such as 1,000 or 5,000) 

and high magnitude of DIF best controlled Type І error rates for non-DIF items and 

achieved an adequate power level to correctly identify DIF items (e.g., De Mars & Lau, 

2011; Jackman, 2011). Furthermore, it has been found that inclusion of an observed 

group(s) as a predictor of latent class membership has been found to improve the 

recovery of latent class membership, the recovery of estimates of item parameters (Smit 

et al., 1999), and between-class latent DIF detection rates (Maij-de Meij et al., 2011).  

Most simulation studies have used an observed group as a predictor of latent class 

membership to help find between-class latent DIF, but they have not used the observed 

group to examine whether an observed source of DIF exists within and varies across 

latent classes (class-specific observed DIF). It is possible that all sources of DIF cannot 

be captured by a latent class variable, but that an observed variable, such as gender, 
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which has a specific effect on some items within each latent class, might provide an 

additional source of DIF. Therefore, one of the purposes of the present study is to 

examine how well the following models perform in terms of parameter recovery for DIF 

items correctly identified, class membership identification, and DIF identification: a 

model that has both between-class latent DIF and class-specific observed DIF, a model 

that only has between-class latent DIF, and a model that only has class-specific observed 

DIF.   

In addition, while most studies using FMM with binary outcomes to identify DIF 

items have used correctly specified models, only Maij-de Meij et al. (2011) examined 

whether including one observed but incorrectly specified variable would impact between-

class latent DIF detection. However, the researchers only focused on investigating 

whether inclusion of the observed group variable helps find between-class latent DIF. 

Because a correctly specified model is assumed by applied researchers when they model 

real data, it is important to consider how a mis-specification of where the observed 

group’s effect has influence might impact DIF identification, class membership 

identification, and the performance of fit indices by comparing correctly specified models. 

For example, an applied researcher might use a model including only an observed group 

as a predictor of latent class membership to help in the detection of between-class latent 

DIF, but it could turn out that there exists class-specific observed DIF, so the true model 

should include the class-specific observed grouping variable within latent classes. In this 

scenario, it would be necessary to investigate how the incorrectly specified observed 
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group in FMM with binary outcomes might impact the performance of FMM with binary 

outcomes for DIF identification.  

The purpose of the present study, therefore, was to investigate whether models 

correctly specified in terms of between-class latent DIF and/or class-specific observed 

DIF influence the performance of model fit indices, and class membership identification, 

as compared to models incorrectly specified in terms of either between-class latent or 

class-specific observed DIF. In addition, the present study examined the recovery of item 

difficulty parameters as well as investigating the proportion of replications in which items 

are correctly or incorrectly identified as displaying DIF. The simulation study 

manipulated the degree of the between-class and class-specific DIF effect sizes and the 

latent class proportion used to generate the data.  
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Chapter 3: Method 

Overview 

The simulation study was designed to investigate estimation of between-class 

latent DIF and class-specific observed DIF in FMMs with binary outcomes in scenarios 

in which the FMM was either correctly or incorrectly specified. In this study, the only 

part of the model that might be incorrectly specified was either or both of the between-

class latent DIF (that is LDIF) and class-specific observed DIF (that is, ODIF). Data were 

generated to fit a two-class FMM with binary outcomes, and included a single latent 

continuous factor measured by 27 dichotomous items. Only one observed, dichotomous 

grouping variable was included. Half of the simulated sample was in one group with the 

other half randomly assigned to the other group in all models that were generated. Such 

an arrangement reflects a scenario in which a dataset contains half females and half males. 

Latent class probability (equal vs. unequal), between-class latent DIF effect size (small vs. 

large), and/or class-specific observed DIF effect size (small vs. large) were manipulated 

in the simulation study. The evaluation was focused on the accuracy of item difficulty 

estimates for a specific subset of test items and on the recovery of class assignment. In 

addition, the performances of fit indices (specifically, the AIC, BIC, aBIC, and CAIC) 

were compared to assess which fit indices exhibit the highest proportion of success in 

supporting the fit of the correctly specified model over the fit of the incorrectly specified 

models. In addition, the present study evaluated whether items are correctly or incorrectly 

identified as exhibiting DIF (i.e., Type I and power were also assessed).   
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Fixed Conditions 

Total sample size. The convergence rates of mixture models are influenced by 

total sample size (Lubke, 2006). In addition, when the total sample size is large enough, 

item parameters are more accurately estimated and better identification of DIF has been 

found (Maij-de Meij et al., 2011). Previous empirical studies using real data have most 

frequently used total sample sizes of approximately 2,000 (Clark, 2011; Cohen & Bolt, 

2005; De Ayala et al., 2002; Maij-de Meij et al., 2008; Samuelsen, 2005; Tay et al., 

2011). On the other hand, methodological studies have examined various total sample 

sizes from 500 to 15,000 to examine the effect of total sample size on detection of DIF in 

mixture models, and the findings have indicated that the performance of fit indices 

depends on total sample size (De Ayala et al., 2002; Jackman, 2011; Maij-de Meij et al., 

2011; Rost, 1990). That is, fit indices were more likely to support the fit of a model with 

a correct number of latent classes as total sample size increased. In addition, Samuelsen 

(2005) reported that a small sample size (for example, 500 examinees) required a large 

magnitude of DIF and a large overlap between the class membership and the observed 

group (greater than 80%) to correctly identify DIF items.  

Based on such findings, a total sample size of 2,000 was used for the present 

study in order to reflect real-world testing practice as well as provide a sample size that 

should provide reasonable parameter estimates (Dai, 2009).  

Test Length. Applied DIF studies have assessed DIF for tests of various lengths 

ranging from 8 to 50 items (Cohen & Bolt, 2005; Dai, 2009; De Ayala et al., 2002; Finch, 

2005; Jackman, 2011; Maij-de Meij et al., 2011; Samuelsen, 2005; Shih & Wang, 2009; 
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Tay et al., 2011). However, a majority of methodological studies using real data have 

typically used around 20 to 30 items for a test (for example, Cohen & Bolt, 2005; De 

Ayala et al., 2002; Samuelsen, 2005). Simulation studies that have investigated detection 

of DIF in FMM with binary outcomes have used various test lengths ranging from 20 to 

30 items to reflect real testing scenarios with reasonable minimum test lengths (Cohen & 

Bolt, 2005; De Ayala et al., 2002; DeMars & Lau, 2011; Maij-de Meij et al., 2011; 

Samuelsen, 2005). 

DeMars and Lau (2011) found that test length did not seriously impact recovery 

of item parameters, DIF effect size, and latent class membership using FMM with binary 

outcomes. When they manipulated test lengths using various combinations of invariant 

and DIF items, the number of invariant items (either 10 or 20 invariant items) did not 

make much difference in the recovery of item parameters, DIF effect size (in the case of a 

no impact condition), and latent class membership. However, Li et al. (2009) reported 

that, for test lengths of 30 items, the percentage of correct latent class membership 

classifications increased to above 96% for 1PL and 2PL models, the RMSEs for item 

parameters decreased, and the BIC index was particularly effective at selecting the 

correctly specified model. Because consensus is still lacking in terms of the appropriate 

test length for using the FMM for DIF detection, data for the present study were 

generated using a total test length of 27 items to reflect real testing scenarios. In addition, 

item parameters based on a simulation data analysis in Maij-de Meij et al. (2011) that 

entailed 27 test items were used, here.  
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Number of DIF items. DeMars and Lau (2011) observed that about 10% of items 

were regarded as DIF items when real data are used (10.7% DIF items in a study of 

disabled students with/without testing accommodations, Finch, Barton, & Meyer, 2009; 

4.4% DIF items in a study of paper/computerized tests, Keng, McClarty, & Davis, 2008; 

and 13.6% DIF items in a study of racial group, Puhan, Moses, Yu, & Dorans, 2009). On 

the other hand, Shih and Wang (2009) reported that real tests may have 20% or more DIF 

items (27% of items showed gender DIF when measuring attitudes from 23 real data sets, 

Dodeen & Johanson, 2003; nearly 40% of the items had DIF when investigating cross-

cultural measurement equivalence of items in the English language version of the NEO 

Personality Inventory, Huang, Church, & Katigbak, 1997; and 42% of 149 items from the 

Multidimensional Self Concept Scale exhibited gender DIF, Young and Sudweeks, 2005). 

Thus, no consensus is apparent in the published literature concerning how many DIF 

items typically comprise real tests.  

Interestingly, DIF studies using surveys of actual tests (Cohen & Bolt, 2005; De 

Ayala et al., 2002; Samuelsen, 2005) have found that about 15 to 20% of items exhibit 

DIF when traditional DIF detection methods are used, such as an M-H test and a 

likelihood ratio test. On the other hand, when FMM with binary outcomes has been used 

for detection of DIF with the same actual tests, more than 20% (and at most 50%) of 

items have exhibited DIF. That is, mixture models were more likely to identify items as 

displaying DIF than were traditional detection methods. However, it was not known how 

many items actually exhibited DIF, because the studies used surveys of actual tests. 

Therefore, many DIF studies using mixture models have simulated conditions with the 



71 

 

higher proportion of DIF items (typically about 20-30%, but 50% for some simulation 

conditions) (Cho 2007; De Ayala et al., 2002; DeMars & Lau, 2011; Jackman, 2011; 

Maij-de Meij et al., 2011; Samuelsen, 2005).  

Therefore, the present study simulated conditions in which 15% and 30% of items 

exhibit DIF. Specifically, when data were generated to fit a model having both between-

class latent DIF and class-specific observed DIF, four DIF items were generated to 

exhibit between-class latent DIF, and four additional DIF items were generated to exhibit 

class-specific observed DIF (30% DIF). When data were generated to fit a model 

containing either between-class latent DIF or class-specific observed DIF, only four of 

the 27 items per dataset were generated to exhibit DIF (15% DIF).  

Impact. DeMars and Lau (2011) reported that estimated DIF effect sizes were 

more likely to be accurate when data were generated with impact rather than without 

impact. Two additional studies have also found that, in conditions with a larger mean 

difference between latent classes, correct class membership was better identified (Lubke 

& Muthén, 2007), and the accuracy of item parameter estimates was better (Lubke & 

Muthén, 2007; Lu & Jiao, 2009). Jackman (2012) indicated that a large degree of impact 

occurs when the mean for the reference group is one standard deviation higher than the 

mean of the focal group.  

Therefore, in the present study latent impact was simulated with the first latent 

class having a latent ability mean that is one standard deviation higher than the mean of 

the second latent class (namely, the reference group’s ability distribution was θR ~N(1, 1) 
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for latent class 1, and the focal group’s ability distribution was θF ~N(0, 1) for latent class 

2).  

Simulated Conditions 

Class probability. Methodological research has consistently indicated that in 

scenarios with larger numbers of DIF items, larger DIF effects, and equivalently-sized 

latent class membership, item parameter values are recovered well (DeMars & Lau, 2011; 

Lu & Jiao, 2009). However, groups (such as focal and reference groups) are not often of 

equal sizes. For example, a DIF study using real data indicated that about 20% of 

respondents belonged to the focal group and 80% of respondents belonged to the 

reference group (Samuelsen, 2005). Other empirical research has found that 64% of the 

sample belonged to the first latent class and 36% belonged to the second latent class (De 

Ayala et al., 2002). Simulated research has used various group size proportions: 

25%:75% (Maij-de Meij et al., 2011) as well as 15%:85% and 30%:70% (Dai, 2009). 

Even though using unequal class sizes leads to less accurately estimated item parameters 

for both DIF and invariant items (Dai, 2009; Lu & Jiao, 2009), it seems that unequal class 

sizes best reflect real testing scenarios. Therefore, the present study compared results 

under an optimal scenario with equally-sized latent classes versus a scenario with 

unequally-sized classes (specifically, 70%: 30%).  

DIF effect size. There is no single simulation study that has investigated both 

between-class latent DIF and class-specific observed DIF using FMM. However, most of 

the simulation studies that have investigated uniform DIF have manipulated the degree of 

uniform DIF, using values ranging from .3 to 1.5 (see, for example, Camilli & Shepard, 
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1987; De Ayala et al., 2002; DeMars & Lau, 2011; Maij-de Meij et al., 2011; Samuelsen, 

2005). Jackman (2011) found that with mixture models, DIF is only identified accurately 

in scenarios with large magnitudes of DIF. In addition, Lubke and Muthén (2007) used 

the value of 0.5 as the small effect size and the value of 1.5 as the large effect size. 

Therefore, for the present study the degree of between-class latent DIF and class-specific 

observed DIF investigated with 0.5 as a small effect and 1.5 as a large effect. Table 1 

contains a summary of the simulation conditions.  

Table 1. Simulation Conditions 

 
           Factor                                  Value 

Class probability Equal: 50%:50%   

Unequal: 70%:30% 

Between-class latent DIF 

effect size (LDIF) 

Small effect: a difference of 0.5 in item difficulty 

parameters across the two latent classes 

Large effect: a difference of 1.5 in item difficulty 

parameters across the two latent classes 

Class-specific observed DIF 

effect size (ODIF) 

Small effect: a difference of 0.5 in item difficulty 

parameters across the two observed groups 

Large effect: a difference of 1.5 in the item difficulty 

parameters across the two observed groups 

 

 

 

 

 

 



74 

 

Study Design Overview 

For the present study, three types of  models were estimated for each generated 

data set (Table 2) where correctly and incorrectly specified FMMs with binary outcomes 

were specified.  

Table 2. Combinations of correctly and incorrectly specified models 

 

Generating Model Estimating Model Specification 

Model with LDIF  
and ODIF 

Model with LDIF and ODIF Correctly specified 

Model with LDIF Under specified 

Model with ODIF Under specified 

Model with no DIF Under specified 

Model with LDIF Model with LDIF and ODIF Over specified 

Model with LDIF Correctly specified 

Model with ODIF Mis-specified 

Model with no DIF Under specified 

Model with ODIF Model with LDIF and ODIF Over specified 

Model with LDIF Differently specified  

Model with ODIF Correctly specified 

Model with no DIF Under specified 

Note. LDIF=between-class latent DIF; ODIF=class-specific observed DIF.  

 

As shown in Table 2, three types of data were generated including data that fit a 

model with both between-class latent DIF and class-specific observed DIF, data that fit a 

model with only between-class latent DIF, and data that fit a model with only class-

specific observed DIF. The correctly specified models were always estimated. In addition, 

some of the models that were estimated were incorrectly specified. More specifically, 

three models were estimated using each generated dataset, under each of four scenarios: 

over-specified, under-specified, mis-specified, and differently specified. In an over-
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specification scenario, models were estimated with both between-class latent DIF and 

class-specific observed DIF when generating data fitted to a model either with between-

class latent DIF or with class-specific observed DIF. In an under-specification scenario, 

models were estimated with only between-class latent DIF or with only class-specific 

observed DIF when data have been generated to fit a model with both between-class 

latent DIF and class-specific observed DIF. In addition, models with no DIF were always 

under specified. A mis-specified model results when the model with only class-specific 

observed DIF was fit to a model with only between-class latent DIF. A “differently 

specified” model results when a model with only between-class latent DIF was fit to a 

model generated to have class-specific observed DIF.  

The simulation conditions included class probability (50%:50% and 30%:70%) 

and DIF effect size (small effect .5 and large effect 1.5) for between-class latent DIF 

and/or class-specific observed DIF. When data were generated to fit a model having both 

between-class latent DIF and class-specific observed DIF, the simulation conditions were 

class probabilities (equal vs. unequal) and DIF effect sizes for both between-class latent 

DIF (small vs. large) and class-specific observed DIF (small vs. large), resulting in eight 

conditions for the one correctly specified and three incorrectly specified models. 

Therefore, thirty-two models were estimated. When data were generated to fit a model 

having between-class latent DIF, class probability (equal vs. unequal) and between-class 

latent DIF effect size (small vs. large) were simulated, resulting in four simulation 

conditions for the one correctly specified and three incorrectly specified models. 

Therefore, sixteen models were estimated. When data were generated to fit a model 
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having class-specific observed DIF, class probability (equal vs. unequal) and class-

specific observed DIF (small vs. large) were simulated, resulting in four simulation 

conditions for the one correctly specified and three incorrectly specified models. 

Therefore, sixteen models were estimated. As a result, a total of 64 models was estimated. 

Each of the 64 models was evaluated in terms of correct model-identification rates using 

fit indices (AIC, BIC, aBIC, and CAIC), class assignment, DIF detection rates, and 

parameter recovery for correctly identified DIF items. Table 3 shows a summary of the 

resulting simulated conditions.   

Table 3. Resulting Simulated conditions 

 

Generating 
Model 

Estimating Model Simulated Condition 
Resulting 
simulated 

conditions 
LDIF & 
ODIF 

LDIF & ODIF  
LDIF  
ODIF  

No DIF 

Class Proportion (50:50; 70:30) 
Between-class latent DIF (.5; 1.5) 

Class-specific observed DIF (.5; 1.5) 
32 

LDIF LDIF & ODIF  
LDIF  
ODIF  

No DIF  

Class Proportion (50:50; 70:30) 
Between-class latent DIF (.5; 1.5) 

16 

ODIF LDIF & ODIF  
LDIF  
ODIF  

No DIF 

Class Proportion (50:50; 70:30) 
Class-specific observed DIF (.5; 1.5) 

16 

Note. LDIF represents between-class latent DIF; ODIF represents class-specific observed 
DIF 
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Data Generation 

The difficulty parameters used in the present study were adapted from the 

simulation study conducted by Maij-de Meij et al. (2011). The researchers used a 27-item 

test with difficulty parameters ranging from -.99 to .99 with a mean of 0 for latent class 1 

(reference group). In the present study, the difficulty parameters were varied by adding .5 

(small effect) or 1.5 (large effect) to four or eight items that were generated so as to have 

between-class latent DIF and/or class-specific observed DIF for the second latent class 

(focal group). This resulted in a maximum value of 2.21 for the difficulty parameter for 

item 4 (in the large DIF effect size condition). When data were generated to fit a model 

exhibiting both between-class and class-specific observed DIF, the between-class latent 

uniform DIF was simulated for items 1, 2, 3, and 4 (in boldfaced font in Table 4), and 

class-specific observed uniform DIF was simulated for items 5, 6, 7 and 8 (in italic and 

underlined font in Table 4). The values of the item parameters in a model with both 

between-class latent DIF and class-specific observed DIF are presented in Table 4.  
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Table 4. Difficulty parameters of the simulation condition of small DIF effects in a model 

with both between-class and class-specific observed DIF 

 

Item 

Latent class 1 Latent class 2 

X=0  
(e.g., male) 

X=1 
(e.g., female) 

X=0  
(e.g., male) 

X=1  
(e.g., female) 

1 -0.89 -0.89 -0.39 -0.39 

2 -0.33 -0.33 0.17 0.17 

3 0.27 0.27 0.77 0.77 

4 0.71 0.71 1.21 1.21 

5 -0.71 -0.71 -0.71 -0.21 

6 -0.2 -0.2 -0.2 0.30 

7 0.13 0.13 0.13 0.63 

8 0.63 0.63 0.63 1.13 

9 -0.99 -0.99 -0.99 -0.99 

10 -0.80 -0.80 -0.80 -0.80 

11 -0.63 -0.63 -0.63 -0.63 

12 -0.55 -0.55 -0.55 -0.55 

13 -0.48 -0.48 -0.48 -0.48 

14 -0.4 -0.4 -0.4 -0.4 

15 -0.27 -0.27 -0.27 -0.27 

16 -0.13 -0.13 -0.13 -0.13 

17 -0.07 -0.07 -0.07 -0.07 

18 0.1 0.1 0.1 0.1 

19 0.07 0.07 0.07 0.07 

20 0.2 0.2 0.2 0.2 

21 0.33 0.33 0.33 0.33 

22 0.4 0.4 0.4 0.4 

23 0.48 0.48 0.48 0.48 

24 0.55 0.55 0.55 0.55 

25 0.8 0.8 0.8 0.8 

26 0.89 0.89 0.89 0.89 

27 0.99 0.99 0.99 0.99 

Note. Difficulty values presented in boldfaced font identify items with between-class 
latent uniform DIF; difficulty values presented in italics and underlined font identify 
items with class-specific observed DIF. 
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The example provided in Table 4 holds for the conditions in which difficulty 

parameters for items 1, 2, 3, and 4 differ by 0.5 (a small effect) between the two latent 

classes. The direction of the generated between-class latent DIF effect was consistent 

across the four items such that difficulty parameters were always higher for the DIF items 

in latent class 2 than for the ones in latent class 1. In addition, it should be noted that 

difficulty parameters for DIF items in latent class 1 were the same across the two 

observed groups for items 5, 6, 7, and 8, meaning that there was no observed source of 

DIF within latent class 1. However, this was not the case for latent class 2. Item 

difficulties for items 5, 6, 7 and 8 differed by observed group membership within latent 

class 2. The difference in difficulty parameters for the observed group in latent class 2 

was also 0.5 for the small class-specific observed DIF effect conditions. As with the 

latent DIF condition, the pattern of the differences in difficulty parameters for the four 

class-specific observed DIF scenarios was consistent such that the item is always harder 

for members of the X = 1 group than for members of the X = 0 group.  

When data were generated to fit a model having only between-class latent DIF, 

items 1, 2, 3, and 4 were identified as displaying between-class latent DIF (matching the 

pattern of values in Table 4), and difficulty parameters for items 5 to 8 as well as for the 

rest of the items were generated to be the same across the two latent classes and two 

observed groups (matching the values when X = 0 for latent class 1 in Table 4). When 

data were generated to fit a model having only class-specific observed DIF, items 5, 6, 7 

and 8 were identified as displaying the pattern of class-specific observed DIF shown in 

Table 5. Difficulty parameters for items 1 to 4 as well as for the rest of the items were 
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generated to be the same across both latent classes and observed groups (matching the 

values when X = 0 for latent class 1 in Table 4).  

Dichotomous item responses for each of replication datasets per combination of 

conditions were generated using the 1PL IRT model for each latent class using the 

IRTGEN SAS macro (Whittaker, Fitzpatrick, Williams, & Dodd, 2003). The ability 

parameters for the first latent class were drawn from a standard normal distribution with a 

mean of one and a standard deviation of one. For the second latent class, the ability 

parameters were drawn from a standard normal distribution with a mean of zero and a 

standard deviation of one.  

Fifty replications were generated for each combination of simulation conditions, 

because estimating FMMs with binary outcomes requires considerable computer time. 

Previous methodological DIF studies involving use of Mplus software have suggested 

that thirty or fifty replications were enough to explore the relative contributions of the 

varying conditions (DeMars & Lau, 2011; Jackman, 2011).  

Model Estimation 

The item parameters were estimated using Mplus V6 (L. Muthén & Muthén, 

1998-2010) with robust maximum likelihood estimation using the expectation-

maximization (EM) algorithm. Maximum likelihood estimation is an iterative procedure, 

so that the log-likelihood function monotonically increases until it reaches one final 

maximum. However, sometimes it converges to a local rather than a global maximum. 

Thus, one recommended approach is to use multiple starting values (L. Muthén & 

Muthén, 1998-2010). Although the default in Mplus is 10 random starting values with the 
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2 best sets to be used for final optimization, Mplus allows users to increase the number of 

starting values for final optimization. But as the number of starting values increases, the 

estimation time increases considerably. The present study used 50 sets of starting values, 

with 10 solutions with highest log likelihood retained and iterated until the convergence 

criterion is reached (see, for example, Lubke & Muthén, 2007).  

Data Analysis 

Four outcome measures were summarized and compared across conditions: the 

relative parameter bias and standard error bias of items’ difficulties and of DIF effects as 

well as the performance of information criteria in correct model selection. In addition, the 

average entropy values were summarized and compared across conditions. 

Relative parameter bias. The accuracy of parameter recovery for items was 

evaluated using relative parameter bias ( )ˆ( iRPB  ). The bias of the parameter estimates 

was evaluated for between-class latent DIF items (1, 2, 3, and 4) and/or class-specific 

observed DIF items (5, 6, 7, and 8) when DIF items are correctly specified in models.  

For item i, relative parameter bias in the difficulty parameter is defined as 

i

ii

iRPB 
 )ˆ(

)ˆ(
         [25] 

where i is the generating true value of the ith parameter and î  is the mean estimate of 

the ith parameter across the 50 converged replication datasets (Hoogland & Boomsma, 

1998). Hoogland and Boomsma (1998) defined acceptable parameter estimate bias as | 

)ˆ( iB  | < .05. 
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Relative standard error (SE) bias. The relative standard error bias between the 

empirical standard error and the average SE estimate across each condition’s 50 estimates 

is defined as  

i

ii

i ES

ESES

ESB




 ˆ

ˆˆ

ˆ

ˆˆ

ˆ )ˆ(


         [26] 

where 
i

ES
̂

ˆ is the mean estimated standard error of the parameter estimate ̂  for item i 

across the estimated standard errors of the converged solutions, and 
i

ES
̂

ˆ  is the estimated 

population standard error value of ̂  for item i. Hoogland and Boomsma (1998) defined 

acceptable bias of the standard error estimates as | )ˆ(
̂

ESB | < .10. 

Relative parameter bias of DIF effects. The relative parameter bias will be 

calculated for the difference between item’s difficulties (that is, DIF effect). The bias of 

DIF effect estimates will be evaluated for between-class latent DIF items (1, 2, 3, and 4) 

and/or class-specific observed DIF items (5, 6, 7, and 8) when DIF items are correctly 

specified in models. Because the true DIF effect will be zero for incorrectly specified DIF 

items (either between-class latent DIF or class-specific observed DIF) for incorrectly 

specified models, use of )ˆ( DRPB  will not be appropriate. Instead the average bias for the 

difference between items’ difficulties will be calculated for these items.   

For the DIF effect of item i, relative parameter bias in the difference between 

difficulties for item i will be defined as 

)21(

)21()21( )ˆ(
)ˆ(

ii

iiii

DRPB


  
             [27] 
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where )21( ii  is the generating true DIF effect of the ith parameter and )21(̂ ii   is the mean 

estimate of the DIF effect for the ith parameter across the 50 converged replication 

datasets. The subscripts i1 and i2 represent item i for each latent class 1 and 2, 

respectively. 

Fit indices. For each of the four models estimated per dataset, AIC, BIC, aBIC, 

and CAIC were estimated and compared across models. For each of the fit indices, the 

lowest value for each of the fit indices for each dataset across the four models estimated 

was identified and tallied. The proportion of replications in which each of the fit indices 

led to selection of the correct model was compared across simulation conditions and fit 

indices. 

DIF detection. The present study used a chi-square statistic described by Lord 

(1980) to test for both unobserved and observed sources of uniform DIF (for example, 

Maij-de Meij et al., 2011). A chi-square statistic was used to assess the statistical 

significance of the mean differences in DIF items’ difficulties between latent classes (or 

observed groups) for each replicated data set. The differences between the difficulty 

parameters across two different groups of examinees for an item, say 1̂b and 2̂b , is an 

estimated item parameter for each group, respectively, that can be examined using  

2
ˆ

2
ˆ

2
212

121

)ˆˆ(

bb

ii
i

i
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84 

 

where each 2
ˆ

1ib
 and 2

ˆ
2ib

 is the variance of difficulty parameter of the item i for each group. 

For each condition and replication, the number of times an item is identified as exhibiting 

DIF was recorded.  

Latent class membership. Correct class assignment was computed as the 

proportion of subjects for whom the highest posterior class probability is equal to the true 

class probability, based on their highest posterior class probability. Entropy is closely 

related to the mean of each individual’s highest class probability across individuals. 

When models were correctly specified, entropy was assessed to evaluate how it is 

affected by the simulation conditions examined for the present study. In addition, when 

comparing the correctly specified models to incorrectly specified models, entropy was 

assessed to evaluate how well the correctly specified models perform in assigning 

individuals to their true classes.  
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Chapter 4: Results 

 

 
Convergence Rates 

The present study investigated proper convergence for models estimated using 

data generated in each replication. For each condition, of the 50 replications attempted, 

2% to 4% of models being estimated did not converge (see Table 5). Similarly, in 

Jackman’s (2012) study there were minimal convergence problems: in general, model 

estimation for 96% of replications successfully converged. For the present study, new 

data sets were generated so that 100% of the results being analyzed were based on 

converged solutions for each model and condition.  
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Table 5. Percentage of Convergence Rates for 1
st
 50 Replications for Each Condition and Generating Model  

 

 
 Equal class probability condition Unequal class probability condition 

Generating 
Model 

Estimating 
Model 

Small 
DIF Large DIF 

Large LDIF& 
Small ODIF 

Small LDIF & 
Large ODIF Small DIF Large DIF 

Large LDIF& 
Small ODIF 

Small LDIF & 
Large ODIF 

Generating 
LDIF & ODIF 

LDIF&ODIF 100% 100% 100% 100% 100% 100% 100% 100% 

LDIF 100% 100% 100% 100% 100% 100% 100% 100% 

ODIF 100% 100% 100% 100% 100% 100% 100% 100% 

No DIF 100% 100% 100% 100% 100% 100% 100% 100% 

Generating 
LDIF  

LDIF&ODIF 100% 100% 100% 100% 100% 100% 100% 100% 

LDIF 100% 100% 100% 100% 100% 100% 100% 100% 

ODIF 100% 100% 100% 100% 98% 100% 100% 98% 

No DIF 100% 100% 100% 100% 100% 100% 100% 100% 

Generating 
ODIF 

LDIF&ODIF 98% 100% 100% 100% 98% 100% 100% 100% 

LDIF 98% 100% 100% 100% 100% 100% 100% 100% 

ODIF 98% 100% 100% 100% 100% 100% 100% 100% 

No DIF 100% 100% 100% 100% 100% 100% 96% 100% 

Note. LDIF=between-class latent DIF; ODIF=class-specific observed DIF. 
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Performance of the Fit Indices 

The performance of the most commonly used IC indices–AIC, BIC, aBIC, and CAIC–

was evaluated to identify which of the indices most frequently supported the better fit of the 

correctly versus incorrectly specified models. The performance of all fit indices was evaluated as 

a function of DIF effect sizes and class probability. The proportion of replications in which each 

of the AIC, BIC, aBIC, and CAIC indices led to selection of the correctly specified model was 

recorded for each condition. The results are presented in Tables 6 to 9. 

Small DIF effect size and equal class probability. As shown in Table 6, when data 

were generated to fit a model having both between-class latent DIF (LDIF) and class-specific 

observed DIF (ODIF), the AIC index performed better in selecting the correct model, doing so 

for 98% of the replications. The aBIC index’s corresponding rate was 52%. The BIC index 

performed poorly in supporting the fit of the correct model, producing correct model 

identification rates of only 2%, and the CAIC index never selected the correct model. The BIC 

and CAIC indices selected the under-specified model estimating only LDIF effects when data 

were generated to fit a model having both types of DIF effects for 98% of the replications. 

However, when data were generated to fit a model with LDIF effects, the BIC, aBIC, and CAIC 

indices led to selection of the correct model for 100% of the replications. The AIC index led to 

selection of the correct model for 98% of the replications. When data were generated to fit a 

model having ODIF, the AIC index led to selection of the correct model for 86% of the 

replications, and the aBIC did so for 40% of replications.  
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Combination of DIF effect sizes and equal class probability. As shown in Table 6, 

when data were generated to fit a model having large LDIF and small ODIF effects, the AIC 

index led to selection of the correct model for 100% of the replications, and the aBIC index did 

so for 72%. The BIC and CAIC indices led to selection of the under-specified model estimating 

only LDIF effects for 100% of the replications. When data were generated to fit a model having 

small LDIF and large ODIF, the AIC, BIC, and aBIC indices led to selection of the correct 

model for 100% of the replications, but the CAIC index led to selection of the under-specified 

model estimating only LDIF effects for 100% of the replications.  

Large DIF effect size and equal class probability. When data were generated to fit a 

model having both large LDIF and ODIF effects, all fit indices led to selection of the correct 

model for 100% of the replications (see Table 7). In addition, when data were generated to fit a 

model having LDIF effects, all fit indices performed perfectly by selecting the correct model for 

100% of the replications. However, for data generated to fit a model having ODIF effects, the 

BIC, aBIC, and CAIC indices led to selection of the correct model for 100% of the replications, 

but the AIC index selected the correct model for 93% of the replications.  

Small DIF effect size and unequal class probability. As shown in Table 8, for data 

generated to fit a model having both types of DIF effects under the condition small DIF effect 

size with unequal class probability, the AIC index performed best, correctly identifying the 

model for 82% of the replications and the aBIC index selected the correct model for 2% of the 

replications. The BIC and CAIC indices selected the under-specified model with no DIF for 82% 

and 100% of replications, respectively. The aBIC index led to selection of the under-specified 
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model estimating only LDIF effects and the under-specified model with no DIF for 80% and for 

18% of the replications, respectively.  

When data were generated to fit a model having LDIF effects, the AIC index led to 

selection of the correct model for 88% of the replications, and the aBIC led to selection of the 

correct model for 94% of the replications. For data generated to fit a model having ODIF effects, 

only the AIC index selected the correct model for 78% of the replications, and other fit indices, 

the BIC and aBIC selected the under-specified model with no DIF for 100% of the replications. 

The CAIC selected the under-specified model with no DIF for 96% of the replications.  

Combination of DIF effect sizes and unequal class probability. When data were 

generated to fit a model having large LDIF and small ODIF, the AIC index led to selection of the 

correct model for 86% of the replications. On the other hand, the aBIC index led to selection of 

the correct model for only 4% of the replications, and other fit indices never selected the correct 

model (see Table 8). Instead, other fit indices, including the BIC, aBIC, and CAIC, led to 

selection of the under-specified model estimating only LDIF effects for 82% to 86% of the 

replications. However, when data were generated to fit a model having small LDIF and large 

ODIF, the AIC and aBIC indices led to selection of the correct model for 100% of the 

replications. The BIC and CAIC led to selection of the correct model for 54% and 36% of the 

replications, respectively.  

Large DIF effect size and unequal class probability. As shown in Table 9, when data 

were generated to fit a model having both LDIF and ODIF effects with large DIF effect sizes and 

unequal class probabilities, all fit indices led to selection of the correct model for 100% of the 

replications. Likewise, when data were generated to fit a model having large LDIF effects, all fit 
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indices led to selection of the correct model for 100% of the replications. On the other hand, 

when data were generated to fit a model having large ODIF effects, the BIC, aBIC, and CAIC 

indices performed perfectly by selecting the correct model for 100% of the replications, but the 

AIC index selected the correct model for 96% of the replications.  
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Table 6. Fit indices for Generating and Estimating Models under the Conditions of Small DIF Effects and Equal Class Probability 

 

Generating Model Estimating Model AIC BIC aBIC CAIC 

LDIF & ODIF LDIF & ODIF 98% 2% 52% 0% 

LDIF 2% 98% 48% 98% 

O DIF 0% 0% 0% 0% 

No  DIF 0% 0% 0% 2% 

LDIF LDIF & ODIF 0% 0% 0% 0% 

LDIF 98% 100% 100% 100% 

O DIF 2% 0% 0% 0% 

No  DIF 0% 0% 0% 0% 

ODIF LDIF & ODIF 4% 0% 0% 0% 

LDIF 8% 4% 18% 0% 

O DIF 86% 4% 40% 0% 

No  DIF 2% 92% 42% 100% 

Large LDIF & Small ODIF LDIF & ODIF 100% 0% 72% 0% 

LDIF 0% 100% 28% 100% 

O DIF 0% 0% 0% 0% 

No  DIF 0% 0% 0% 0% 

Small LDIF & Large ODIF LDIF & ODIF 100% 100% 100% 0% 

LDIF 0% 0% 0% 100% 

O DIF 0% 0% 0% 0% 

No  DIF 0% 0% 0% 0% 

Note. LDIF=between-class latent DIF; ODIF=class-specific observed DIF.  
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Table 7. Fit indices for Generating and Estimating Models under the Conditions of Large DIF Effects and Equal Class Probability 

 

Generating Model Estimating Model AIC BIC aBIC CAIC 

LDIF & ODIF LDIF & ODIF 100% 100% 100% 100% 

LDIF 0% 0% 0% 0% 

O DIF 0% 0% 0% 0% 

No  DIF 0% 0% 0% 0% 

LDIF LDIF & ODIF 0% 0% 0% 0% 

LDIF 100% 100% 100% 100% 

O DIF 0% 0% 0% 0% 

No  DIF 0% 0% 0% 0% 

ODIF LDIF & ODIF 0% 0% 0% 0% 

LDIF 7% 0% 0% 0% 

O DIF 93% 100% 100% 100% 

No  DIF 0% 0% 0% 0% 

Note. LDIF=between-class latent DIF; ODIF=class-specific observed DIF.  
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Table 8. Fit indices for Generating and Estimating Models under the Conditions of Small DIF Effects and Unequal Class 

Probability 

 

Generating Model Estimating Model AIC BIC aBIC CAIC 

LDIF & ODIF LDIF & ODIF 82% 0% 2% 0% 

LDIF 18% 18% 80% 0% 

O DIF 0% 0% 0% 0% 

No  DIF 0% 82% 18% 100% 

LDIF LDIF & ODIF 4% 0% 0% 0% 

LDIF 88% 36% 94% 16% 

O DIF 8% 0% 0% 0% 

No  DIF 0% 64% 6% 84% 

ODIF LDIF & ODIF 0% 0% 0% 0% 

LDIF 0% 0% 0% 0% 

O DIF 78% 0% 0% 4% 

No  DIF 22% 100% 100% 96% 

Large LDIF & Small ODIF LDIF & ODIF 86% 0% 4% 0% 

LDIF 4% 86% 82% 86% 

O DIF 0% 0% 0% 0% 

No  DIF 10% 14% 14% 14% 

Small LDIF & Large ODIF LDIF & ODIF 100% 54% 100% 36% 

LDIF 0% 0% 0% 0% 

O DIF 0% 46% 0% 64% 

No  DIF 0% 0% 0% 0% 

Note. LDIF=between-class latent DIF; ODIF=class-specific observed DIF.  
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Table 9. Fit indices for Generating and Estimating Models under the Conditions of Large DIF Effects and Unequal Class 

Probability 

 

Generating Model Estimating Model AIC BIC aBIC CAIC 

LDIF & ODIF LDIF & ODIF 100% 100% 100% 100% 

LDIF 0% 0% 0% 0% 

O DIF 0% 0% 0% 0% 

No  DIF 0% 0% 0% 0% 

LDIF LDIF & ODIF 0% 0% 0% 0% 

LDIF 100% 100% 100% 100% 

O DIF 0% 0% 0% 0% 

No  DIF 0% 0% 0% 0% 

ODIF LDIF & ODIF 4% 0% 0% 0% 

LDIF 0% 0% 0% 0% 

O DIF 96% 100% 100% 100% 

No  DIF 0% 0% 0% 0% 

Note. LDIF=between-class latent DIF; ODIF=class-specific observed DIF.  
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Power for Detecting DIF Effects 

Power was assessed based on the proportion of times out of the 50 replications in which 

the DIF items were accurately identified as having DIF. Typically, a power of 80% is regarded as 

relatively accurate in correctly identifying items with DIF, based on the standard set by Cohen’s 

study in 1988 (Jackman, 2011; Samuelsen, 2005). Results for the power analysis are shown in 

Tables 10 and 11. 

Small DIF effect size with equal class probability. The overall accuracy of LDIF 

detection ranged from 66.50% to 72.50% when a DIF effect size was small with equal class 

probability (see Table 10). On the other hand, the overall accuracy of ODIF detection was 

substantially lower than the overall accuracy of LDIF detection, ranging from 27.50% to 31.00%. 

More specifically, when data were generated to fit a model having both types of DIF effects, the 

power to detect LDIF for the correct model estimating both LDIF and ODIF effects was 72.50%, 

but the power to detect ODIF was 31.00%. For the under-specified model estimating only LDIF 

effects when data were generated to fit a model having both types of DIF effects, the power to 

detect LDIF was marginally reduced to 66.50%. Likewise, the power to detect ODIF was also 

reduced to 27.50% for the under-specified model estimating only ODIF effects, compared to the 

detection rates under the correct model. When data were generated to fit a model having LDIF 

effects, the accuracy of detecting LDIF effects was not much different between the over-

specified model estimating both types of DIF effects and correctly specified models. That is, the 

power to detect LDIF was 71.50% for the correct model estimating LDIF effects and 67.50% for 

the over-specified model estimating both effects. On the other hand, when data were generated to 

fit a model having ODIF, the power to detect ODIF was 28.50% under the correct model 
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estimating ODIF effects, but the power was reduced to 27.50% under the over-specified model 

estimating both types of DIF effects. 

Large DIF effect size with equal class probability. When the DIF effect size was large 

with equal class probability, all power for detecting both LDIF and ODIF effects was acceptable, 

ranging from 94% to 100% (see Table 10). Specifically, the power for detecting LDIF was 100% 

across the correct model and the under-specified model estimating only LDIF effects, but the 

power for detecting ODIF was reduced to 94% for the under-specified model estimating only 

ODIF effects. When data were generated to fit a model having large LDIF effects, power for 

detecting LDIF effects was 100% across the correctly specified and the over-specified models. 

However, when data were generated to fit a model having large ODIF effects, all power for 

detecting ODIF effects was 95.50% across correctly specified model and over-specified model 

estimating both types of DIF effects.  

Combination of different magnitudes of DIF effect sizes with equal class probability. 

When data were generated to fit a model having a combination of different magnitudes of DIF 

effect sizes, the power for detecting LDIF and ODIF was different (see Table 10). Specifically, 

for the correct model estimating large LDIF and small ODIF effects, the power to detect LDIF 

was 100%, while the power for detecting ODIF was 47%. In addition, the power to detect LDIF 

was 100% even though the model was under-specified with only LDIF effects. However, the 

power to detect ODIF with the under-specified model estimating only ODIF effects was reduced 

to 31.50%.  

On the other hand, when a model had a different pattern of effect sizes for LDIF and 

ODIF (i.e., small LDIF and large ODIF were generated) then the power to detect LDIF was 
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acceptable (86.50%), and the power rate for detecting ODIF was as high as 96.50%. However, 

for the under-specified model estimating only LDIF effects, the power for detecting LDIF 

decreased to 63%. The power for detecting ODIF with the under-specified model estimating only 

ODIF effects was also 96.50%.  

Small DIF effect size with unequal class probability. As shown in Table 11, the overall 

accuracy of LDIF detection ranged from 55% to 64% when the DIF effect size was small with 

unequal class probability (see Table 11). On the other hand, the overall accuracy of ODIF 

detection ranged from 23% to 25.50%. Specifically, when data were generated to fit a model 

having both types of DIF effects, the power for detecting LDIF effects was 58% and the power 

for detecting ODIF effects was 23%. Similarly, the power for detecting DIF effects were 55.50% 

and 25.50% for the under-specified models estimating only LDIF and only ODIF effects, 

respectively. When data were generated to fit a model having LDIF effects, the power for 

detecting LDIF was 64% for the correct model correctly estimating LDIF effects and 55% for the 

over-specified model estimating both types of DIF effects. Likewise, the power for detecting 

ODIF under the correct model estimating ODIF effects was 24.50%, but the power for detecting 

ODIF under the over-specified model estimating both types of DIF effects decreased slightly to 

23%.  

Large DIF effect size with unequal class probability. When the DIF effect size was 

large with unequal class probability, the power to detect both LDIF and ODIF effects was 

acceptable, ranging from 89% to 100% (see Table 11). Under the correct model estimating both 

types of DIF effects, the power was 100% for detection of LDIF and ODIF effects. Under 

incorrectly specified models, the power was still high at 100% and 94.50% for LDIF and ODIF 
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effects, respectively. For data generated to fit a model having LDIF effects, the power to detect 

LDIF was 100% for both the correct model estimating LDIF effects and the over-specified model 

estimating both types of DIF effects. On the other hand, when data were generated to fit a model 

having ODIF effects, the power to detect ODIF was lower at 89% across the correctly specified 

and the over-specified models.  

Combination of different magnitudes of DIF effect sizes with unequal class 

probability. For the correct model estimating large LDIF and small ODIF effects, the power to 

detect LDIF and ODIF effects were 100% and 40%, respectively (see Table 11). When models 

were under-specified, the power to detect LDIF with the under-specified model estimating only 

LDIF effects was still 100% while the power to detect ODIF with the under-specified model 

estimating only ODIF effects was lower at 26%. On the other hand, when data were generated to 

fit a model having a different pattern of DIF effect sizes (i.e., small LDIF and large ODIF) then 

the power to detect LDIF under the correctly specified model was lower at 75.70%, and the 

power to detect LDIF with the under-specified model estimating only LDIF effects decreased to 

50%. In contrast to the effect on power for detecting LDIF, the power for detecting ODIF 

increased substantially to 90.50%. In addition, with the under-specified model estimating only 

ODIF effects, the power was even slightly higher at 92%.  
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Table 10. Power for Identifying DIF by Generating and Estimating Models under the Conditions of Equal Class Probability 

 

Generating 
Model 

Estimating Model 
Small DIF Effect Large DIF Effect 

Power (LDIF) Power (ODIF) Power (LDIF) Power (ODIF) 

LDIF & ODIF LDIF & ODIF 72.50% 31.00% 100% 100% 

LDIF 66.50% - 100% - 
O DIF - 27.50% - 94.00% 

LDIF 
 
LDIF & ODIF 

 
67.50% 

 
- 

 
100% 

 
- 

LDIF 71.50% - 100% - 
 
ODIF 

 
LDIF & ODIF 

 
- 

 
27.50% 

 
- 

 
95.50% 

 O DIF - 28.50% - 95.50% 
      
Large LDIF & 
Small ODIF 

LDIF & ODIF - 47.00% 100% - 
LDIF - - 100% - 
O DIF 

 
- 31.50% - - 

Small LDIF & 
Large ODIF 

LDIF & ODIF 86.50% - - 96.50% 
LDIF 63.00% - - - 
O DIF - - - 96.50% 

Note. LDIF=between-class latent DIF; ODIF=class-specific observed DIF; − = not estimated.  

 

 

 

 

 



100 

 

Table 11. Power for Identifying DIF by Generating and Estimating Models under the Conditions of Unequal Class Probability 

 

Generating Model Estimating Model 
Small DIF Effect Large DIF Effect 

Power (LDIF) Power (ODIF) Power (LDIF) Power (ODIF) 

LDIF & ODIF LDIF & ODIF 58.00% 23.00% 100% 100% 

LDIF 55.50% - 100% - 
O DIF - 25.50%  94.50% 
     

LDIF LDIF & ODIF 55.00% - 100% - 
 

LDIF 64.00% 
- 

100% 
- 

ODIF LDIF & ODIF - 23.00% - 89.00% 
 O DIF - 24.50% - 89.00% 
      
Large LDIF & 
Small ODIF 

LDIF & ODIF - 40.00% 100% - 
LDIF - - 100% - 
O DIF - 26.00% - - 
     

Small LDIF & 
Large LDIF 

LDIF & ODIF 75.70% - - 90.50% 
LDIF 50.00% - - - 
O DIF - - - 92.00% 

Note. LDIF=between-class latent DIF; ODIF=class-specific observed DIF; − = not estimated.  

 

 

 

 



101 

 

Type I Error Rates 

When data were generated to fit a model having LDIF effects but estimated both types of 

DIF effects (that is, over-specified ODIF effects) or ODIF (that is, mis-specified ODIF effects), 

the Type I error rates were assessed for incorrect DIF identification (that is, ODIF effects). In 

addition, when data were generated to fit a model having ODIF but estimated both types of DIF 

(that is, over-specified LDIF effects) or LDIF (that is, differently specified LDIF effects), the 

Type I error rates were assessed for incorrect DIF identification (that is, LDIF effects). The Type 

I error rates are shown in Table 12.  

Equal class probability. As shown in Table 12, when data were generated to fit a model 

having LDIF effects but estimated both LDIF and ODIF effects under small DIF effect size 

conditions, the Type I error rate of incorrectly identified ODIF effects was 5.50%, but the Type I 

error rate of incorrectly identified ODIF effects slightly increased to 6.5% under the large LDIF 

effect size condition. On the other hand, when data were generated to fit a model having LDIF 

effects but the estimating model included only ODIF effects (mis-specification), the Type I error 

rate of mis-specified ODIF effects was 7% under the condition of small DIF effect size, but this 

rate increased to 11.50% as the true DIF effect size increased.  

When data were generated to fit a model having ODIF effects but the estimating model 

included both LDIF and ODIF effects, the Type I error rates for the incorrectly specified LDIF 

effects were 8% and 11% for the small and large DIF effect size conditions, respectively. 

However, when data were generated to fit a model having ODIF effects, but the estimating 

model included LDIF effects (that is, different specification), the Type I error rates were on 

average 22.50%, and increased substantially to 99.75% as the true DIF effect size increased.   
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Unequal class probability. As shown in Table 12, when data were generated to fit a 

model having LDIF effects but estimated both LDIF and ODIF effects under the small DIF effect 

condition, the Type I error rate for incorrectly specified ODIF effects was 10.50%. The Type I 

error rate for incorrectly specified ODIF effects decreased slightly to 9% under large DIF effect 

size condition. On the other hand, when data were generated to fit a model having LDIF effects 

but estimated ODIF effects (mis-specification) under the small DIF effect size condition, the 

Type I error rate for mis-specified ODIF effects was 8.50%. However, the Type I error rate for 

mis-specified ODIF decreased to 6% as the true DIF effect size increased.  

When a model was generated to have only ODIF effects but estimated both LDIF and 

ODIF effects, the Type I error rates for incorrectly specified LDIF effects were 7.50% across 

small and large DIF effect size conditions. When data were generated to fit a model having 

ODIF effects, but estimated LDIF effects (different specification), the Type I error rate for 

differently specified LDIF effects was 23%, and this rate increased substantially to 98% as the 

true DIF effect size increased.  
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Table 12. Type I Error Rates for Incorrect DIF Identification by Generating and Estimating Models across Simulation Conditions 

 

Generating 

Model 

Estimating 

Model 
Equal Class Probability Unequal Class Probability 

Small DIF Effect Large DIF Effect Small DIF Effect Large DIF Effect 

LDIF LDIF & ODIF 5.50% 6.50% 10.50% 9.00% 
O DIF 7.00% 11.50% 8.50% 6.00% 

      
ODIF LDIF & ODIF 8.00% 11.00% 7.50% 7.50% 

LDIF 22.50% 99.75% 23.00% 98.00% 
Note. LDIF = between-class latent DIF; ODIF = class-specific observed DIF.  

The percents appearing in the table were the Type I error rates for the relevant DIF that was mis-specified for the estimating model. 
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Entropy  

The entropy values averaged across 50 replications for correctly specified and incorrectly 

specified models (under-, over-, mis-, or different specification) were compared across model 

specifications and simulation conditions. As mentioned above, the entropy value was calculated 

based on the estimated posterior probability for an individual in an estimated class. That is, the 

entropy value indicates how well individuals were classified into their estimated classes. It is 

presented in Table 13. 

Equal class probability. Under the condition of equal class probability, class 

probabilities were simulated to be 50% versus 50% for each latent class and the estimated class 

probabilities were almost equal across latent classes under the correctly specified models. That is, 

individuals were classified equally into each latent class. Factor means were used to identify the 

two classes. As shown in Table 13, entropy values on average were not large, ranging from .280 

to .537 even for the correctly specified models. More specifically, when data were generated to 

fit a model having both types of DIF effects under small DIF effect size conditions, the entropy 

value was on average .280. Unexpectedly, the average entropy values were higher for the under-

specified models estimating only LDIF effects (.311) or only ODIF effects (.344) even though 

the average entropy value was relatively low under the under-specified model with no DIF (.243) 

in comparison to that for the correctly specified model.  

Under the correct model estimating LDIF effects, the entropy values were on 

average .294. Even though models were incorrectly specified (that is, over-specification and mis-

specification), the average entropy values were not much different than those for the correct 

model estimating LDIF effects, with an average entropy value of .292 for the over-specified 
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model estimating both types of DIF effects and .332 for the mis-specified model with ODIF 

effects. But the average entropy value were lower (.236) for the under-specified model with no 

DIF. Similarly, when data were generated to fit a model having ODIF effects, the entropy values 

were on average .261 for the correctly specified model and the over-specified model estimating 

both types of DIF effects and .253 for the model with LDIF effects. However, the average 

entropy value was lower at .220 for the model with no DIF. This result indicated that the average 

entropy values were not much different between the correctly and incorrectly specified models, 

except for the model with no DIF.  

When data were generated to fit a model having both types of DIF effects under the large 

DIF effect size conditions, the average entropy values improved to .537 (see Table 13). As 

expected, the average entropy values were higher for the correctly specified model than for the 

incorrectly specified models (under-specified models estimating only LDIF, ODIF effects or no 

DIF). For example, the entropy value was on average .484 and .395 for the under-specified 

model estimating only LDIF effects and the under-specified model estimating only ODIF effect, 

respectively. For data generated to fit a model having LDIF, the entropy values were on 

average .505 and .507 for the correctly specified and over-specified models, respectively. 

However, the entropy was slightly higher at .541 for the mis-specified model in which the model 

with ODIF was fit to the model with LDIF. However, the average entropy value under the under-

specified model with no DIF were relatively lower. On the other hand, under the correct model 

estimating ODIF effects, the entropy value was on average .326 for the correctly specified model 

and the over-specified model estimating both types of DIF and .325 for the differently specified 
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model. The result indicated that the average entropy values and were not much different between 

the correctly specified and incorrectly specified models.  

When data were generated to fit a model having a combination of large LDIF and small 

ODIF effects, the entropy value was on average .479 for the correct model and .476 for the 

under-specified model with only LDIF (large DIF effect size). However, the average entropy 

values for the under-specified model with ODIF effects (small DIF effect size) or for the under-

specified model with no DIF were relatively low (.296 and .289, respectively) compared to that 

for the correctly specified model. When data were generated to fit a model having different 

magnitudes of DIF effect sizes (that is, small LDIF and large ODIF effect sizes), the entropy 

value was on average .384 for the correct model and .347 for the under-specified model with 

only ODIF effects (large DIF effect size). However, the average entropy values for the under-

specified model with only LDIF effects (small DIF effect size) and for the under-specified model 

with no DIF were relatively low (.319 and .290, respectively) compared to those for the correctly 

specified models.  

Unequal class probability. Under the condition of unequal class probability, class 

probabilities were simulated to be 70% versus 30%, in the present study. Estimated probabilities 

were 60% to 77% for the reference class and 23% to 40% for the focal class across model 

specifications and simulation conditions. In general, average entropy values ranged from .360 

to .643 for correctly specified models and from .308 to .618 for corresponding incorrectly 

specified models. The average entropy values under unequal class probability conditions were 

slightly higher than those under equal class probability conditions. More specifically, when the 

DIF effect size was small, entropy values were on average .405 and the average entropy value 
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was slightly higher for the correct model than for incorrectly specified models. However, when 

data were generated to fit a model estimating LDIF effects, the entropy value was on 

average .360, and the average entropy values did not differ between correctly and incorrectly 

specified models. Similarly, for the correct model estimating ODIF effects, the entropy value 

was on average .370. When the correct model was compared to incorrectly specified models, the 

average entropy values did not differ.  

As the DIF effect size increased, the entropy values also increased. In addition, the 

difference in entropy values among correctly specified models increased. For example, the 

entropy values increased to .643 for the correct model estimating both types of DIF effects, 

to .551 for the correct model estimating LDIF effects, and to .432 for the correct model 

estimating ODIF effects. That is, the quality of class assignment for the correct model estimating 

both types of DIF effects was larger than those for either the correct model estimating LDIF or 

ODIF effects.  

When correctly specified models were compared with incorrectly specified models, for 

data generated to fit a model having both types of DIF, the average entropy value for the 

correctly specified model was .643, and it decreased to .521 for the under-specified model 

estimating only LDIF effects and to .396 for the under-specified model estimating ODIF effects. 

When data were generated to fit a model having LDIF effects, the entropy value was on 

average .551 under the correctly specified model, it was .568 for the over-specified model 

estimating both types of DIF effects, and it was .618 for the mis-specified model. That is, they 

were slightly larger for the mis-specified model than were those for the correctly specified model. 

Likewise, when data were generated to fit a model having ODIF, the average entropy values 
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were similar, .432 and .454, under the correctly specified model and incorrectly specified models. 

However, the average entropy values were lower, at .322 for the under-specified model with no 

DIF.  

For data generated to produce a combination of different magnitudes of effect sizes, 

similar to the results for equal class probability, the average entropy values for the correctly 

specified models were larger than were those for under-specified models. For example, the 

entropy values were on average .533 for the correct model estimating large LDIF and small 

ODIF effects, but the range of the average entropy values was from .308 to .499 for under-

specified models. Likewise, the entropy value was on average .455 for the correct model 

estimating small LDIF and large ODIF effects, but the range of the average entropy values was 

from .318 and .418 for the under-specified models.  
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Table 13. Average Entropy Values for Generating and Estimating Models under Simulation Conditions 

 

  Equal Class Probability Unequal Class Probability 

Generating 
Model 

Estimating 
Model 

Small 
DIF 

Large 
DIF 

Large LDIF 
&Small 

ODIF 

Small LDIF 
& Large 

ODIF 

Small 
DIF 

Large 
DIF 

Large LDIF 
& Small 

ODIF 

Small LDIF 
& Large 

ODIF 
LDIF & 
ODIF 

LDIF & ODIF .280 .537 .479 .384 .405 .643 .533 .455 

LDIF .331 .484 .476 .319 .371 .521 .499 .374 

O DIF .344 .395 .296 .347 .356 .396 .323 .418 

No  DIF .243 .367 .289 .290 .322 .313 .308 .318 
 
LDIF 

 
LDIF & ODIF 

 
.292 

 
.507 - - 

 
.378 

 
.568 - - 

LDIF .294 .505 - - .360 .551 - - 
O DIF .332 .541 - - .361 .618 - - 
No  DIF .236 .340 - - .325 .414 - - 

 
ODIF 

 
LDIF & ODIF 

 
.261 

 
.326 - - 

 
.376 

 
.429 - - 

LDIF .253 .325 - - .359 .454 - - 
O DIF .261 .326 - - .370 .432 - - 
No  DIF .220 .237 - - .333 .322 - - 

Note. LDIF=between-class latent DIF; ODIF=class-specific observed DIF; − = not estimated. 
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Relative Parameter Bias 

The relative parameter bias (RPB) of item difficulty estimates for each latent class was 

computed for only correctly specified models. The values are presented in Tables 14 through 15. 

Substantial parameter estimate bias was identified for any estimate when the magnitude of the 

parameter bias was greater than .05 (Hoogland & Boomsma, 1998). An item difficulty parameter 

value can be negative or positive. In the present study, difficulty parameters for items 1, 2, 5, and 

6 were negative in the reference class. When an item difficulty parameter is positive and positive 

bias is observed, it means that the item’s difficulty is over-estimated. When an item difficulty is 

positive and the bias is negative then the difficulty is under-estimated. If, on the other hand, the 

item difficulty is negative and positive bias is observed, this means that the item’s difficulty 

parameter is under-estimated. And when an item difficulty parameter is negative and negative 

bias is observed, it means that the item’s difficulty is over-estimated. For example, if the true 

value is −.2 but the estimated value is −.3, the relative parameter bias is positive, but the 

difficulty parameter is under-estimated.  

Equal class probability. As shown in Table 14, the relative parameter bias for item 

difficulty estimates under the correct model estimating both types of DIF effects ranged from 

−.268 to .060 for the reference class and from −.057 to .091 for the focal class under the 

condition of equal class probability with small DIF effect size. That is, the magnitude of the 

relative parameter bias of difficulty estimates was larger for the reference class than for the focal 

class. On the other hand, the majority of the values of relative parameter bias in difficulty 

estimates was acceptable under the correct model estimating LDIF effects, but two item 

difficulties were under-estimated, and the range of the relative parameter bias was from −.086 

to .037. However, for the correct model estimating ODIF effects, the relative parameter bias in 
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item difficulty estimates for each latent class was excessive, ranging from −.541 to .119. That is, 

the majority of item difficulty values were under-estimated, and the magnitude of the relative 

parameter bias of difficulty estimates for the correct model estimating ODIF effects was 

relatively large in comparison to estimates for both the correct model estimating both types of 

DIF effects and the correct model estimating LDIF effects.  

As the DIF effect size increased, acceptable relative parameter bias was found in the item 

difficulty parameter estimates for the focal class across all correctly specified models. However, 

relative parameter bias of difficulty estimates for the reference class was observed across all 

correctly specified models. More specifically, the relative parameter bias of difficulty estimates 

for the reference class was not excessive, ranging from −.092 to .061 for the correct model 

estimating both types of DIF effects and from −.060 to .075 for the correct model estimating 

LDIF effects. That is, two or three item difficulties were under-estimated even though the 

majority of item difficulties were well-estimated for the correct model estimating both types of 

DIF effects and for the correct model estimating LDIF effects. In addition, for the correct model 

estimating ODIF effects, the relative parameter bias of difficulty estimates for the reference class 

ranged from .051 to .078, with the exception of the difficulty estimate for item 6 (RPB = −.246). 

When data were generated to fit a model having different magnitudes of both types of DIF 

effects, all item difficulty values were well-estimated across latent classes with exception of the 

difficulty estimate for item 5 for the focal class (RPB=−.132) under the correct model estimating 

large LDIF and small ODIF. In contrast, the majority of item difficulty values were biased under 

the correct model estimating small LDIF and large ODIF. That is, the range of relative parameter 

bias values was from −.132 to .036 for the correct model estimating large LDIF and small ODIF 
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effects and from −.092to .062 for the correct model estimating small LDIF and large ODIF 

effects.  

Unequal class probability. Table 15 shows the relative parameter bias in difficulty 

estimates in conditions with unequal class probabilities with small DIF effect sizes. Similar to 

the relative parameter bias results under the equal class conditions, the relative parameter bias of 

difficulty estimates was unacceptable (ranging from −.113 to .092) for both classes under the 

correct model estimating both types of DIF effect sizes. In addition, it was observed that there 

was positive relative parameter bias of difficulty estimates under the correct model estimating 

LDIF effects and negative relative parameter bias under the correct model estimating ODIF 

effects. That is, the ranges of relative parameter bias were from −.013 to .129 for the correct 

model estimating LDIF effects and from −.087 to .039 for the correct model estimating ODIF 

effects. Even though the DIF effect size increased, the relative parameter bias found was similar 

with those values under the small DIF effect size conditions. The majority of relative parameter 

bias values in difficulty estimates for the focal class were acceptable under the correct model 

estimating both types of DIF effects and the correct model estimating LDIF effects. However, 

unacceptable but not excessive relative parameter bias was found in difficulty estimates for both 

latent classes. For example, the ranges of relative parameter bias were from−.161 to .089 for the 

reference class and from −.008 to .051 for the focal class under the correct model estimating both 

types of DIF effects. In addition, the ranges of relative parameter bias were from −.004 to .102 

for the reference class and from .004 to .050 for the focal class under the correct model 

estimating LDIF effects. However, unacceptable relative parameter bias was found for both 

classes for the correct model estimating ODIF effects, ranging from −.138 to .041 for the 

reference class and from −.064 to .053 for the focal class.  
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When data were generated to fit a model estimating different magnitudes of DIF effect 

sizes, unacceptable relative parameter bias of difficulty estimates was found. These results were 

not consistent with those under the equal class probability conditions. The relative parameter bias 

of difficulty estimates for the correct model estimating large LDIF and small ODIF effects 

ranged from −.174 to .086 for the reference class and from −.094 to .067 for the focal class. In 

addition, the relative parameter bias of difficulty estimates for the correct model estimating small 

LDIF and large ODIF effects ranged from −.178 to .076 for the reference class and from −.035 

to .099 for the focal class. That is, the relative parameter bias was greater for the reference class 

than for the focal class.  
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Table 14. Relative Bias of Estimated Item Difficulty Parameters by Correctly Estimating Models under Equal Class Probability 

Conditions 

 

  
Small DIF Effect Large DIF effect Combination of DIF effect sizes 

  Item 
Est. LDIF 

&ODIF 
Est. LDIF Est. ODIF 

Est. LDIF 
&ODIF 

Est. LDIF Est. ODIF 
Est. Large 

LDIF& Small 
ODIF 

Est. Small 
LDIF& Large 

ODIF 
Reference  
Class 
  
  
  
  
  
  

i1 0.060 0.037 -  0.061 0.057 -  0.036 0.046 

i2 -0.038 0.035 -  -0.027 0.075 -  -0.019 -0.016 

i3 -0.077 -0.086 -  -0.031 -0.060 -  0.000 -0.086 

i4 -0.010 -0.002 -  -0.014 0.002 -  -0.006 -0.004 

i5 0.038 -  0.059 0.018 -  0.051 0.022 0.050 

i6 -0.268 -  -0.297 -0.035 -  -0.246 -0.027 -0.092 

i7 -0.178 -  -0.541 -0.092 -  0.078 -0.032 0.062 

i8 0.037 -  -0.037 -0.029 -  -0.012 -0.020 -0.043 

 
Focal 
Class  

 
i1 

 
-0.012 

 
0.004 

-  
 

0.014 
 

-0.006 
-  

 
0.022 

 
-0.050 

i2 -0.019 -0.063 -  -0.005 0.018 -  -0.019 0.009 

i3 0.025 0.016 -  -0.011 -0.002 -  0.009 0.038 

i4 0.006 0.003 -  0.001 -0.022 -  0.012 -0.008 

i5 -0.057 -  0.119 -0.034 -  -0.034 -0.132 -0.000 

i6 0.091 -  0.106 0.003 -  0.027 -0.010 0.028 

i7 0.010 -  0.088 0.010 -  0.023 0.023 -0.004 

i8 -0.049 -  -0.012 -0.018 -  -0.010 -0.012 -0.009 

Note. The boldfaced font indicates that the parameter estimate was substantially biased (Hoogland & Boomsma, 1998); − = not estimated. 
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Table 15. Relative Bias of Estimated Item Difficulty Parameters by Correctly Estimating Models under Unequal Class Probability 

Conditions 

 

  
Small DIF Effect Large DIF effect Combination of DIF effect sizes 

  Item 
Est. LDIF 

&ODIF 
Est. LDIF Est. ODIF 

Est. LDIF 
&ODIF 

Est. LDIF Est. ODIF 
Est. Large 

LDIF& 
Small ODIF 

Est. Small 
LDIF & Large 

ODIF 
Reference  
Class 
  
  
  
  
  
  

i1 0.027 0.017 -  0.036 0.028 -  0.027 0.025 

i2 0.027 0.061 -  0.036 0.031 -  0.021 0.010 

i3 0.092 0.061 -  0.089 0.102 -  0.086 0.076 

i4 -0.012 -0.013 -  -0.007 -0.004 -  -0.014 -0.015 

i5 0.031 -  0.039 0.005 -  0.041 0.041 0.068 

i6 -0.054 -  0.017 -0.039 -  -0.110 -0.036 -0.151 

i7 -0.113 -  -0.076 -0.161 -  -0.138 -0.174 -0.178 

i8 0.019 -  0.011 0.010 -  0.003 0.003 -0.005 

 
Focal 
Class 

 
i1 0.002 0.011 -  0.051 0.050 -  0.067 0.022 

i2 0.029 0.129 -  0.025 0.039 -  0.035 0.099 

i3 -0.007 0.002 -  -0.020 0.004 -  0.011 -0.001 

i4 0.023 0.025 -  -0.007 0.004 -  0.030 0.002 

i5 0.072 -  -0.087 0.028 -  -0.064 -0.057 -0.035 

i6 -0.032 -  -0.022 -0.008 -  0.004 -0.094 0.004 

i7 -0.007 -  -0.022 0.009 -  0.053 0.040 0.014 

i8 -0.013 -  -0.024 -0.008 -  0.041 -0.007 0.005 

Note. The boldfaced font indicates that the parameter estimate was substantially biased (Hoogland & Boomsma, 1998); − = not estimated. 
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Relative Standard Error Bias (RSEB) 

 The relative bias of the standard error estimates of item difficulty parameters for each 

latent class was computed for the correctly and incorrectly specified models. The values are 

presented in Tables 16 through 17. Standard error estimation bias was considered to be 

substantial when any absolute standard error exceeded .10 (Hoogland & Boomsma, 1998).  

Equal class probability. As shown in Table 16, in conditions when the DIF effect size 

was small with equal class probability, most of the values of the relative standard error bias 

(RSEB) of difficulty parameter estimates were acceptable for each latent class under correctly 

specified model estimating both types of DIF effects. That is, the relative standard error bias 

ranged from −.159 to .113 under the correct model estimating both types of DIF effects. When 

data were generated to fit a model having LDIF effects, all relative standard error bias values for 

difficulty estimates for the reference class were acceptable, ranging from −.050 to .033, but the 

relative standard error bias in item difficulty parameter estimates for the focal class was larger 

than the criterion, ranging from −.051 to .177. In contrast, when data were generated to fit a 

model having ODIF effects, acceptable relative standard error bias was found for the focal class 

(ranging from −.046 to .084), but the relative standard error bias of difficulty estimates for the 

reference class was not acceptable, ranging from −.140 to .107. As the DIF effect size increased, 

the relative standard error bias found was greater than under the small DIF effect size conditions. 

For example, the relative standard error bias of difficulty estimates for the reference class under 

the correct model estimating both types of DIF effects was substantial, ranging from −.078 

to .207. However, acceptable relative standard error bias of difficulty estimates was found for the 

focal class, except for item 3 for the focal class (RSEB=.340), under the correct model estimating 

both types of DIF effects. On the other hand, the relative standard error bias of difficulty 
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estimates for both classes was observed for the correct model estimating LDIF effects, ranging 

from −.089 to .269. Likewise, the relative standard error bias of difficulty estimates for the 

reference class was unacceptable for the correct model estimating ODIF effects (ranging 

from .061 to .132). However, acceptable relative standard error bias was found for the focal class 

(ranging from −.029 to .053). The magnitude of the relative standard error bias was larger for the 

large DIF effect size conditions than for the small DIF effect size conditions. When data were 

generated to fit a model having a different combination of DIF effect sizes, the relative standard 

error bias of difficulty estimates was found. The relative standard error bias of difficulty 

estimates for the correct model estimating large LDIF and small ODIF effects ranged from −.057 

to .281 for the reference class and ranged from −.140 to .173 for the focal class. Likewise, the 

relative standard error bias of difficulty estimates ranged from −.027 to .258 for the reference 

class and ranged from −.096 to .216 for the focal class.  

Unequal class probability. Table 17 contains the relative standard error bias in unequal 

class probability conditions. A similar pattern was found for both equal and unequal class 

probability conditions, but the relative standard error bias found was greater under the equal 

class probability conditions. When the DIF effect size was small with unequal class probabilities, 

the relative standard error bias ranged from −.172 to .153 for the correct model estimating both 

types of DIF effects. On the other hand, acceptable relative standard error bias was found across 

both classes for the correct model estimating LDIF effects. The range of the relative standard 

error bias was from −.059 to .100. However, the relative standard error bias of difficulty estimate 

for item 2 for the focal class was relatively large (.237). When data were generated to fit a model 

having ODIF effects, values ranged from −.015 to .249. In particular, the relative standard error 
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bias of difficulty of item 7 for both classes was observed (RSEB = .204 and .249 for the reference 

and focal classes, respectively).  

As the DIF effect size increased, the relative standard error bias was greater than under 

the small DIF effect size conditions. Excessive relative standard error bias was found for both 

classes across the correctly specified models. That is, the relative standard error bias ranged from 

−.094 to .395 for the correct model estimating both types of DIF effects and from −.085 to .257 

for the correct model estimating LDIF effects and from −.193 to .208 for the correct model 

estimating ODIF effects. Likewise, the relative standard error bias was substantial across both 

classes under the correct model estimating different magnitudes of DIF effect sizes. For example, 

the relative standard error bias ranged from −.115 to .303 for the correct model estimating large 

LDIF and small ODIF effects and from −.148 to .335 for the correct model estimating small 

LDIF and large ODIF effects. That is, the relative standard error bias was greater for the correct 

model estimating small LDIF and large ODIF effects than for the correct model estimating large 

LDIF and small ODIF effects. In addition, the relative standard error bias was greater for the 

focal class than for the reference class across correctly specified models when class probabilities 

were unequal.  
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Table 16. Relative Standard Error Bias of Estimated Item Difficulty Parameters by Correctly Estimating Models under Equal Class 

Probability Conditions 

 

  
Small DIF Effect Large DIF effect Combination of DIF effect sizes 

 
Item 

LDIF & 
ODIF 

LDIF ODIF 
LDIF & 

ODIF 
LDIF ODIF 

Large LDIF& 
Small ODIF 

Small ODIF & 
Large LDIF 

Reference  
Class 
  
  
  
  
  
  

i1 -0.089 -0.001 -  0.150 0.027 -  0.088 0.132 

i2 -0.020 -0.014 -  0.150 0.211 -  0.037 0.033 

i3 -0.047 0.033 -  0.146 0.145 -  0.180 0.228 

i4 0.113 -0.050 -  -0.078 -0.089 -  -0.057 -0.027 

i5 0.039 -  -0.140 -0.028 -  0.127 -0.041 0.032 

i6 0.034 -  0.107 0.207 -  0.061 0.114 0.095 

i7 -0.156 -  0.053 0.162 -  0.132 0.016 0.258 

i8 -0.001 -  0.089 0.101 -  0.123 0.281 -0.023 
 
Focal  
Class 

 
i1 0.007 0.177 -  0.073 0.038 -  -0.140 0.216 

i2 -0.071 -0.045 -  0.048 0.000 -  0.016 0.124 

i3 -0.159 0.149 -  0.340 -0.077 -  0.062 -0.068 

i4 -0.026 -0.051 -  -0.033 0.269 -  -0.015 0.005 

i5 -0.063 -  -0.020 0.097 -  0.020 0.105 -0.096 

i6 0.031 -  -0.046 -0.031 -  -0.004 0.009 0.213 

i7 -0.113 -  0.084 0.035 -  0.053 0.173 0.189 

i8 0.079 -  0.072 -0.047 -  -0.029 -0.118 -0.027 

Note. The boldfaced font indicates that the standard error estimate was substantially biased (Hoogland & Boomsma, 1998); − = not 
estimated. 
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Table 17. Relative Standard Error Bias of Estimated Item Difficulty Parameters by Correctly Estimating Models under Unequal 

Class Probability Conditions 

 

  
Small DIF Effect Large DIF effect Combination of DIF effect sizes 

  Item 
LDIF & 

ODIF 
LDIF ODIF 

LDIF & 
ODIF 

LDIF ODIF 
Large LDIF& 

Small ODIF 
Small ODIF & 

Large LDIF 
Reference  
Class 
  
  
  
  
  

  

i1 -0.035 0.019 -  0.192 0.054 -  0.060 0.168 

i2 -0.144 0.034 -  0.058 0.032 -  -0.065 -0.075 

i3 0.075 -0.010 -  -0.094 -0.080 -  -0.007 -0.044 

i4 0.153 0.100 -  0.395 0.257 -  0.261 0.219 

i5 0.092 -  0.059 -0.039 -  0.057 -0.100 -0.078 

i6 -0.058 -  -0.015 0.046 -  0.040 -0.113 0.112 

i7 0.087 -  0.204 -0.054 -  0.018 -0.091 -0.093 

i8 -0.109 -  0.019 -0.013 -  -0.050 -0.089 -0.121 

 
Focal 
Class 

 
i1 

 
-0.040 

 
-0.040 

-  
 

0.030 
 

-0.085 
-  

 

0.303 

 

0.335 

i2 0.043 0.237 -  0.247 0.103 -  -0.029 0.111 

i3 0.121 0.038 -  0.122 0.029 -  0.060 0.124 

i4 -0.024 -0.059 -  0.231 0.019 -  0.250 -0.148 

i5 0.138 -  0.012 0.144 -  0.208 -0.115 0.117 

i6 -0.105 -  -0.001 0.031 -  0.111 -0.027 0.017 

i7 0.110 -  0.249 0.030 -  0.191 0.065 -0.058 

i8 -0.172 -  0.067 -0.090 -  -0.193 -0.094 -0.020 

Note. The boldfaced font indicates that the standard error estimate was substantially biased (Hoogland & Boomsma, 1998); − = not 
estimated. 
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Recovery of DIF Effect  

The LDIF effect was determined by obtaining the difference between difficulty estimates 

across two latent classes of individuals for an item, and the ODIF effect was calculated by 

obtaining the difference between path parameters from observed groups to an items across latent 

classes. Thus, the relative parameter bias in DIF effect estimates was calculated by subtracting 

the true DIF effect value between the reference and focal classes from mean estimates of the DIF 

effect between the reference and focal classes. Substantial parameter estimation bias was 

identified for any estimate when the magnitude of the parameter bias was greater than .05 

(Hoogland & Boomsma, 1998). The relative parameter bias in DIF effect estimates under the 

correctly specified models are presented in Tables 18 through 19.  

Equal class probability. When the DIF effect size was small, the relative parameter bias 

in DIF effect estimates was substantial under the correct model estimating both types of DIF 

effects, ranging from −.170 to .163 (see Table 18). Even though the relative parameter bias in 

DIF effect estimates was not excessive for the correct model estimating LDIF effects, substantial 

positive relative parameter bias was found, ranging from .002 to .071. With the correct model 

estimating ODIF effects, the relative parameter bias in the DIF effect estimate ranged from −.143 

to .171. However, the magnitude of the DIF effect size generated had a large impact on the bias 

in DIF effect estimates (see Table 18). The relative parameter bias in DIF effect estimates was 

acceptable across correctly specified models as the DIF effect size increased. That is, the relative 

parameter bias in DIF effect estimates ranged from −.049 to .050 across correctly specified 

models. When data were generated to fit a model estimating different magnitudes of DIF effect 

sizes, the relative parameter bias in small DIF effect estimates was observed. That is, the relative 

parameter bias in ODIF effect estimates (small DIF effect size) was found for the correct model 
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estimating large LDIF and small ODIF effects (ranging from −.034 to .131). Likewise, the 

relative parameter bias in LDIF effect estimates (small DIF effect size) was found for the correct 

model estimating small LDIF and large ODIF effects (ranging from −.013 to .121).  

Unequal class probability. As shown in Table 19, a similar pattern was observed to 

those found under equal class probability conditions. When the DIF effect size was small, the 

relative parameter bias in DIF effect estimates ranged from −.124 to .072 for the correct model 

estimating both types of DIF effects. When data were generated to fit a model estimating LDIF 

effects, the positive relative parameter bias was found, ranging from −.030 to .084. In contrast, 

for the correct model estimating ODIF effects, the negative relative parameter bias in the DIF 

effect estimates occurred, ranging from −.140 to .000. However, under conditions with a large 

DIF effect size with unequal class probability, as shown in Table 19, acceptable relative 

parameter bias was observed across correctly specified models (ranging from −.044 to .042).  

When data were generated to fit a model estimating large LDIF and small ODIF effects, 

the relative parameter bias in DIF effect estimates was observed. That is, substantial relative 

parameter bias in the small DIF effect estimate for item 8 was observed (RPB=−.166) and that in 

the large DIF effect estimate for item 4 was .051. However, acceptable relative parameter bias 

was observed for the correct model estimating small LDIF and large ODIF effects (ranging from 

−.046 to .040).



123 

 

Table 18. Relative Parameter Bias of DIF Effects by Generating and Estimating Models under the Conditions of Equal Class 

Probability  

 

  Small DIF effect Large DIF effect Combination of DIF effect sizes 

Item LDIF&ODIF LDIF ODIF LDIF & ODIF LDIF ODIF 
Large LDIF& 

Small ODIF 
Small LDIF & 

Large ODIF 

i1 0.117 0.064 -  0.042 0.032 -  0.030 0.121 

i2 -0.032 0.002 -  -0.010 0.030 -  -0.019 -0.008 

i3 0.079 0.071 -  -0.007 0.008 -  0.010 0.104 

i4 0.030 0.011 -  0.008 -0.033 -  0.021 -0.013 

i5 0.031 -  -0.020 0.025 -  0.010 0.054 -0.005 

i6 -0.162 -  -0.143 -0.014 -  -0.049 0.042 -0.012 

i7 0.163 -  0.171 0.050 -  0.015 0.131 0.037 

i8 -0.170 -  0.023 -0.037 -  0.033 -0.034 0.031 

Note. The boldfaced font indicates that the parameter estimate was substantially biased (Hoogland & Boomsma, 1998); − = not estimated. 
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Table 19. Relative Bias of DIF Effects by Generating and Estimating Models under the Condition of Unequal Class Probability  

 

Small DIF effect Large DIF effect Combination of DIF effect sizes 

Item LDIF &ODIF LDIF ODIF LDIF & ODIF LDIF ODIF 
Large LDIF& 

Small ODIF 
Small LDIF & 

Large ODIF 

i1 0.046 0.022 -  0.042 0.037 -  0.043 0.028 

i2 0.028 0.084 -  0.028 0.037 -  0.032 0.040 

i3 -0.060 -0.030 -  -0.040 -0.014 -  -0.002 -0.043 

i4 0.072 0.078 -  -0.007 0.008 -  0.051 0.025 

i5 -0.022 -  0.000 -0.003 -  0.035 0.039 0.008 

i6 0.021 -  -0.045 0.001 -  -0.017 0.039 -0.046 

i7 -0.124 -  -0.057 -0.017 -  -0.044 0.019 0.001 

i8 -0.084 -  -0.140 -0.007 -  -0.027 -0.166 -0.002 

Note. The boldfaced font indicates that the parameter estimate was substantially biased (Hoogland & Boomsma, 1998); − = not estimated. 
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Chapter 5: Discussion 

This chapter contains three sections. The first section summarizes results and 

discusses findings. The second section addresses limitations of the present study with 

suggestions for future research. The last section presents conclusions. 

Summary of the Results and Discussions 

The present study was designed to assess the performance of fit indices, entropy 

values, and the significance of LDIF and ODIF effects by comparing correctly specified 

models with incorrectly specified models. Additionally, this study was intended to 

investigate parameter and standard error bias in difficulty parameter estimates and 

parameter bias in DIF effect estimates for LDIF and ODIF effects. Discussion of the 

results will be followed by a summary of the performance of the AIC, BIC, aBIC, and 

CAIC indices, DIF detection rates (power and Type I error), entropy values, bias in item 

difficulty parameters, standard error bias in item difficulty parameters, and bias in DIF 

effect size.  

Fit indices. The performance of fit indices was evaluated to identify the 

simulation conditions and model specifications under which the fit indices performed 

well. In addition, an evaluation was conducted to assess which fit index more often 

supported the better fit of the correct model. When the fit indices were compared across 

the simulation conditions, their performance varied under conditions with the smaller DIF 

effect size. However, in the conditions with the larger DIF effect size, all of the fit indices 

performed well regardless of class probability. All of the fit indices performed relatively 

poorly under the unequal class probability conditions, except when the DIF effect size 
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was large. When data were generated to fit a model having a combination of different 

magnitudes of DIF effect sizes, the fit indices performed better for the model with small 

LDIF and large ODIF effects than for the model with large LDIF and small ODIF effects, 

regardless of class probability. That is, LDIF effects had more influence on the 

performance of fit indices than did ODIF effects, and mis-specifying small ODIF effects 

by excluding them from the model did not make any differences in fit index values 

between the correctly and incorrectly specified models. However, mis-specifying even 

small LDIF effects by excluding them from the model had a greater impact on the 

performance of fit indices, so that the fit indices frequently supported better fit of the 

correct model in comparison to incorrectly specified models (that is, for under-specified 

models). This is because the LDIF effects that were generated in this study influenced a 

larger proportion of individuals as compared to the sample size of those affected by ODIF 

effects.  

The AIC index was found to perform better than the other fit indices, followed by 

the aBIC index for the model with both types of DIF effects as well as for the model with 

ODIF effects under small DIF effect size and equal class probability conditions. In 

addition, in the unequal class probability and small DIF effect size conditions, the AIC 

index supported the correct model a relatively high proportion of the time (82% and 88%) 

under the model with both types of DIF effects and the model with LDIF effects, 

respectively. In addition, the AIC index supported the correct model with a slightly lower 

rate (78%) under the model with ODIF effects. However, in the same set of conditions, 

other fit indices never resulted in correct selection of the model with both types of DIF 
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effects nor the model estimating ODIF. As the DIF effect size increased, the BIC, aBIC, 

and CAIC indices performed as well as if not better than the AIC index. For example, 

under the model with ODIF effects, the AIC index supported the correct model for 96% 

of the replications, while other fit indices led to selection of the correct model for 100% 

of the replications. In addition, under the model with large LDIF and small ODIF effects, 

the AIC index performed better than other fit indices, regardless of class probability. 

However, under the model with small LDIF and large ODIF effects, the performance of 

fit indices differed between the conditions of equal and unequal class probability. More 

specifically, under the equal class probability conditions, all fit indices performed 

perfectly in selecting the correct model, except for the CAIC index. However, only the 

AIC and aBIC indices performed perfectly in selecting the correct model under the 

unequal class probability conditions.  

In sum, it was found in the present study that the AIC index generally performed 

better than (or as well as) other fit indices, followed by the aBIC index, under smaller 

DIF effect size conditions. These results are not consistent with previous studies (for 

example, Nylund et al., 2007; Li et al., 2009), in which the AIC index performed poorly 

compared to other fit indices. In addition, there is little consensus in previous mixture 

modeling research about the performance of the BIC in terms of correct mixture model 

identification. Some previous research has found that the BIC index, in general, 

performed better than other fit indices (Li et al, 2009; Nylund et al., 2007) while other 

studies have found that the BIC performed poorly (Jackman, 2012; Tofighi & Enders, 

2008). The performance of the BIC index under the small DIF effect condition in the 



128 

 

present study matched the results found in the latter set of studies in which the BIC was 

found to perform poorly relative to other information criteria.   

There are two possible reasons why the performance of fit indices in the present 

study differed from what was found in previous studies. Previous, related studies 

examined the performance of fit indices under mixture models with only LDIF effects. 

The current study also examined conditions with ODIF effects. When only LDIF effects 

were included in the present study, results matched those found in previous studies in that 

the AIC index performed more poorly than did the other fit indices.  

The second reason is that previous studies investigated which fit index performed 

well in supporting better fit of a model in terms of the optimal number of latent classes 

(Allua, 2007; Leite & Cooper, 2010; Lubke & Neale, 2005; McLachlan & Peel, 2000, 

Nylund et al., 2007; Tofighi & Enders, 2008). However, the present study investigated 

which fit index performed well in supporting better fit of a correctly versus incorrectly 

specified models with all models assuming the same and correct number of latent classes. 

One previous, related study did find that the AIC index performed at least as well as if 

not better than the BIC and CAIC indices (followed by the aBIC index) when used to 

compare model fit for mixture models differently parameterized although using the same 

number of latent classes (Lee & Beretvas, 2011). In that study, the performance of fit 

indices was compared for the cases when covariate effects were correctly versus 

incorrectly specified.  

Inspection of the equations used to calculate fit indices (see Equations 13 through 

16) reveals that under the small DIF effect conditions, log likelihood values were not 
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much different between correctly and incorrectly specified models, and so the distinctions 

in fit index values is largely a function of the latter terms in the equations, which entailed 

a function of total sample size and the number of free parameters. Therefore, the BIC and 

CAIC indices which are more influenced by the latter terms than the AIC and aBIC 

indices resulted in supporting fit of a model with fewer free parameters under the small 

DIF effect size conditions. However, as the true DIF effect size value increased, the 

difference in log likelihood values between correctly and incorrectly specified models 

also increased, and so the latter term in the equations had little impact on the performance 

of all fit indices evaluated, with a few exceptions. As a result, all fit indices evaluated for 

the present study performed relatively well in supporting the correct model against the 

incorrectly specified models.  

Power. The present study also evaluated the power for DIF detection. The power 

was substantially different between LDIF and ODIF effects. Whereas the power for LDIF 

effects ranged from 66.50% to 72.50%, the power for ODIF detection ranged from 

27.50% to 31% under small DIF effect size and equal class probability conditions. That is, 

using a minimum cutoff of 80% as representing acceptable power, the power for both 

LDIF and ODIF detection were not acceptable under the equal class probability and small 

DIF effect size conditions examined here. In particular, the detection rate for ODIF was 

considerably lower, because ODIF effects were under-estimated, compared to the 

estimation of LDIF effects. In addition, the sample size for each type of DIF was 

different. ODIF effects were exhibited based on observed group membership (for 

example, male vs. female) within latent classes, so the number of individuals with ODIF 
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effects was much smaller than those with LDIF effects. This would clearly lead to 

differing power levels for LDIF versus ODIF.  

When class probabilities were unequal, the power for LDIF detection slightly 

decreased to about 60%. The power for ODIF detection also decreased to about 20%. 

That is, power for DIF detection was slightly influenced by class probability, because the 

number of individuals in focal classes was generated to be smaller (in this study) and 

standard errors of item difficulty estimates were larger under the unequal class 

probability conditions than under the equal class probability conditions. However, 

consistent with the results of previous studies (Jackman, 2012; Lu & Jiao, 2009; Maij-de-

Meij et al., 2012; Samuelsen, 2005), in general, the power for both LDIF and ODIF 

detection were acceptable (90.50% to 100%) when the DIF effect size was large, 

regardless of class probability.  

When data were generated to fit a model having large LDIF and small ODIF 

effects under the equal class probability conditions, the power for LDIF detection was 

100% regardless of class probabilities, and the power for ODIF detection was 

consistently lower. The lower power for ODIF detection is not unexpected. As noted, the 

size of the sample for which ODIF was generated was smaller than that for the sample for 

which LDIF was generated. And obviously, smaller sample sizes will lead to less power. 

For the same datasets (for which large LDIF and small ODIF effects were generated) the 

power to detect ODIF was 47% for the correct model (modeling both LDIF and ODIF) 

and 31.50% for the under-specified model with only ODIF effects. This difference likely 

results from the omission of true, large LDIF in the latter under-specified model 
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(estimating ODIF when true LDIF and ODIF exist) resulting in more error and thus, 

likely larger variances for item difficulty parameter estimates. Under the unequal class 

probability conditions, the rates for ODIF detection marginally decreased, but the rates 

for LDIF detection were still high (100%) for the model with large LDIF and small ODIF 

effects.  

On the other hand, for data generated to fit a model with small LDIF and large 

ODIF under the equal class probability conditions, the power for LDIF detection as well 

as for ODIF detection were acceptable (86.50% and 96.50%) under the correctly 

specified model. However, the power for LDIF detection decreased to 75.70% under 

unequal class probability conditions. The power for ODIF detection also decreased to 

90.50%, although it was still acceptable. This pattern of differences is expected again due 

to the sample sizes involved in the unbalanced latent class sample size (unequal class 

probabilities) conditions. Thus, the results of the present study are consistent with results 

of previous studies, in which DIF was more accurately identified when the DIF effect 

size was large and when there were more DIF items. In addition, the present study 

indicates that LDIF effects were more accurately identified when balanced sample sizes 

across latent classes were used.  

Type I error rates. The present study evaluated the Type I error rates of over-

specified ODIF effects and the Type I error rates of mis-specified ODIF effects when 

data were generated to fit a model having LDIF effects. The Type I error rates were also 

evaluated for over-specified LDIF effects (that is, both types of DIF effects were 

estimated for ODIF-generated data) and for (differently specified) LDIF effects when 
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data were generated to fit a model having ODIF. Generally, consistent with Jackman’s 

(2012) findings of inflated Type I error rates across all simulation conditions, the present 

study also found inflated Type I error rates across simulation conditions. Jackman found 

that the Type I error rates for (truly invariant) item difficulty were 10% under large DIF 

effect size conditions (1.5) with large sample size (N = 1,000). Likewise, in the present 

study the over-specified ODIF or LDIF effects yielded inflated error rates ranging from 

5.50% to 10.50% across simulation conditions. Similar to the findings of Maij-de-Meij et 

al. (2011) that Type I error rates increased when class probabilities became unequal, the 

present study found that the Type I error rates of over-specified ODIF effects were larger 

under the unequal class probability conditions than under the equal class probability 

conditions. On the other hand, the DIF effect size influenced the Type I error rates of 

over-specified LDIF effects. That is, the Type I error rates of over-specified LDIF effects 

increased as the DIF effect size increased under the equal class probability conditions, but 

this was not the case under the unequal class probability conditions. For example, 

approximately 8% of invariant items were detected as displaying LDIF under the 

condition of equal class probability with the small DIF effect size as well as under the 

conditions of unequal class probabilities. Under the condition of equal class probability 

with the large DIF effect size, 11% of invariant items were detected as displaying LDIF. 

That is, the magnitude of bias in item difficulties across latent classes increased as the 

DIF effect size increased for the over-specified model estimating both types of DIF 

effects when data were generated to fit a model estimating ODIF under the equal class 

probability condition.  
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In addition to addressing over-specified DIF effects, the present study evaluated 

the Type I error rates of the mis-specified DIF effects. When data were generated to fit a 

model with LDIF but ODIF was estimated, then the Type I error rates for the mis-

specified ODIF effects were 7% and 11% for the small and large DIF effect size 

conditions, respectively. In contrast, when class probabilities were unequal, the Type I 

error rates of the mis-specified ODIF effects were 8.50% and 6% for the small and large 

DIF effect size conditions, respectively. Thus, the pattern of the effects for the true LDIF 

effect size on ODIF Type I error rates is reversed under unequal versus equal sample size 

conditions. Given the current study did not examine the parameter and standard error bias 

for incorrectly specified models, it is unclear exactly why this reversal occurred. 

However, future research should examine this interaction effect more closely to help 

understand its source. 

Additionally, detection rates for differently specified LDIF effects were examined 

when data were generated to fit a model having ODIF but modeled LDIF. The detection 

rate of differently specified LDIF effects was 22.50% under small DIF effect size 

conditions. However, as the true DIF effect size increased, 99.75% of ODIF effects were 

captured by specifying LDIF effects. When class probabilities were unequal, detection 

rates of differently specified LDIF effects were similar to those found for equal class 

probabilities with values of 23% and 98% for the small and large DIF effect size 

conditions, respectively. Because no previous study has investigated how well an LDIF 

model captures ODIF effects, supporting or opposing evidence for the present findings 

was lacking. Nevertheless, results of the present study suggest that, not surprisingly, the 
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magnitude of the true DIF effect size had a substantial impact on the detection of DIF. In 

particular, when the true DIF effect is sufficiently large, ODIF effects can be fully 

captured by specifying LDIF effects.  

Entropy. Lubke and Muthén (2007) found that entropy values were low (about 

0.43) when a single factor was estimated with a mean difference of 1.5 across latent 

classes. The present study also found that average entropy values, in general, were low 

under the correctly specified models, ranging from .280 to .405 in small DIF effect size 

conditions, from .326 to .643 under large DIF effect size conditions, and from .384 

to .533 under conditions with different magnitudes of DIF effect sizes. Consistent with 

the finding that average entropy values increase when class separation increases (Lubke 

& Muthén, 2007), the present study also found that the average entropy values were 

larger under large DIF effect size conditions than under small DIF effect size conditions. 

In addition, under conditions with a combination of different magnitudes of DIF effect 

sizes, the average entropy values were larger than those under the model with both small 

DIF effect sizes, but the rates were smaller than those under the model with both large 

DIF effect sizes, regardless of simulation conditions and model specifications. The 

average entropy values for the model with large LDIF and small ODIF effects were larger 

than those for the model with small LDIF and large ODIF effects. As mentioned earlier, 

fit indices more frequently supported better fit of the correctly versus incorrectly 

specified models under the model with small LDIF and large ODIF effects than under the 

model with large LDIF and small ODIF effects. In other words, the results of entropy 

values were not consistent with the performance of fit indices when comparing correct 
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model identification for models with large LDIF and small ODIF versus the model with 

small LDIF and large ODIF. Future research should explore the relationships between 

entropy and the performance of fit indices.  

The average entropy values under the correct model estimating both types of DIF 

effects were larger than those under the correct model estimating either LDIF or ODIF 

effects. In addition, the average entropy values under the correct model estimating LDIF 

effects were larger than those under the model correctly estimating ODIF effects across 

simulation conditions. This is likely because sample sizes differed for models in which 

LDIF versus ODIF effects were generated. For example, when a model was correctly 

specified under the equal class probability condition, a large number of individuals 

(1,000) differed by LDIF effects while a relatively smaller number of individuals (500) 

differed by ODIF effects within each latent class.  

When correctly specified and incorrectly specified models were compared, the 

average entropy values were larger under the correct model estimating both types of DIF 

effects than those under the incorrectly specified models (under-specified LDIF or ODIF 

models). The average entropy was related to class separation, and entropy increased as 

class separation increased matching previous research findings about entropy (for 

example, Lubke & Muthén, 2007). More DIF items increases class separation, so entropy 

values were larger for the correct model with both types of DIF effects compared to the 

incorrectly specified models. However, the average entropy values under the correct 

model estimating LDIF effects or under the correct model estimating ODIF effects were 

very similar to those under the incorrectly specified models.  
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Bias and standard error bias. The present study obtained the relative parameter 

bias and standard error bias for the sets of four or eight items for each latent class under 

each condition for correctly specified models. Under conditions when the DIF effect size 

was small with equal class probability, the relative bias in difficulty estimates that had 

LDIF effects was substantial under the correct model estimating both types of DIF effects 

and the correct model estimating LDIF effects. Consistent with the findings of DeMars 

and Lau (2011) who found that the grand mean bias averaged across difficulty estimates 

was acceptable, the present study also found that the grand mean bias averaged across 

item difficulty estimates was acceptable for the correct model estimating both types of 

DIF and for the correct model estimating LDIF effects. However, values of relative bias 

in difficulty estimates that had ODIF effects were excessive. As the DIF effect size value 

increased, the relative bias in difficulty estimates decreased across the correctly specified 

models. Consistently, when data were generated to fit a model estimating a combination 

of different magnitudes of effect sizes under the equal class probability conditions, the 

majority of the relative bias in difficulty estimates was acceptable for the correct model 

with large LDIF and small ODIF, but the relative bias was substantial for the correct 

model with small LDIF and large ODIF effects under the equal class probability 

conditions. On the other hand, under the unequal class probability conditions, the relative 

bias in item difficulties for the focal class was larger for the model with large LDIF and 

small ODIF than for the model with small LDIF and large ODIF. To help understand the 

reason for this finding, future research could capture correct latent class membership 

rates to assess whether the source of this greater bias resulted from higher 
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misclassification rates when data were generated to fit a model with different 

combinations of DIF effect sizes.  

The standard error bias in difficulty estimates was substantial across correctly 

specified models and simulation conditions. The degree of standard error bias in 

difficulty estimates was larger for the focal class under the unequal class probability 

conditions than under the equal class probability conditions, because a relatively small 

number of individuals belonged to the focal class under the unequal class probability 

conditions. Most previous studies (for example, DeMars & Lau, 2011; Lu & Jiao, 2009; 

Samuelsen, 2005) investigating LDIF effects have examined the recovery of DIF effects 

through the assessment of differences in items’ difficulties and have not focused on the 

recovery of item difficulties for each latent class. The recovery of item difficulty values 

for each latent class is important to explore why the recovery of DIF effects is poor. Thus, 

future research should explore not only the recovery of DIF effect sizes but also the 

recovery of item difficulties for each latent class. 

Bias in DIF effect estimation. When the true DIF effect was small, substantial 

relative bias in estimated DIF effects was observed across correctly specified models. 

Even though positive and negative bias in ODIF effect estimates was observed, only 

positive relative bias was found in LDIF effect estimates. For larger true DIF effect size 

conditions, the relative bias in DIF effect estimates was acceptable across correctly 

specified models. Likewise, when data were generated to fit a model estimating a 

combination of different magnitudes of DIF effects, unacceptable bias was found under 

small DIF effect size conditions, while acceptable bias was found under large DIF effect 
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size conditions. In addition, as expected, when DIF effect sizes were small, the 

magnitude of relative bias in ODIF effects was larger than the relative bias in LDIF 

effects, regardless of class probabilities. The results of the recovery of DIF effects were 

consistent with the results of the recovery of item difficulty estimates, entropy, and power 

for DIF detection. As mentioned earlier, no methodological studies have investigated 

both LDIF and ODIF effects under FMMs with binary outcomes, so future research is 

necessary to examine how large a sample size might be necessary to achieve reasonable 

recovery of ODIF effects. 

Implications and Recommendations 

If the sources of population heterogeneity are unobserved or unmeasured (i.e., 

latent), then conventional DIF analysis procedures cannot be used to identify the latent 

sources of DIF. In such cases, mixture modeling, which introduces latent categorical 

variables (that is, latent classes), as sources of heterogeneity can be used. Numerous 

applied and simulation studies have investigated the performance of mixture models with 

interval-scaled outcomes in terms of fit indices, latent class assignment, and the recovery 

of parameter estimates.  

However, mixture models with binary outcomes (that is, mixture IRT models) for 

detecting DIF have not been thoroughly explored. Several studies have found that typical 

DIF detection methods—which identify differences among manifest groups formed by 

such characteristics as age, gender and ethnicity—have not performed well in fully 

explaining potential DIF (Cohen & Bolt, 2005; De Ayala et al., 2002). That is, 

membership in a manifest group defined by characteristics such as gender and ethnicity 
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does not always explain all the heterogeneity identified in item scores even though such 

characteristics may be somewhat related to actual cause(s) of DIF.  

Thus, to replace traditional DIF detection methods, factor mixture models have 

been suggested as a means to identify groups on the basis of unobserved characteristics 

(latent class), such as personality traits, unmeasured socioeconomic status, or educational 

background. Under such models it is assumed that latent class membership accounts for 

DIF. However, studies based on such models have overlooked that sources of DIF might 

be more complex. That is, one or some actual causes of DIF might be observed, but one 

or some other sources of DIF might be unobserved (latent class membership). As 

examined here, an observed source of DIF may exist distinguishing observed groups in 

one of several latent classes but not in other classes.  

The present study demonstrated how both LDIF and ODIF effects were recovered 

under various conditions of class probability and DIF effect sizes by comparing correctly 

specified models with incorrectly specified models. To address the absence of 

methodological research investigating both types of DIF effects under correctly specified 

models as well as under incorrectly specified models, the present study investigated the 

implications of alternatives to typical manifest DIF methods and between-latent class DIF 

methods.  

It was found that the performance of fit indices varied as a function of DIF effect 

size and class probability. The AIC index was the best indicator when comparing models 

with the same number of latent classes. As DIF effect size increased, differences in the 

performance of fit indices were negligible. Thus, applied researchers should consider the 
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AIC and aBIC indices first if the DIF effect size is small, when they are comparing 

models within the same number of latent classes. As Lubke and Muthén (2007) indicated, 

results of the present study indicated that entropy increased as the magnitude of covariate 

effects (DIF effect) increased. Likewise, the performance of fit indices, the recovery of 

item difficulty estimates, and the recovery of DIF effect estimates improved for larger 

true DIF effect size conditions. When comparison was performed of correct model 

identification between models with large LDIF and small ODIF effects and models with 

small LDIF and large ODIF effects, fit indices performed better for the models with small 

LDIF and large ODIF effects, while other measures (that is, entropy and the recovery of 

item difficulty estimates) were better for the models with large LDIF and small ODIF 

effects. Thus, when applied researchers assume that there exists both types of DIF effects 

with different magnitudes of DIF effect sizes in data, they should consider not only the 

performance of fit indices, but also entropy values and difficulty estimates across and 

within-latent classes.  

While Type I errors were prevalent across all model specifications and simulation 

conditions evaluated, the magnitude of Type I error rates varied across model 

specifications and simulation conditions. This means that under the condition of FMM 

with binary outcomes, it frequently happens that an item will be incorrectly identified as 

displaying DIF. Thus, applied researchers should be careful to note when examining 

items for DIF effect that approximately 6% to 11% of invariant items might be 

incorrectly flagged as DIF. In addition, given how well estimation of LDIF models 

recovered true ODIF, applied researchers might start their exploration of potential item 
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bias by first estimating the more general LDIF model. If evidence is found supporting 

potential LDIF, then applied researchers should consider estimating models that test 

potential observed sources of the DIF that was found.  

Limitations and Suggestions for Future Research 

The present study evaluated both LDIF and ODIF effects together, which has not 

been investigated in previous methodological research. However, the present study 

considered only two DIF effect sizes (small/large) and two class probabilities 

(equal/unequal). In addition, the present study only examined uniform LDIF and ODIF 

effects and did not investigate recovery of non-uniform DIF. Moreover, the probabilities 

of dichotomous observed group membership (for example, female and male) were the 

same, which may not necessarily reflect realistic applied conditions. Future research 

should incorporate varying levels of DIF effect size, latent class probability, and observed 

group membership probability. In addition, future research should extend the model and 

test for nonuniform LDIF and ODIF by allowing the item discrimination (factor loading) 

parameters to vary across both or either of latent classes and observed grouping variables.   

At the time of the present study, insufficient research was found on the 

performance of fit indices in terms of their use in selecting the correctly specified models 

amongst a set of DIF assuming the same number of (two) latent classes. Therefore, a 

future study might compare various information criteria under various simulation 

conditions by manipulating combinations of LDIF and ODIF effects. In addition, the 

present study only assessed information criteria and did not examine the performance of 

likelihood-based tests, such as aLRT or BLRT. Previous studies have found that aLRT or 
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BLRT performed better compared to information criteria in terms of correctly identifying 

a correctly specified model (for example, Li and Hser, 2010; Nylund et al., 2007). Thus, a 

future study might investigate how well likelihood-based tests perform in correctly 

identifying the correct model under various simulation conditions. A future study might 

investigate how incorrectly specified covariate effects (DIF) impact the selection of 

numbers of latent classes based on the performance of aLRT and BLRT.  

The present study considered only the case in which the DIF effect size was the 

same for every item estimated. That is, the DIF effect size was fixed at .5 for the small 

effect and at 1.5 for the large effect across all items estimated. Maij-de Meij et al. (2012) 

considered various DIF effect sizes by manipulating various differences between focal 

and reference item difficulty parameters. Thus, a future study might manipulate various 

DIF effect sizes across item difficulty parameters.  

Conclusions 

The present study investigated class-specific observed DIF (ODIF) as well as 

between-latent class DIF (LDIF) under various model specifications and simulation 

conditions. In addition, the present study compared the performance of correctly 

specified models with incorrectly specified models in terms of fit indices, entropy values, 

and the power for identifying DIF. Furthermore, the recovery of item difficulty 

parameters and of DIF effect size was investigated under the correctly specified models.  

Generally, findings of the present study are consistent with those of previous 

studies that a large number of DIF items, large DIF effect size, and equally distributed 

proportions of each latent class improve detection rates of DIF effects, recovery of DIF 
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effects, and class assignment rates. Further, the present study indicates that the AIC index 

is the most accurate among the set of indices investigated under the small DIF effect 

condition. However, as DIF effect size increased, the AIC, BIC, aBIC, and CAIC indices 

performed well in selecting the correct model. In addition, previous studies have found 

that FMM with binary outcomes performed more poorly in recovering item difficulty 

parameters under conditions with unequal class probabilities, because the item difficulties 

for the focal class were poorly recovered due to potential misclassification of individuals 

who belonged to the focal class and to the presence of a smaller number of individuals in 

the focal class. However, as DIF effect size increased, item difficulties and DIF effects 

were recovered well, resulting in high detection rates of DIF effects. However, a 

relatively small number of simulation conditions were assessed here for LDIF and ODIF 

effects, and limitations exist in the present study. Thus, more research should be 

performed to assess recovery of LDIF and ODIF effects under more extensive simulation 

conditions.  

Practical Importance 

When applied researchers estimate DIF using a conventional DIF detection 

method such as the M-H test, they have to address several issues. Typically, gender and 

ethnicity variables have been widely used as sources of potential DIF; however, the 

homogeneity within female and within male examinees is questionable (see Cohen & 

Bolt, 2005). And, for example, merging Filipinos, Koreans, Indonesians, Taiwanese, and 

Asian Indians into an Asian American group is problematic (DeAyala et al., 2002), 

because these peoples are culturally distinct. In addition, Skaggs and Lissitz (1992, pg. 
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239) commented that “Black is not a cognitively meaningful dimension and not even a 

well-defined one for that matter.”  

Thus, even though an item does not exhibit DIF with respect to gender or 

ethnicity, that does not mean that there is no DIF within the item set. Rather, cultural and 

curricular differences across countries (Sadeghi, 2009) or differences among individuals’ 

response styles (Bolt & Johnson, 2009) might have a significant impact on the 

equivalence of test items. DeAyala et al. commented, “The selection of manifest 

grouping variables is based on political not psychometric considerations.” (2002, p. 274)  

Beyond the difficulties described with using observed grouping variables as 

potential sources of DIF, use of a latent class approach has practical advantages even 

though it might not present an easy approach for DIF detection. It might be the case that 

the source of DIF is not observable. Detecting individual differences in human behavior 

or identifying potentially meaningful dimensions (unobserved sources) instead of using 

convenient external, directly observable characteristics can support discovery of  latent 

constructs not originally hypothesized to underlie test and item scores. So, even though 

DIF based on observed characteristics like gender or ethnicity may not be found using a 

conventional DIF detection test (for example, M-H test), the item might be flagged for 

DIF under a mixture modeling approach.  

For example, similar to findings in the present study when simulating ODIF 

effects, findings from applied research may indicate that DIF occurred between males 

and females within one latent class but not within other latent classes in the data. In such 
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cases, identifying latent classes can be an important source of insight for understanding 

the nature of observed characteristics (here, gender) (Tay et al., 201).  

Eid and Diener (2001) found that the majority of individuals across countries 

belonged to one latent class, but only a smaller number of individuals from one specific 

country belonged to another latent class. In such a case, the focus is not only on whether 

DIF occurs but also on for whom does DIF occur. This latter question leads to another 

practical concern that is commonly associated with detection of DIF. Detection of DIF 

does not necessarily imply that an item score is biased. Inferences about item or test score 

bias are value judgments that are made in a grander context of construct validity. Test 

developers must call upon relevant experts in the construct being measured (e.g., 

mathematics or reading, etc.) who can make sense of whether the source of the DIF is a 

necessary additional dimension that is an inevitable – crucial even - part of the fuller 

construct of interest or whether the dimension interferes with the validity of what is being 

measured. For example, use of a FMM with binary outcomes might identify that there are 

two latent classes of respondents to a set of mathematics achievement items. Upon further 

analysis of the members of the two classes, the test developer might realize that reading 

ability distinguishes the two classes. For example, students with low reading ability 

constituted the first class while students with better reading ability might be most likely 

to be members of the other class. It would be up to the test developers and the experts on 

math achievement to decide whether reading ability is an essential component of 

mathematics achievement or whether the intention of the test score was to distinguish 

examinees solely on their pure mathematics achievement. 
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Use of FMM with binary outcome variables provides a more flexible model to 

identify potential subpopulations of respondents and ultimately measurement non-

invariance. Use of conventional observed DIF detection procedures can be used given the 

researcher (or test developer) has a priori hypotheses about sources of DIF. Assessment 

of LDIF might lead to identification of more items with DIF (than if using ODIF 

analyses) and of items for which the source of the DIF cannot be explained using 

observed variables. However, even when DIF is identified for observed groups, it is not 

always the case that a reasonable explanation for the DIF can be found (e.g., expected 

cultural differences). Regardless, it behooves test developers and researchers to try and 

identify whether there might be DIF and hope that a reasonable source of the DIF can be 

found that will then allow the user to identify whether the DIF reflects some kind of bias 

or not. And results of this dissertation seem to indicate that estimation of LDIF and of 

ODIF within latent classes provides a more sensitive method for finding DIF. Guidelines 

for the interpretation of DIF as bias or not is beyond the scope of this dissertation 

although it is a crucial issue that must be considered to make sense of DIF results.  
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