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Abstract
This paper presents a new approach towards the design of iterative learn-
ing control (Moore, 1993). In linear motion control systems the design is
often complicated by the inverse plant sensitivity being non-causal and
even unstable. To overcome these problems the inverse system is split up
in a causal and a non-causal part. We apply high-performance differen-
tiating filters together with a mixed boundary value ODE solver to com-
pute the control signal. This allows for an accurate approximation of the
theoretical solution and offers the advantage of control over the bound-
ary conditions of the learnt signal. The advantages of this approach over
the existing commonly-used ZPETC technique are demonstrated by two
examples, respectively a non-minimum-phase system and an industrial
H-drive.

1 Introduction

In this paper an algorithm for ILC (Iterative Learning Control) design is proposed that
can deal with both non-causal and unstable inverse plant sensitivities. Iterative learning
control improves the tracking accuracy of a (closed-loop) control system by learning
from previous experience with the same trajectory. This is done by updating the feed-
forward signal ��� in an iterative way according to a learning law. If we have a SISO
loop with plant � and feedback-controller� (both LTI systems), the process (or plant)
sensitivity is defined as:

� � �� �
�

� � ��
(1)

where � is the plant transfer function, � the controller transfer function and � is the
sensitivity of the control loop. In a general ILC setup (Fig. 1) the learning filter ����



��
� � � �

� � �
	 � � �


 � � �

�

�

�

 	 � � �

� � �
	 � � � � �

�  � � 
 �

�

�

Figure 1: iterative learning setup

translates the tracking error ��	� into the necessary feedforward action, which is then
added to the existing feedforward signal ��� �	�. 
 is a so-called robustness filter.

������ �	� � 
������	� � ��
��	�� (2)

In theory, choosing the learning filter as the inverse of the plant sensitivity results in
optimal convergence, because ��� � ����. To guarantee robust convergence of the
learning process, a robustification filter
��� is added to cope with model uncertainties
and measurement noise. Usually 
��� is chosen as a lowpass filter.

To find the learning filter � the inverse model of the process sensitivity must be
determined. Because closed-loop control systems (so also �) are causal and (at least
designed to be) stable, the inverse system cannot be evaluated directly. There are two
reasons why this evaluation is not straightforward:

� inversion of a causal system leads to a non-causal system

� if the system is non-minimum phase, the inverse system will be unstable

A commonly used method is ZPETC, Zero Phase Error Tracking Control (Tomizuka,
1986). ZPETC needs a system description in discrete-time (transfer function) form.
The non-causality can be canceled by a simple time shift. Since the ILC update is
performed off-line this is no problem. Unstable zeros, which would become unstable
poles of the inverse system, are mapped back as stable poles inside the unit circle.
This assures that the frequency response of the calculated inverse system compared
to the theoretic one exhibits no phase errors for the complete frequency range. The
method is fast, but not always accurate since the amplitude behaviour of the inverse
system is not exact. Especially for non-minimum phase systems, ZPETC can yield a
bad approximation of the inverse model (see results in Section 5). The next sections
will discuss another approach towards evaluating an inverse dynamic system, not yet
encountered in ILC practice.



2 Inverse systems

We assume that we have a reliable (linear) model ���� of the plant sensitivity at hand.
It is also assumed that ���� is a minimal realization of the system. The first step is to
divide������ into a causal part����� (3) and a strictly non-causal part������ (4), as
������ � �����������, where it is assumed that � � �. The causal part ����� can
be unstable.
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��� � � � �� ���� �� (4)

As we see (4), the non-causal system ������ can be written as a linear combination
of differentiators of different order. Consider the problem where a discrete-time series
���� has to be smoothed by ���. As ���� is known beforehand, non-causal differen-
tiating filters can be used as we will see in the next section. The output ��� of this
evaluation serves as an input for solving the causal part (Section 4). We only need an
accurate solver to reduce numerical errors to the minimum. This is accomplished by us-
ing a decoupling technique to separate the stable and unstable parts of the system (van
Loon, 1988). Together with an accurate ODE solver and partitioning of the time axis
(using integration restarts) the desired accuracy is achieved. Furthermore, this method
can handle mixed boundary value problems, which permits us to put extra constraints
on begin and end values of the output signal. Section 5 will show the advantages of
this new approach over ZPETC in two examples. Conclusions will be given in Section
6.
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Figure 2: schematic representation of the new approach to calculate the learning feed-
forward signal



3 Differentiating filters

3.1 A reconstruction problem

In most cases we do not have the pure continuous signal available to calculate the
derivative. Most measurements, so also the error signal ����, are noisy and in discrete
time:

���� � ���� � ���� (5)

where ���� is the real value of the signal and ���� the measurement noise. With only
���� given, we try to reconstruct the R
� derivative ����� of the signal ����:

������ � ���� � �
�� ����� (6)

The design of a differentiating filter is nontrivial for al least two reasons:

� the relation between the sampled-time series ���� and the continuous-time signal
��	� is not known in general.

� the measurement ���� is corrupted with noise ����.

Because in learning control a preceding filter 
 will bother about the noise-pollution
of the signal in a decent way, the differentiating filter does not have to cope with noise-
reduction in the first place. The reconstruction problem mentioned is a much big-
ger problem. There are two main methods to reconstruct a continuous signal out of
discrete-time data:

� Shannon reconstruction

� polynomial interpolation/fitting

Differentiating filters based on both methods will be briefly discussed in the next sub-
section. Important work in this field is done in (Carlsson, Söderström and Ahlén, 1987)
and (Carlsson, 1989), where a number of first order differentiating filters are presented.
A R
�-order differentiator in Laplace-domain,����� � �

�, has �
�
� phase-lead and is

non-causal. The ideal frequency response for a discrete-time differentiator is given in
(7), where � is the shift operator: ���� � ���.

� 
��� � �

�� � � ����� � �
�

�
(7)

3.2 Filter selection

Accurate differentiating filters presented in (Carlsson, 1989) are all non-causal FIR fil-
ters. Digital filters with Finite-duration Impulse Response (all-zero, or FIR filters) have
both advantages and disadvantages compared to Infinite-duration Impulse Response
(IIR) filters. Primary advantages are:

� filters can have exactly linear phase

� always stable

� startup transients have finite duration



The primary disadvantage of FIR filters is that they often require a much higher filter
order than IIR filters to achieve a given level of performance. Because linear phase-
behaviour of IIR filters cannot be guaranteed (except using (forward-backward) non-
causal zero(!)-phase filtering), they are no good way to design accurate differentiating
filters.

A general layout for a N
� order differentiating FIR filter to calculate the R
�

derivative can be given as:

����� �
�

���
� ��
���

����
� � ��������� � ��

�
(8)

This filter is symmetric for odd derivatives and anti-symmetric for even derivatives.
Using this layout we guarantee the desired phase behaviour (as in (7)), and we calculate
filter coefficients which are independent of the sample time � . In (Carlsson, 1989), a
design criterion is suggested which covers both reconstruction methods. The filter
coefficients are calculated by minimizing the following cost function:

� �

� �
�

�

������ ����� � �
�� ����� (9)

subject to a set of equality constraints

��� � �� (10)

with �� � 	�� �� � � � �� 
� . The constraints in (10) will not be further specified here,
but mostly they represent constraints on the filter characteristic around � � � (see
(Carlsson et al., 1987) for more details).

3.3 Shannon-based differentiators

Differentiating filters based on Shannon reconstruction let � � �, so they are unre-
alizable. However the filter order can be truncated to make a realizable filter. It can be
proven that using this method is the same as constructing a filter by only optimizing
the cost function (9). The result will be a wide-band (up to � � �

�
) differentiator.

The disadvantage of truncating the filter to order N are oscillations in the amplitude
response of the filter, known as the Gibb’s phenomenon. Other approaches minimize
(9), sometimes with decreased integral bounds (

� � �
�

�
, with � 	 	�� �
), subject to a

set of constraints. For first order derivative filters all these methods have been dis-
cussed earlier in (Carlsson et al., 1987). Some of the above mentioned methods were
expanded for higher order derivatives, resulting in wide band differentiators all with
Gibb’s oscillations. These oscillations give big relative errors, especially for low fre-
quencies in higher order derivative filters. Therefore these methods are not very suited
for our goal; we need very accurate higher order differentiators, especially in the low
frequency range.

3.4 Polynomial interpolation/fitting

Design methods based on the polynomial reconstruction method only use the set of
equality constraints (10). Constructing a specific set of � constraints (for details see
(Carlsson, 1989)) to compute � coefficients ��� � � � � �� (solving a determined set),
gives the same filter as one based on polynomial interpolation. A filter based on poly-
nomial interpolation:



� determines the (unique) interpolating polynomial of degree �� from �� � �
data points

� estimates the R
� derivative of the midpoint � � � by differentiating the poly-
nomial

This method has extremely low error in the low-frequency range but some low-pass
behaviour for higher frequencies. Note that �� 
 � to obtain a usable filter. Besides
polynomial interpolation, we can use polynomial fitting to design a differentiating fil-
ter. This technique determines a polynomial fit of degree �� from �� � � data points
(� � � ). We obtain an overdetermined set of equations, which can be solved by least
squares minimization. Such filter smoothes out some high frequencies so this method
has more lowpass behaviour than the interpolation technique. The low frequency ac-
curacy is almost the same for both methods. Since the filter is not responsible for noise
cancellation in the first place (we can use the robustification filter
 for this aim), poly-
nomial interpolation is chosen as the best method to design differentiating filters for
this particular purpose.
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(a) Amplitude response for a truncated ideal
Shannon-based differentiator (R=3 N=15
T=10�� s)
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(b) Amplitude response for a differentiator
based on polynomial interpolation (R=3 N=6
T=10�� s)

Figure 3: Comparison between two ���-order differentiating filters, based on the two
different reconstruction methods. Note that the phase response is exact for both meth-
ods.

4 An accurate ODE solver

Now we are able to evaluate the non-causal system ������, and denote the output
signal as ���. We use this signal as an input for the causal system ����� of order
K (according to (3)). This system can easily be converted to state space, using the
notation of Fig. 2:

�
���	� � ����	� � �����	�
��� �	� � ����	� �  ����	�

(11)



The real problem is solving the time-invariant inhomogeneous linear set of� coupled
first order differential equations on a finite time-span, say � � 	 � :

���	� � ����	� ������	� (12)

Shooting methods partition the time-interval into parts and solve several Initial Value
Problems (IVP’s). By doing this, unstable increasing modes will not reach unaccept-
able large grow factors that lead to numerical inaccuracy. After finding all sub-solutions
of the IVP’s, the total problem can be computed by solving a linear algebraic equation.
The main drawback of this technique is that for very stiff problems the number of
subintervals can become unacceptably large.

To overcome this problem a decoupling technique is used, which separates the
stable (decreasing) and unstable (increasing) modes of the system. Unstable parts can
be integrated backwards (finding a stable solution). Unfortunately, in this technique
some variables (resulting from algebraic transformations) can grow unbounded, but
much less catastrophic than the IVP’s in the shooting technique. So, some partitioning
of the time-interval (applying integration restarts) is still needed. In this setup it is easy
to add constraints as a set of mixed boundary conditions. The� boundary conditions
can by specified on initial and final values of the states:

!����	 � �� � !����	 � � � ���� (13)

!� and !� are constant � � � matrices with "�#��!�� � "�#��!�� � �. A stiff
ODE solver in MATLAB is used to solve the differential equation in the sub-intervals.
To prescribe initial and end conditions in terms of the output of the system � �$�	�, we
have to include the output (static) equation:

��� �	� � ����	� � ����	� (14)

By taking derivatives of this expression, it is possible to express the state-conditions at
a certain moment ���	 � 	�� in terms of the input and output values and their derivatives
at moment 	� as:
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with,

 �

�
					


 � � � � � � �
��  � � � � � �
��� ��  � � � � �

...
��

���
� ��

���
� � � � ��� ��  

�
�����
� � �

�
					


�

��

��
�

...
��

���

�
�����

(16)

in which ���$�	
�� is defined as the r
� time-derivative of ��� at moment 	� ( �

����
�
�

���

�
�

).

The same holds for the input ���. By transforming����� into the observable canonical
state-space form, we ensure that � (the observability matrix) is lower triangular. If we
want to prescribe the output and its derivatives up to a certain order, we do not need



to fix all states. Since both  and � are lower triangular matrices, the first % states
(� � % � �) will prescribe ��� �	��� ��� �	�� up to ������ �	�� if ����	��� ����	�� up to
������ �	�� are given. Since input signal ����	� is given, derivatives at every moment can
be calculated using a dedicated filter as presented in Section 3. Now it is possible to
convert initial and end conditions of the feedforward signal (and its derivatives) to a set
of boundary conditions as in (13).

5 Applications

First the new approach is applied to a non-minimum phase system. Consider the double
pendulum (Fig. 4.a), without friction or gravity but with a flexible joint with stiffness
�� and damping �. The linearized model (around &� � &�) is a non-minimum phase
system:

�
'� �(�)

�
� )�)�(�

)�)�(� '� �(�)
�
�

��
�&�
�&�

�
�

�
� �  ��
�� �

� �
&�
&�

�

�

�
�� ���
��� ��

��
&�
&�

�
�

�
�

�

�
(17)

Now we want the first link to make a half revolution according to a reference (Fig.
4.b), applying a torque � to the base-joint. The second link adds parasitic dynamics
to the system, and will disturb the tracking of &� to the reference signal. As long as
the relative motion between the two joints is small (&� � &� � �), the linearization is
governed. With this second order system it is possible to prescribe � � � boundary
conditions. We choose to fix the feedforward signal at zero at both begin and end time
of the trajectory. Now ILC is used to improve tracking applying 10 iterations.
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(b) Trajectory for the first joint

Figure 4: A non-minimum phase system: the linearized double pendulum

The new approach shows faster convergence and smaller residual errors, compared
to ZPETC (see Fig. 5). Due to the action taken by ZPETC for unstable parts, this
method shows oscillating behaviour in the feedforward signal. With both initial and
final value of ��� fixed to zero, it is possible to track cyclic setpoints using ILC without



startup or end effects. However forcing the feedforward signal in this form is probably
the reason for the relative large residual error, which is expected to be almost zero in
this theoretical example.
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(b) Results after 10 iterations

Figure 5: ILC results

Also, both the new approach and the standard ZPETC are applied to an indus-
trial motion system, i.e. an H-drive. This robot uses 3 linear motion motor systems
(LIMMs) to drive the 2 main sliders. Only the X-slide is considered in the learning
process (the single-support slider in Fig. 6.a). The control loop is implemented with a
dSPACE system. We used an 10
� order model of the process sensitivity, obtained by
frequency-domain identification. A lead-lag controller is used, resulting in a bandwidth
of 30 Hz. A lowpass robustification filter is applied with a cutoff frequency of 250 Hz.
After 7 iterations both methods have converged and the residual tracking errors are of
the same order. As a first case on a higher-order minimum phase system, no specific
initial conditions are imposed.

(a) H-drive system
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(b) Trajectory for the X-slider

Figure 6: Mechanical system which can benefit significantly from ILC: an industrial
H-drive
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Figure 7: ILC results

6 Conclusions

At this point, contrary to ZPETC, the new approach succeeds in calculating accurate
inverse responses of non-minimum phase systems. For minimum phase systems of
higher order the implementation of this new method is not competitive to ZPETC-
method (Tomizuka, 1986) in sense of computation time. However, one major advan-
tage is that we can put restrictions on begin and end values of the feedforward signal,
which is very admirable in motion control. The possibilities of this freedom in prescrib-
ing boundary conditions and the effect on the tracking error is not fully explored at this
moment. Further optimizing the numerical implementation can make this method more
efficient and probably competing with ZPETC for higher-order real-world systems.
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