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Abstract. A number of recent studies have demonstrated that near-infrared spectroscopy (NIRS) is a promising
neuroimaging modality for brain-computer interfaces (BCIs). So far, most NIRS-based BCI studies have focused
on enhancing the accuracy of the classification of different mental tasks. In the present study, we evaluated the
performances of a variety of mental task combinations in order to determine the mental task pairs that are best
suited for customized NIRS-based BCIs. To this end, we recorded event-related hemodynamic responses while
seven participants performed eight different mental tasks. Classification accuracies were then estimated for all
possible pairs of the eight mental tasks (

8
C

2
¼ 28). Based on this analysis, mental task combinations with rel-

atively high classification accuracies frequently included the following three mental tasks: “mental multiplication,”
“mental rotation,” and “right-hand motor imagery.” Specifically, mental task combinations consisting of two of
these three mental tasks showed the highest mean classification accuracies. It is expected that our results
will be a useful reference to reduce the time needed for preliminary tests when discovering individual-specific
mental task combinations. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.19.7.077005]
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1 Introduction

There are numerous individuals with physical disabilities, for

whom a variety of human–machine interface (HCI) systems

have been developed. These systems are based on a variety

of electrical or nonelectrical biosignals, such as electromyo-

grams (EMGs),1,2 electrooculograms (EOGs),3,4 sip-and-puff

signals,5 head movements,6 and tongue movements.7 Disabled

individuals who still have the ability to move specific parts

of their bodies can use these types of HCI systems, but these

systems cannot be applied to those who are unable to move

due to locked-in syndrome (LIS). Brain-computer interface

(BCI) technology can help the patients with LIS to communicate

with the outside world using their brain activity.

BCI is a technology that provides a direct communication

pathway between the brain and external devices without the

need for any muscular movements.8 In general, a BCI system

can be implemented based on two different approaches: an inva-

sive method or a noninvasive method. An invasive BCI system

uses a bundle of microelectrodes directly implanted into the

brain to record the neuronal-spiking activities. The invasive

BCI enables high-precision control of external devices due to

its high-quality brain signals, whereas the biocompatibility of

the implanted microelectrodes and high risk of surgery are

still crucial issues to be solved.9–11 Currently, the noninvasive

BCI approach has been studied more actively than the invasive

BCI methods.12 To implement noninvasive BCI systems, various

brain signal recording modalities have been used such as

electroencephalography (EEG),13–15 NIRS,16–18 functional

magnetic resonance imaging (fMRI),19,20 and magnetoencepha-

lography (MEG).21 Among these, EEG has been most widely

used due to its high temporal resolution, reasonable hardware

price, and portability.12,22,23

Recently, there has been growing interest in the NIRS-based

BCI systems because NIRS is generally less susceptible to

gross electrophysiological artifacts caused by eye blinks, eye-

ball movements, and muscle activity.16 So far, various mental

imagery tasks have been used for NIRS-based BCI studies,

such as hand motor imagery,18,24 mental arithmetic

tasks,16,17,25,26 music imagery,16,26 object rotation,25 and letter

padding.25 Most of these NIRS-based BCI studies attempted

to classify a pair of mental tasks with the goal of achieving

the highest possible classification accuracy for the binary

communication of patients with LIS.

To increase the BCI performance, previous NIRS-based BCI

studies have developed advanced signal processing techniques

and machine learning methods.16–18,24–27 However, some sub-

jects did not show a classification accuracy high enough to

be used for practical binary communications (less than 70%)

because they failed to produce the distinct and consistent

brain activity patterns expected when performing given mental

tasks. Previous BCI studies have reported that this so-called

“BCI illiteracy” phenomenon occurred in approximately 15%

to 30% of the individuals who participated in various types

of BCI experiments.28–31

One of the solutions to circumventing the BCI illiteracy issue

would be using individualized or customized mental task com-

binations instead of using a fixed set of mental tasks. However, it
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is difficult to select an optimal combination of mental tasks that

can elicit distinct brain activity patterns and guarantee the best

classification accuracy, because testing a large number of mental

tasks for each individual would be a long and tedious prelimi-

nary process. In our experience, testing more than eight mental

tasks in a single experiment is not efficient, because participants

generally lose their focus due to mental fatigue. Therefore, stud-

ies investigating the intrinsic characteristics of mental tasks are

necessary in order to more efficiently search for optimal mental

task combinations for each individual. For example, mental task

pairs showing a low classification accuracy can be excluded

from the candidate mental task set, or vice versa. Since the num-

ber of available mental tasks that have been used in the BCI

literature is very large (over 20), it is highly desirable to accu-

mulate a series of references reporting the results of preliminary

test experiments performed with different candidate mental

tasks. However, no previous NIRS-based BCI studies have

investigated optimal combinations of mental tasks with the

aim of determining the best task combination among all possible

pairs of various mental tasks in terms of classification accuracy.

The goal of this study was to investigate whether there are

any combinations of mental tasks that are relatively more advan-

tageous in increasing the classification performance of NIRS-

based BCI systems. To compare the classification accuracies

of various mental task combinations, we measured task-related

concentration changes of oxygenated, deoxygenated, and total

hemoglobin ([oxy-Hb], [deoxy-Hb], and [total-Hb]), while

seven participants were carrying out eight different mental

tasks. For the binary classification, we constructed four different

feature sets for [oxy-Hb], [deoxy-Hb], [total-Hb], and a combi-

nation of [oxy-Hb] and [deoxy-Hb], and then a linear discrimi-

nant analysis (LDA) algorithm was applied to the features

picked up by the Fisher criterion. The average classification

accuracy for each of all possible mental task combinations

(8C2 ¼ 28) was estimated by a 10 × 10-fold cross-validation.

2 Methods

2.1 Participants

Seven healthy participants took part in this study (six males and

one female; 24 to 30 years old). None of them had a previous

history of neurological, psychiatric, or other severe diseases that

might influence the experimental results. The research goal and

the experimental procedure were explained in detail to each

participant before the experiment. The subjects signed written

consents and received monetary reimbursement for their

participation. The study was reviewed and approved by the

Institutional Review Board committee of Hanyang University.

2.2 Mental Tasks

Eight different mental tasks were selected based on previous

EEG-based or NIRS-based BCI studies.16–18,24–26,32 During

the experiments, the participants were asked to use consistent

strategies for each mental task to minimize inter-trial variability

and not to make any movements. The following paragraphs pro-

vide the definitions of each mental task.

1. Left-hand motor imagery (LMI): kinesthetic imagina-

tion of left-hand movement.

2. Right-hand motor imagery (RMI): kinesthetic imagi-

nation of right-hand movement.

3. Foot motor imagery (FMI): kinesthetic imagination of

foot movement.

4. Mental singing (SING): singing a song internally. The

national anthem was selected as the song to reduce the

inter-subject variability.

5. Mental subtraction (SUB): sequential subtraction of a

small number (e.g., 6) from a three-digit number as

quickly as possible (e.g., 159, 153, or 147). The pre-

viously used pairs of numbers were not repeated to

prevent the participants from becoming accustomed

to the problem.

6. Mental multiplication (MUL): nontrivial multiplica-

tion of a pair of two-digit numbers as quickly as pos-

sible (e.g., 16 × 27). The pairs of two-digit numbers

were not repeated to prevent the participants from

becoming accustomed to the problem.

7. Geometric figure rotation (ROT): mental rotation of a

given three-dimensional (3-D) geometric figure. In

order to give the participants a concrete feeling of

this task, we showed them a short movie clip, in

which a 3-D geometric figure (hexahedron) was rotat-

ing at a constant velocity before the experiment. The

participants were instructed to imagine the rotation of

the geometric figure as shown in the movie clip.

8. Mental character writing (WRT): internal writing of

four given Korean characters. Different words with

particular meanings were used for each trial.

2.3 Experimental Paradigm

Figure 1 shows the overall experimental paradigm used in this

study. Before each session, a preparation time was given for

10 s, during which the participants waited for an upcoming

instruction without making any movements. At the beginning

of each trial, an instruction indicating one of the eight mental

tasks was randomly presented for 5 s, during which the partic-

ipants had to prepare for the mental task to be performed. For the

SUB, MUL, and WRT tasks, the participants were asked to

memorize a pair of two numbers, two-digit numbers, and

four characters, respectively. A pure-tone beeping sound was

presented for 125 ms, and then a fixation cross appeared at

the center of the monitor for 15 s, which was the signal to

start performing the designated mental task. After the participant

performed the given mental task for 15 s, an empty screen was

presented for a variable duration from 10 s to 15 s. This pro-

cedure was repeated twice for each mental task in one session.

A total of 10 sessions were conducted, and thus each participant

carried out 20 trials for each mental task.

2.4 Near-Infrared Spectroscopy Data Recording

For the data recording, we used a multichannel NIRS imaging

system (FOIRE-3000, Shimadzu Co. Ltd., Kyoto, Japan).

Figure 2 shows the optode configuration used in this study.

As shown in Fig. 2, 16 sources with wavelengths of 780,

805, and 830 nm, and 15 detectors were attached to each par-

ticipant’s scalp. The center optode was placed on Cz according

to the international 10–20 system (a standard electrode
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placement rule for EEG), and the inter-optode distance was set

to 3 cm based on the previous NIRS studies reporting that the

3-cm inter-optode distance is ideal for measuring cortical hemo-

dynamic responses.16,26,33 The task-related concentration

changes of hemoglobin were recorded at 50 different scalp loca-

tions with a sampling rate of 10 Hz.

2.5 Near-Infrared Spectroscopy Data Analysis

2.5.1 Preprocessing

The recorded raw light intensities of the three wavelengths (780,

805, and 830 nm) were converted into the concentration changes

of oxygenated, deoxygenated, and total hemoglobin ([oxy-Hb],

[deoxy-Hb], and [total-Hb]), using the modified Beer-Lambert

law. Optical signals measured on the scalp are generally accom-

panied by several physiological signals that are not directly

related to the cognitive activities.34–38 The most dominant com-

ponent is heart rate (arterial pulsation) showing a fundamental

spectral peak around 1.4–1.8 Hz.37,39 Breathing and Mayer

waves are two other physiological components observed at

approximately 0.3 and 0.1 Hz frequencies, respectively.37–39

To remove these spontaneous activities from the recorded

NIRS signals, a zero-phase low-pass filter with a cutoff fre-

quency of fc ¼ 0.09 Hz (fourth-order Butterworth) was applied

to each hemoglobin response. In addition, a zero-phase high-

pass filter with a cutoff frequency of fc ¼ 0.01 (fourth-order

Butterworth) was used to remove the low-frequency baseline

drifts. The frequency band of 0.01 to 0.09 Hz (or 0.1 Hz)

has been widely used for filtering out the spontaneously gener-

ated physiological components from the NIRS signals. 16,27,39–42

Note that the filtering process was applied to each session of

which the total duration was about 530 s, before segmenting

the NIRS data.

2.5.2 Feature extraction

Various types of BCI features have been used to classify hemo-

dynamic responses to different mental states, such as ampli-

tude,17,18,24,26,27,43–45 slope,16,27,42 variance,24,43 skewness,24,43

kurtosis,24,43 root mean square,43 zero crossings,43 wavelet coef-

ficients,25 and laterality.27 Some studies used raw light intensity

signals directly, without transforming them into concentration

values of hemoglobin.16,26,45 In this study, we used the mean

hemoglobin concentration values over predefined time periods

as candidate features, because they have been most widely used

for NIRS-based BCI studies.17,18,24,27,43,44 To extract the task-

related NIRS features, we used the 15-s epoch recorded

while the participants were carrying out each mental task

(see Fig. 1). The hemodynamic responses to mental activity

Fig. 1 A schematic diagram describing the experimental paradigm.

Fig. 2 The configuration of sources, detectors, and NIR channels used in this study. The red and blue
circles indicate the 16 sources and 15 detectors, respectively. The gray numbered squares represent the
50 channels. The distance between adjacent optodes was set to 3 cm.
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are generally observed with a time delay of 5–8 s,16,24,46 but this

varies among individuals and mental task types. Therefore, to

capture the task-specific hemodynamic responses more accu-

rately, we used three different window sizes of 5, 10, and

15 s, and consequently tested six different time windows,

i.e., 0–5, 0–10, 0–15, 5–10, 5–15, and 10–15 s, to extract

the candidate features. The features were extracted by simply

averaging the hemoglobin responses in each time window,

and four different candidate feature sets were constructed for

[oxy-Hb], [deoxy-Hb], [total-Hb], and a combination of [oxy-

Hb] and [deoxy-Hb]. The combination of [oxy-Hb] and

[deoxy-Hb] feature set was constructed by simply putting

together the [oxy-Hb] and [deoxy-Hb] feature sets into a single

feature set. Since six features were extracted for each of the 50

NIRS channels, the total numbers of the extracted features

were 300 for the [oxy-Hb], [deoxy-Hb], and [total-Hb]

feature sets (6 features × 50 channels), and 600 for the

combination of [oxy-Hb] and [deoxy-Hb] feature set

(6 features × 50 channels × 2 signal types ([oxy-Hb] and

[deoxy-Hb])).

2.5.3 Feature selection

It is well known that an excessive number of features can cause

not only the overfitting of the training data, but also an increase

in the learning time of a pattern classifier due to irrelevant or

redundant features contained in the high-dimensional feature

vector. This will eventually degrade the overall classification

performance of the trained classifier. Therefore, feature selection

is an indispensable step in every classification problem. In order

to reduce the dimensionality of the feature vector as well as to

select the best feature subset, we used the Fisher score, one of

the most widely used feature selection methods that has been

successfully applied to previous NIRS-based BCI studies.16,27,42

The Fisher score was estimated for each element of the con-

structed feature vector using

FSk ¼
ðμi − μjÞ

2

s2i þ s2j
; (1)

where μ and s2 represent the mean and variance, respectively,

and the subscripts i and j represent two different classes.

The subscript k designates the k’th feature element. A higher

Fisher score implies that the distance between features in differ-

ent classes is larger and the variance between features in the

same class is smaller. Thus, the top N features with the highest

Fisher scores are generally selected for the classification. In this

study, we selected the top five features for classification based

on a previous NIRS-based BCI study, which reported that clas-

sification accuracy is no longer increased when the number of

features selected by the Fisher criterion is five or six.16

2.5.4 Classification

To prevent potential biases in estimating classification accuracy,

we used a 10 × 10-fold cross-validation with an LDA classifier

that has been most widely used in NIRS-based BCI stud-

ies.16,17,24,25,27,42,43,45 The whole dataset (20 trials for each

class) was randomly split into 10 subsets each with the same

number of trials (two trials per class). Nine subsets were

used to train an LDA classifier, and the other subset was

used for the estimation of classification accuracy. This pro-

cedure was repeated until every subset was tested, and the aver-

age classification accuracy was then evaluated. This “ten-fold

cross-validation” was repeated 10 times with reshuffled subsets.

In each cross-validation step, the top five features were selected

independently, using the Fisher scores as described in the pre-

vious section. Since the 10 × 10-fold cross-validation was inde-

pendently applied to each subject, the top five features varied

among subjects. The classification accuracy was estimated

for all 28 possible combinations of two mental tasks using

the following four feature sets: [oxy-Hb], [deoxy-Hb], [total-

Hb], and a combination of [oxy-Hb] and [deoxy-Hb].

Figure 3 illustrates an intuitive example of the classification

process, where the best two features were used to classify

two different mental tasks (MUL versus ROT).

3 Results

Since classification accuracy should be greater than 70% for a

binary BCI system to be used for practical communication pur-

poses,47 only mental task combinations with a classification

accuracy over 70% were regarded as meaningful task combina-

tions in this study.

Fig. 3 An example of a cross-validation step, when the MUL and ROT tasks were classified using the
[oxy-Hb] feature set of the participant P6. (a) Feature values from 20 trials are displayed for each class on
a two-dimensional feature space. (b) A linear discriminant analysis (LDA) classifier (green dotted line) is
constructed using 18 trials of each class (red and blue circles), and the other two trials of each class (gray
circles) are used for the evaluation of accuracy. (c) The remaining two trials of each class (red and blue
circles) are then classified by the constructed LDA classifier.

Journal of Biomedical Optics 077005-4 July 2014 • Vol. 19(7)

Hwang et al.: Evaluation of various mental task combinations for near-infrared spectroscopy. . .



Figure 4 summarizes the mental task classification results

of each participant for four feature set types: ([oxy-Hb],

[deoxy-Hb], [total-Hb], and a combination of [oxy-Hb] and

[deoxy-Hb]), in which a rectangle filled with black color implies

that the classification accuracy of the corresponding pair of men-

tal tasks exceeded 70%. The “meaningful”mental task combina-

tions varied amongparticipants aswell as varyingwith the feature

sets used, but the combination of RMI andMUL tasks and that of

MUL and ROT tasks showed classification accuracies of over

70% in most participants regardless of the feature sets.

Figure 5 shows the mean classification accuracies of all pos-

sible mental task combinations, those of RMI and MUL combi-

nations and those of MUL and ROT combinations, with respect

to different feature sets. The classification accuracies averaged

over all 28 possible combinations of mental tasks were slightly

over the level of random chance (¼50%). However, the combi-

nation of RMI and MUL tasks and that of MUL and ROT tasks

showed mean classification accuracies around 70% for most fea-

ture sets. Specifically, the combination of MUL and ROT tasks

showed mean classification accuracies of over 70% in three of

four feature sets (70.57% for the [oxy-Hb] feature set, 71.53%

for the [deoxy-Hb] feature set, and 74.39% for the combination

of [oxy-Hb] and [deoxy-Hb] feature set). The combination of

RMI and MUL tasks showed a mean accuracy over 70%

when the [oxy-Hb] feature set was used (70.1%). Note that

the above two mental task combinations (RMI versus MUL,

and MUL versus ROT) always ranked first or second in the clas-

sification accuracy among all 28 task combinations regardless of

the feature set types.

To explore further which mental task was most frequently

selected in the mental task combinations with a classification

accuracy over 70%, we counted the number of times that

each mental task was included in the “meaningful” task combi-

nations shown in Fig. 4. As shown in Fig. 6, three mental tasks,

RMI, MUL, and ROT, were most frequently included in the

meaningful mental task combinations. This result is in line

with the previous results that the combination of RMI and

MUL tasks and that of MUL and ROT tasks resulted in a higher

classification accuracy than the other mental task combinations.

These results suggest that the three selected mental tasks, RMI,

oxy-Hb deoxy-Hb total-Hb [oxy-Hb] + [deoxy-Hb] 
P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7 P1 P2 P3 P4 P5 P6 P7 

LMI, RMI 

LMI, FMI 

LMI, SING 

LMI, SUB 

LMI, MUL 

LMI, ROT 

LMI, WRT 

RMI, FMI 

RMI, SING 

RMI, SUB 

RMI, MUL 

RMI, ROT 

RMI, WRT 

FMI, SING 

FMI, SUB 

FMI, MUL 

FMI, ROT 

FMI, WRT 

SING, SUB 

SING, MUL 

SING, ROT 

SING, WRT 

SUB, MUL 

SUB, ROT 

SUB, WRT 

MUL, ROT 

MUL, WRT 

ROT, WRT 

Fig. 4 Mental task classification results of each participant for four different feature set types, where a
filled rectangle implies that the classification accuracy of the corresponding pair of mental tasks
exceeded 70%.

Fig. 5 Mean classification accuracies of all possible combinations of
mental tasks (denoted by “All”), those of the RMI and MUL combina-
tions (denoted by “RMI vs. MUL”), and those of the MUL and ROT
combinations (denoted by “MUL vs. ROT”) for different feature sets.
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MUL, and ROT, have the potential to yield higher classification

accuracy than the other mental tasks.

Figures 7(a) and 7(b) show the hemodynamic responses aver-

aged across all subjects at the most frequently selected channels

in the cross-validation processes, for RMI and MUL tasks and

MUL and ROT tasks, respectively. The hemodynamic responses

elicited by different mental tasks were significantly different at

the selected channels, thereby making it possible to discriminate

two different mental tasks with reasonable accuracy. Moreover,

small standard errors computed across all subjects for each

hemodynamic response indirectly show the high reliability of

our experimental results.

Figures 8 and 9 show the grand-averaged [oxy-Hb] and

[deoxy-Hb] responses, respectively, for three different mental

tasks (RMI, MUL, and ROT tasks). The [oxy-Hb] responses

acquired during RMI and ROT tasks showed similar patterns

in frontal areas (ch. 37–ch. 50), but the difference between

the two task conditions was increased in parieto-occipital

areas. The [oxy-Hb] responses during the ROT task became

more similar to those during the MUL task around the posterior

areas. On the other hand, the [deoxy-Hb] responses of three

mental tasks did not show any consistent spatial patterns.

Since we used a relatively small number of trials for each

mental task (n ¼ 20) and large numbers of features (>300),

there is a possibility that high classification accuracy (>70%)

in some mental task combinations might arise by chance. To

verify this, we newly generated eight datasets each consisting

of 20 trials by randomly shuffling trials in the original datasets

(i.e., exchanging trials between different classes), and then we

repeated the same classification procedure (10 × 10-fold cross-

validation) with the newly generated datasets. As a result, the

number of meaningful combinations of mental tasks (classifica-

tion accuracy >70%) was significantly decreased from 84

(10.7% of all mental task combinations) to 7 (0.9% of all mental

task combinations) when the newly generated datasets were

used for the validation. Our simulation results showed that

about 8% of the mental task combinations with high-classifica-

tion accuracy in the original validation results could arise by

chance, but it is expected that such a small portion (8%)

might not affect the overall tendency of our results and our con-

clusion. In Fig. 4, two selected mental task combinations, com-

bination of RMI and MUL tasks and that of MUL and ROT

tasks, showed the meaningful classification accuracy in 31

cases, which is about 37% of all meaningful combinations

(n ¼ 84) and is overcoming the others in numbers. Therefore,

even when we assume that 2 or 3 cases were selected by chance

(with the 8% probability) in these two task combinations, the

overall tendency would not be affected at all.

4 Discussion

In order to implement a high-performance NIRS-based BCI

system, different mental states should be discriminated with

a high-classification accuracy. Most previous NIRS-based

BCI studies have mainly focused on enhancing classification

accuracy with the state-of-the-art signal processing methods

and machine learning algorithms with the aim to increase the

overall performance of a BCI system.16–18,24–26 However, if a

BCI user cannot generate distinct brain signals related to certain

mental tasks, even the most advanced methods might not be

able to classify those mental tasks. In the present study, in

order to provide a useful reference for the selection of optimal

mental task combinations, we investigated the suitability of a

variety of mental task combinations for BCI based on mental

Fig. 6 The number of times that each mental task was included in the
mental task combinations with a classification accuracy of over 70%.

Fig. 7 Grand-averaged [oxy-Hb], [deoxy-Hb], and [total-Hb] responses recorded during (a) RMI andMUL
tasks and (b) MUL and ROT tasks. The shaded regions indicate standard errors computed across all
subjects for each hemoglobin response.
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imagery tasks. To the best of our knowledge, the present study

is the first that investigates which mental task combinations can

be better choices in designing individualized NIRS-based BCI

systems.

From the analysis results, we confirmed that the combination

of MUL (mental multiplication) and ROT (mental figure rota-

tion) tasks and that of RMI (right-hand motor imagery) and

MUL tasks might be the most promising mental task combina-

tions among the 28 combinations tested in this study. In particu-

lar, the mental task MUL was most frequently observed in the

meaningful combinations of mental tasks (>70%), suggesting

that the MUL task generates a brain activity pattern most dis-

tinguishable from the other mental tasks. It is also noteworthy

that the combination of MUL and ROT tasks was the only men-

tal task combination with which all participants showed classi-

fication accuracies over 70%. In the case of the combination of

RMI and MUL tasks, unfortunately, one participant (P1) did not

show the meaningful classification accuracy (>70%) for any

feature sets. The combination of MUL and ROT tasks and

that of RMI andMUL tasks showed relatively high classification

accuracy for most participants, but optimal mental task combi-

nations were intrinsically different among the participants. It

would be ideal to use mental task combinations customized

for each individual in developing a practical BCI system.

However, the process to select the most suitable combinations

of mental tasks is a time-consuming task, thereby making a BCI

user feel exhausted even before using the BCI system. We think

that our results can be utilized as a useful reference to simplify

the procedure of selecting optimal mental task combinations,

thereby reducing the time needed for preliminary tests. In our

future studies, we will continue to test new mental tasks together

with those that showed good classification performance in the

present study.

Many previous NIRS studies have reported that brain activa-

tion generally induces an increase in [oxy-Hb] and a decrease in

[deoxy-Hb], but in our results, inverted [oxy-Hb] and [deoxy-

Hb] response patterns were sometimes observed in some mental

task conditions (Figs. 8 and 9). Such inverted hemodynamic

responses have also been frequently observed in other previous

studies.39,48–51 Particularly, two studies using the NIRS signals

acquired during mental arithmetic tasks also showed a signifi-

cant decrease in [oxy-Hb] and an increase in [deoxy-Hb] in the

frontal lobe.39,48

In this study, we used hemoglobin concentration values aver-

aged over predefined time periods as features for classification

because those features have been most widely used in NIRS-

based BCI studies.17,18,24,27,43,44 Besides the mean values of

hemoglobin concentrations, various types of features have

been introduced in NIRS-based BCI studies, such as

slope,16,27,42 variance,24,43 zero crossings,43 and wavelet coeffi-

cients.25 Apart from finding optimal mental task combinations, a

systematic comparison of different feature types would be a

meaningful research topic, which we would like to investigate

in future studies.

Fig. 8 Grand-averaged [oxy-Hb] responses recorded during RMI, MUL, and ROT tasks for all channels.
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