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Abstract

Background: Knowing the number of undetected cases of COVID-19 is important for a better understanding of the

spread of the disease. This study analyses the temporal dynamic of detected vs. undetected cases to provide guidance

for the interpretation of prevalence studies performed with PCR or antibody tests to estimate the detection rate.

Methods: We used an agent-based model to evaluate assumptions on the detection probability ranging from 0.1 to

0.9. For each general detection probability, we derived age-dependent detection probabilities and calibrated the

model to reproduce the epidemic wave of COVID-19 in Austria from March 2020 to June 2020. We categorized

infected individuals into presymptomatic, symptomatic unconfirmed, confirmed and never detected to observe the

simulated dynamic of the detected and undetected cases.

Results: The calculation of the age-dependent detection probability ruled values lower than 0.4 as most likely.

Furthermore, the proportion of undetected cases depends strongly on the dynamic of the epidemic wave: during the

initial upswing, the undetected cases account for a major part of all infected individuals, whereas their share decreases

around the peak of the confirmed cases.

Conclusions: The results of prevalence studies performed to determine the detection rate of COVID-19 patients should

always be interpreted with regard to the current dynamic of the epidemic wave. Applying the method proposed in

our analysis, the prevalence study performed in Austria in April 2020 could indicate a detection rate of 0.13, instead of

the prevalent ratio of 0.29 between detected and estimated undetected cases at that time.
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Background

Undetected severe acute respiratory syndrome

coronavirus-2 (SARS-CoV-2) infections play an import-

ant role in the spread of coronavirus disease 2019

(COVID-19). A simulation study estimated that, before

widespread travel restrictions were put in place (January

10th – 23rd 2020), 86% of all infections in China were

undetected and that up to 80% of the documented

infected individuals had been infected by undetected in-

fected individuals [1]. Infections are not recognized due

to mild or absent symptoms, limited awareness of the

virus in the general population, or lack of testing. The

proportion of unreported cases, however, changes over

time because of increased awareness, improved testing

strategies and established measures changing the spread

of the epidemic (isolation, self-quarantine, contact pre-

cautions, and travel restrictions). For example, in China,

immediately after travel restrictions were in place (after

January 23rd 2020), the fraction of all undetected infec-

tions decreased to 35% [1].
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Although undetected cases of COVID-19 contribute

significantly to the spread of the disease, it is still unclear

how large the number of unreported cases really is.

Clearly, it strongly depends on the predominant testing

strategy but also on the proportion of asymptomatic

cases. For the latter, estimates have been made, such as

that from Iceland where 43% of the positive cases in an

overall population screening reported no symptoms [2]

and for passengers of the Diamond Princess resulting in

an asymptomatic proportion of only 17.9% [3].

Methods commonly used to determine the number of

undetected COVID-19 cases include representative stud-

ies using reverse transcription polymerase chain reaction

(PCR) or antibody tests. In the first, a random sample of

the general population is drawn and PCR tests are ap-

plied to identify currently infected individuals independ-

ent of current symptoms or recent exposure [4–6].

These studies provide an approximation of unreported

cases, but only for a specific point in time. On the other

hand, studies using antibody tests try to identify people

who have been infected by SARS-CoV-2 in the past.

Both types of studies are often limited due to sample

size and representation of specific populations or regions

and results depend on test accuracy and the time point

of sample collection (when virus or antibodies are

already or still detectable).

In this modeling study, we aim to determine the im-

pact of detection probabilities on the temporal variation

of the epidemic, including the fractions of undetected

and detected cases of COVID-19 during an epidemic

wave. We account for preventive measures in a retro-

spective analysis of secondary data using an agent-based

model representing the entire Austrian population. We

simulate different scenarios to account for the uncer-

tainty in the proportion of undetected cases due to

contradictory or lacking data. Our results can guide the

interpretation of the results of prevalence studies and es-

timations of the proportion of undetected cases of

COVID-19 in Austria.

Methods

We used a previously published agent-based model to

simulate the COVID-19 epidemic in Austria by model-

ling the different disease stages and events of the patient

pathway [7]. Considering age-dependent detection prob-

ability, we calibrated the model to the past epidemic

curve in Austria. As model results, we considered the ra-

tio between detected and undetected cases of COVID-19

during the different phases of the epidemic.

Agent-based simulation model

A detailed description of the model is provided by

Bicher et al. [7]. Briefly, the agent-based model simulates

each member of the Austrian population using statistical

representatives, mapping a contact network based on

different locations, such as households, workplaces,

schools, and leisure time [8]. The model considers the

entire disease-pathway of a COVID-19 patient with its

different potential stages and events starting with the in-

fection of healthy individuals. The model considers the

time period between infection and symptom onset, as

well as a “reaction-time” that covers the time between

symptom onset, testing, positive test result, and the time

at which the COVID-19 patient is recorded as a con-

firmed case in the official vigilance system. In an alterna-

tive pathway, infected individuals in the model would

never be tested for COVID-19 and remain an un-

detected case throughout the simulation.

The time period from February 19th 2020 to June

10th 2020 is simulated and reported outcomes include

the number of detected and undetected cases in each of

the different disease stages for each point in time. In the

model, four groups of infected individuals are distin-

guished: presymptomatic, symptomatic unconfirmed, con-

firmed and never detected. Never detected individuals

will never be tested for COVID-19. Their disease course

is modeled over 9.4 days in total, accounting for the time

from infection until the infectious period and the time

of the infectious period. Presymptomatic, symptomatic

unconfirmed, confirmed individuals receive a positive test

result at some point in time during the simulation. Pre-

symptomatic individuals are still in the incubation period

and symptomatic unconfirmed individuals have started

to experience symptoms but have not yet received a

positive test result. Finally, the confirmed cases are re-

corded until their recovery, considering different time

periods depending on the severity of the disease. Un-

detected cases at a given time consist of presymptomatic,

symptomatic unconfirmed and never detected. Fatal

COVID-19 infections are not investigated for this ana-

lysis and are counted as recovered cases. Confirmed

cases are classified into several disease severities: mild

cases which can recover at home, severe cases which re-

quire hospitalization, and critical cases which require

treatment at an intensive care unit (ICU). Table 1

provides an overview of the parameter values for the

mentioned time periods.

Age-dependent detection probability

The detection probability θ determines whether an in-

fected individual will be tested positive for COVID-19. It

combines the probability of developing symptoms spe-

cific enough to get tested for COVID-19, and the prob-

ability of being detected because of other testing

strategies, such as screening of care homes. We made

the simplifying assumption that θ remains constant for

all age-groups during our considered time interval

(March to June 2020) but is in fact age dependent due

Rippinger et al. BMC Infectious Diseases           (2021) 21:70 Page 2 of 11



to reported evidence of increasing probability to develop

more severe symptoms with increasing age [13].

To determine the age-dependent detection probability,

we first calculated the cumulative incidence of con-

firmed cases in Austria σ ¼ #confirmedCases
#population

as of May 6th

2020. We then assumed that all age groups have been

affected equally by the disease and that the mismatch

between the age distribution of the confirmed cases and

the Austrian age pyramid is caused by an age-dependent

detection rate θi. Considering 10-year age groups, we

calculate

eθi ¼
ci � θ

pi � σ
; ð1Þ

whereby ci denotes the cumulative number of confirmed

cases of this age group and pi denotes the total popula-

tion of this age group. For high values of θ, some age

groups, especially the elderly people, are overrepre-

sented, resulting in a value θi > 1. Therefore, we finally

compute

θi ¼ min eθi; 1
� �

: ð2Þ

Calibration

Model calibration is the process of adjusting model pa-

rameters to match the data observed in the real world,

in this case confirmed COVID-19 cases. To achieve this

goal, we adjust the detection probability and the infec-

tion probability in case of contact.

In our model, increasing the detection probability par-

ameter has two major consequences: (a) the number of

confirmed cases in the model at a given point in time

increases because more cases are detected, and (b) the

number of confirmed cases is decreasing over time be-

cause there are fewer undetected cases causing uncon-

trolled infections throughout their whole infectious

period without being quarantined. Decreasing the detec-

tion probability has the opposite effect. Therefore, the

infection probability is adjusted whenever the detection

probability is changed to keep the number of confirmed

cases at the desired level.

To account for the lack of information considering θ,

the calibration of the infection probability has been per-

formed for different values of θ ranging from 0.1 to 0.9

to reproduce the epidemic curve of COVID-19 cases in

Austria [14]. This calibration process has been split into

two parts: calibrating the infection probability α1 and α2

before and after the peak of the epidemic wave. In the

first part, the infection probability α1 is calibrated using

a bisection algorithm with a Monte-Carlo Simulation in

the loop to reproduce the officially reported number of

confirmed cases at the peak of the epidemic wave. In the

second part, α2 is adjusted using the same bisection al-

gorithm to reproduce the decrease of the officially re-

ported number of positive COVID-19 cases in Austria

until June 10th 2020. The lockdown measures are mod-

elled equivalently and as described by Bicher et al.7 and

include school closure, increased home office use, leisure

time contact reduction, and increased hygienic measures

starting on March 16th 2020 and being gradually lifted

from April 16th 2020 onwards.

Actual detection rate and interpolation

While the detection probability θ is a model input, the

observed detection rate ϑ can be obtained as a model

output by evaluating

Table 1 Parameter values for the model

Value Reference

Incubation period 5.1 days
(1.78)

Lauer et al. [9]

Latency period 2 days Robert Koch Institute [10]

Time until infectious period 3.1 days
(1.78)

Incubation period minus latency period

Infectious period 6.3 days
(1.25)

Expert estimates in line with Robert Koch Institute [10]

Delay from symptom start to positive test result 3.8 days
(2.38)

Hellewell et al. [11]

Time between positive test result and recovery for detected
mild cases

13.3 days
(2.46)

Based on reported COVID-19 data in Austria (Epidemiologisches Mel-
desystem [12])

Time between positive test result and recovery for detected
severe cases

20.0 days
(11.75)

Based on reported COVID-19 data in Austria (Epidemiologisches Mel-
desystem [12])

Time between positive test result and recovery for detected
critical cases

25.0 days
(9.09)

Based on reported COVID-19 data in Austria (Epidemiologisches Mel-
desystem [12])

Data are mean (standard deviation). The latency period is assumed to be a fixed value
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ϑ ¼
#confirmedCases

#allInfectedCases
ð3Þ

at the end of the simulation. To clearly differentiate

between the input parameter θ and the observed model

output ϑ, we henceforth denote the first as detection

probability and the second as detection rate. The detec-

tion rate relies heavily on the detection probability.

Therefore, the model results for different assumptions of

θ can be expressed as a function of ϑ. Assuming the

model output reacts steadily to changes in θ, model

output for input parameters θ in between the directly

calibrated input parameters can be interpolated using

piecewise linear splines.

The model was developed, calibrated, and analyzed

following the International Society for Pharmacoeco-

nomics and Outcomes Research – Society for Medical

Decision Making (ISPOR-SMDM) Modeling Good

Research Practices guidance [15].

Results

Age-dependent detection probabilities θi given an overall

detection probability θ calculated via (1) are provided in

Table 2. As expected, with increasing θ, all age-specific

θi increase as well with younger age groups having lower

values than older age groups. It can be seen that θ lower

than 0.4 leads to no overrepresented age groups, that is

age classes i with eθi > 1 (compare (2)).

Calibrated infection probabilities gained by fitting the

simulation results to the epidemic wave in Austria from

March 11th 2020 to June 18th 2020 for different as-

sumptions of the overall detection probability θ are

shown in Table 3. Results indicate that the impact of a

varied detection probability on the confirmed cases can

be adjusted with small variation of the infection prob-

ability α1 and α2 before and after the observed peak of

the confirmed cases.

Figure 1 shows the simulated results for the epidemic

wave in Austria from March 11th 2020 to June 18th

2020 for two exemplary values of ϑ, distinguishing the

four different groups of infected individuals mentioned

in section “Methods”. Each group of infected individ-

uals peaks at a different point in time due to different

disease durations and sequences within the disease

pathway. In particular, the peak of the sum of all

groups, which we will denote as the real peak, occurred

a few days before the peak of the confirmed cases, the

official peak, on April 2nd. Figure 2 visualizes how the

real peak would change with increasing the detection

probabilities. The left axis displays the number of cases

at the real peak, the right axis its date. It shows that in-

creasing the detection rate leads to a lower and earlier

real peak. Figure 3 displays the cumulative number of

infected individuals until June 18th 2020 depending on

the detection rate, which directly correlates with the

cumulative incidence in the population. With un-

changed number of cumulative confirmed cases (lower

curve) the overall cumulative cases (upper curve) de-

creases with the detection probability, leading to a

lower cumulative incidence.

Figure 4 shows how the ratio between currently in-

fected detected and undetected cases changes during the

epidemic. In the upswing phase, the detected cases ac-

count for a very small part of all the infected cases,

whereas their share increases rapidly with the start of

the lockdown policies on March 16th. The share of

confirmed cases increases more slowly at the time of the

official peak and decreases again in the “steady-state

phase” at the end of the epidemic wave. Figure 5 shows

the same for the cumulative detected and undetected

cases. Again, the cumulative detected cases account for

only a small proportion of all cumulative infected cases

during the upswing phase of the epidemic, before this

proportion reaches a constant state a few days after the

official peak.

Table 2 Values for θi for a given θ

θ0 θ10 θ20 θ30 θ40 θ50 θ60 θ70 θ80 θ90

θ = 0.1 0.02 0.04 0.11 0.10 0.12 0.14 0.10 0.10 0.16 0.29

θ = 0.2 0.03 0.09 0.22 0.20 0.24 0.28 0.20 0.21 0.33 0.58

θ = 0.3 0.05 0.13 0.32 0.29 0.36 0.41 0.30 0.31 0.49 0.87

θ = 0.4 0.06 0.17 0.43 0.39 0.48 0.55 0.40 0.41 0.65 1.00(1)

θ = 0.5 0.08 0.21 0.54 0.49 0.59 0.69 0.50 0.51 0.82 1.00(1)

θ = 0.6 0.09 0.26 0.65 0.59 0.70 0.83 0.59 0.62 0.98 1.00(1)

θ = 0.7 0.11 0.30 0.75 0.69 0.83 0.97 0.69 0.72 1.00(1) 1.00(1)

θ = 0.8 0.12 0.34 0.86 0.79 0.95 1.00(1) 0.79 0.82 1.00(1) 1.00(1)

θ = 0.9 0.14 0.39 0.97 0.88 1.00(1) 1.00(1) 0.89 0.93 1.00(1) 1.00(1)

θi denotes the age-dependent detection probability for people within the age group [i, i+ 9]. θ90 denotes the age-dependent detection probability for people

aged 90 or older. Cells marked with (1) indicate that the age class is overrepresented with eθi>1 and were truncated to one via (2)
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Figure 6 illustrates how the model results can be used

to interpret the findings of studies identifying currently

infected individuals. It displays the number of active

cases of COVID-19 for different dates as a function of

the detection rate. Given an estimate of active cases for

a specific date, the model results for this date as a func-

tion of the detection rate can be interpolated by linear

splines and the detection rate matching the estimate of

active cases can be determined.

Discussion

The ratio between detected and undetected cases

strongly depends on the phase of the epidemic. Results

of randomized screenings to evaluate the detection rate

therefore need to be interpreted within the context of

the phase of the epidemic. This holds for both studies

using antibody tests and PCR tests.

Screening programs using antibody tests are less sensi-

tive but still depend on timing within the epidemic. The

different severities between detected and undetected

cases lead to different disease lengths. Therefore, the

confirmed cases are underrepresented within the total

cases as long as the disease wave is still on the upswing

(see Fig. 5). Consequently, results of antibody screenings

would underestimate the detection rate, if performed too

early before the completion of the wave. Similarly, con-

sidering the indication of waning antibody, screenings

performed too long after an epidemic wave could under-

estimate the total number of COVID-19 infections, and

therefore, overestimate the detection rate.

As for studies using PCR tests to determine the cur-

rently infected individuals, the simulation results show

that the actual detection rate cannot be determined

without additional information about the disease wave.

An observed ratio of 60:40 for detected vs. undetected

Table 3 Calibrated values for the infection probability α1 and α2 for different detection probabilities θ

θ = 0.1 θ = 0.2 θ = 0.3 θ = 0.4 θ = 0.5 θ = 0.6 θ = 0.7 θ = 0.8 θ = 0.9

Infection probability before peak α1 5.960% 5.862% 5.840% 5.840% 5.850% 5.960% 6.030% 6.032% 6.047%

Infection probability after peak α2 5.215% 4.502% 4.526% 4.830% 5.148% 5.394% 5.729% 6.394% 6.555%

Observed detection rate ϑ 0.09 0.18 0.27 0.37 0.45 0.55 0.63 0.70 0.75

Each parameter value triple (θ, α1, α2) is specified to lead to the same curve for the confirmed infected individuals. The row ϑ displays the actual detection rate

evaluated by (3) at the end of the simulation

Fig. 1 Visualization of the first epidemic wave for detection rate ϑ =0.63(a) and ϑ =0.18(b)
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cases in a randomized trial might indicate ϑ =0.37 if the

study was performed a couple of days after the official

peak, or ϑ =0.75 if it was performed a couple of days be-

fore. Therefore, the disease progression should always be

considered retrospectively when evaluating and inter-

preting a study performed to determine the detection

rate.

In Austria, three different nationwide randomized

prevalence screening programs have been performed to

get an image of current prevalence [6]. The first pro-

gram was organized by SORA Institute for Social Re-

search and Consulting with tests between April 1st and

6th (sample size n = 1544, 6 positive tests) [4], the other

two programs were executed by the Austrian Statistics

Institute between April 22nd to April 25th (sample size

n = 1432, 1 positive test result) and May 26th to May

30th (sample size n = 1279, no positive test results). As

indicated by Fig. 4, the first and second study were exe-

cuted at a time with the lowest possible fraction of un-

detected cases possible: shortly after the official peak of

the epidemic wave. Consequently, a high sample size

would be required to detect a significant number of un-

detected cases and even then the resulting ratio needs to

be treated with care: For example, an actual detection

rate of ϑ =0.18 results in a prevalence of almost 50% de-

tected cases on April 10th. With respect to the ratio be-

tween undetected and detected, the timing of the third

study was much better suited. Unfortunately, the total

number of infected individuals at the end of May was

extremely low which, again, required a large sample size.

As a result of the unfortunate timing and the limited

number of participants, the results of all three studies in

Austria have not been particularly useful in providing

conclusions about the detection rate parameter. Yet, the

Fig. 2 Height and date of the real peak as a function of the detection rate ϑ

Fig. 3 Cumulative number of total simulated (detected and undetected) and confirmed (17,175) infected individuals until 2020 June 18th as a

function of the detection rate ϑ. The right-hand-side axis displays the values in percent of the total Austrian population (8,901,064) on 2020.01.01

according to Statistics Austria
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combination of the connected surveys brought very in-

teresting insights into the actual wellbeing of the

population.

Nevertheless, taking the dynamic of the epidemic wave

into consideration, the first PCR study in Austria

performed by SORA in April (sample size n = 1544) [4]

could be used to determine feasible values for the detec-

tion probability. The study estimates a prevalence of 28,

500 infected persons in Austria for April 4th. As demon-

strated in Fig. 6, this leads to ϑ =0.13. Note that this

Fig. 4 Time dependent split of the total infected population into the separate disease states displayed for different detection rates ϑ
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number is considerably lower than the prevalent ratio

between detected and undetected 8358/28,500 ≈ 0.29 on

this day [14]. Consequently, a large error is made when

estimating the detection rate based on this naïve

formula.

The graphs in Fig. 4 in combination with Fig. 1 indi-

cate that there are points in time much better suited for

randomized prevalence studies, namely the time of the

real peak which occurred about 5 to 10 days after the

lockdown measures and 5 to 10 days before the official

Fig. 5 Time dependent split of the cumulative infected population into detected and undetected cases for different detection rates ϑ
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peak. At that time, the overall number of infected indi-

viduals is high, thus the required sample size is reduced.

But the detection rate is still comparably low which in-

creases the chances of including undetected individuals

in the screening sample. Unfortunately, this is a rather

theoretical result, as the time of the real peak can only

be evaluated retrospectively. Nevertheless, it indicates

that the optimal time for prevalence studies lies during

the upswing of the epidemic wave, and that they should

not be performed too late.

Moreover, the data preprocessing required for param-

etrization provides new insights into the level of detec-

tion probabilities. As displayed in Table 2, probabilities

higher than 0.4 cannot be age-stratified using the pro-

posed algorithm indicating this value as an upper bound

for the detection probability in Austria between March

and June 2020. These insights concur with several publi-

cations [5, 16, 17] who all suggest a comparably low de-

tection probability far smaller than 50%, but contradicts

the results of several screening programs performed

earlier in China [3] and Iceland [2] which all resulted in

higher detection rates. Yet, it is not surprising that de-

tection probabilities differ between different countries.

Although evaluated for Austria, the qualitative results of

our study can be applied to any country or region world-

wide if we assume that the testing strategy regarding the

target groups, the sensitivity and specificity of the tests,

and the testing and reporting delays are similar.

The calculation of the age-dependent detection prob-

ability also has an influence on the detection rate ϑ as a

model output. One would expect that the detection rate

ϑ should be identical to the detection probability θ.

Instead, ϑ < θ can be observed, with the difference

increasing with larger values for θ (see Table 3). This ef-

fect occurs because the simulation model is not able to

reproduce the large number of infected elderly people

observed in reality. For large values of θ, this is mainly

caused by capping the age-dependent detection prob-

ability at 1. But it is also a result of the implemented

contact network for retired people. They often live in

smaller households and do not have any workplace con-

tacts, making them less likely to be in contact with an

infected individual.

Still, the contact network is one of the key features of

our simulation model. It is based on the POLYMOD

study [8], a large survey on social contact behavior rele-

vant to the spread of infectious diseases. In addition, the

location-based contact network allows us to implement

specific lockdown policies such as school closures dir-

ectly without the need of “guessing” parameter values

for their implications. Even if this model feature is not

directly needed for evaluating the number of undetected

cases of COVID-19, it allows the simulation of the epi-

demic wave as realistically as possible. A feature much

more important for the analysis presented in this study

is that the agent-based model includes undetected cases

of COVID-19 in the spread of the disease, and a snap-

shot can be taken of all the infected individuals for every

timestep, separating them into their respective disease

states.

Our study has several major limitations. First, the

calculation of the age-dependent detection probability

relies on the simplifying assumption that people of all

age groups are equally susceptible to getting infected

and that the mismatch between the age distribution of

the confirmed cases and the overall Austrian age

Fig. 6 Number of active cases for different dates as a function of the detection rate. The dashed line represents the 28,500 cases on April 4th as

estimated by SORA Institute for Social Research and Consulting, leading to ϑ = 0·13
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distribution is solely due to an age-dependent probability

to develop symptoms and subsequently getting tested

for the disease. This subject is strongly linked to the de-

bate on whether schools play a major role in the spread

of COVID-19. Since the scientific community could not

yet reach a consensus on the latter [18, 19], we did not

assume that children are less susceptible to becoming

infected.

Second, we kept the age-dependent detection probabil-

ity constant over time. Thus, we did not account for

screening programs performed in care homes or the

time during which schools were closed and children

could only be infected by their immediate family. More-

over, we did not model the sensitivity and the specificity

of the current PCR test for SARS-CoV-2 or the in-

creased usage of antigen tests whose performances vary

greatly regarding their sensitivity and specificity. Our

model does not provide the possibility for an uninfected

individual to receive a false positive test result, and an

infected individual who gets tested for the disease will

always receive a positive test result in our analysis. This

way, in our model, the sensitivity of the test is implicitly

incorporated into the detection probability θ with a

lower test sensitivity producing a lower detection

probability.

Furthermore, as for all current simulation models for

COVID-19, the parameters used in our model are asso-

ciated with uncertainty. In particular, the recovery time

for undetected cases – that is, the time until these

mostly asymptomatic and mildly symptomatic individ-

uals are no longer infectious – is highly uncertain. This

is certainly an influential parameter in the model but

real data and evidence for its values are diverse and hard

to find. We also have not modelled a varying infectious-

ness depending on the severity of the disease or the time

elapsed since the start of the infectious period. Instead,

all agents are assumed to be equally infectious through-

out the infectious period. Current studies suggest that

this is likely not the case, and therefore our assumption

constitutes a major simplification. Although our simula-

tion model allows us to include infectiousness varying

across individuals, we decided against the implementa-

tion of infectiousness heterogeneity, as respective data

are lacking. On the same note, our model does not spe-

cifically consider super-spreader events caused by an

overly infectious person or an event where one infected

person has contact with an extraordinarily high number

of people. However, the detection probability is inde-

pendent of the origin of the infection (caused by a

super-spreader event or not) and the ratio of detected

and undetected cases of COVID-19 remains unaffected.

Therefore, not specifically considering super-spreader

events from the simulation does not bias the results of

our study.

Lastly, our simulation model does not give an estimate

for the fatal cases. The case fatality ratio (CFR) of

COVID-19 strongly depends on the need and the avail-

ability of medical resources, namely the ICU-beds and

medical personnel. Since this number of total ICU-beds

and human resources available for COVID-19 patients

in Austria is not fixed but can be slightly adapted to the

current need, our model does not consider a threshold

for the available medical resources and a subsequential

change in the CFR as soon as the maximal capacities are

exceeded. Therefore, an estimation of the fatal cases is

associated with great uncertainty, and even more im-

portantly, provides no added value to the model results

of the current research question of our study.

In conclusion, we presented the outcomes of a retro-

spective modeling study in which we compared different

assumptions about the probability of detecting an indi-

vidual infected by SARS-CoV-2, leading to different

“dark figures”, which allowed us to establish possible

value ranges for this relevant disease parameter.

Moreover, our simulation outcomes display that the

ratio between confirmed and unconfirmed cases for the

Austrian COVID-19 epidemic heavily changes with time.

Consequently, the results of randomized screenings are

usually interpreted too naively. This study gives guidance

on when to setup and how to interpret screening results

in a more accurate way.
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