UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey Room 430, Federal Building 402 East State Street Trenton, New Jersey 08608

.. .

Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Lakewood, Colorado 80225 (Telephone: [303] 234-5888)

.

EVALUATION OF WATER LEVELS IN MAJOR AQUIFERS OF THE NEW JERSEY COASTAL PLAIN, 1978

By Richard L. Walker

U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 82-4077

(replacement copy)

Prepared in cooperation with the NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION, DIVISION OF WATER RESOURCES

Trenton, New Jersey

11 JAN 1994 OCT 24 1992

CONTENTS

Page

Abstract	1
Introduction	2
Purpose and scope	2
Study area	2
Previous investigations	2
Well-numbering system	4
Acknowledgments	4
Methods of investigation	4
Data collection	. 4
Data presentation	.5
Summary of Coastal Plain geohydrology	6
Artesian aquifers of the Coastal Plain	11
	11
Potomac-Raritan-Magothy aquifer system	
Lower aquifer of the Potomac-Raritan-Magothy	4.0
aquifer system	12
Geohydrology	12
Water levels	12
Water-level fluctuations	13
Upper aquifer of the Potomac-Raritan-Magothy	
aquifer system	23
Geohydrology	23
Water levels	23
Water-level fluctuations	24
Englishtown aquifer	31
Geohydrology	31
Water levels	32
Water-level fluctuations	33
Wenonah-Mount Laurel aquifer	36
Geohydrology	36
Water levels	37
Water-level fluctuations	38
Kirkwood aquifers	41
Geohydrology	41
Water levels	43
Water-level fluctuations	44
Cohansey aquifer	48
Geohydrology	48
Water levels	48
Water-level fluctuations	49
Summary and conclusions	52
Selected references	54

FIGURES

Figure	1Location map of study area	3
-	2Diagrammatic hydrogeologic section of the New	
	Jersey Coastal Plain	9

FIGURES--Continued

3-8Hydrographs of observation wells screened in the:	
lower aquifer of the Potomac-Raritan-	
Magothy aquifer system, near large	
centers of withdrawal	15
4. lower aquifer of the Potomac-Raritan-	
Magothy aquifer system, far from large	
centers of withdrawal	16
5. upper aquifer of the Potomac-Raritan-	
Magothy aquifer system	26
6. Englishtown aquifer	34 39
7. Wenonah-Mount Laurel aquifer	39
8. Kirkwood aquifers	45
9Map of potentiometric surface of the Cohansey	
aquifer, Cape May County, 1978	50
10Hydrographs of observation wells screened in the	
Cohansey aquifer in Cape May County	51

PLATES

Plates	1-5Maps	showing potentiometric surface of the:		
	1.	lower aquifer of the Potomac-Raritan-		
		Magothy aquifer system, 1978	in	pocket
	2.	upper aquifer of the Potomac-Raritan-		-
		Magothy aquifer system, 1978	in	pocket
	3.	Englishtown aquifer, 1978	in	pocket
	4.	Wenonah-Mount Laurel aquifer, 1978	in	pocket
	5.	Atlantic City 800-foot sand of the		
		Kirkwood Formation, 1978	in	pocket

TABLES

Table 1Stratigraphic and hydrologic characteristics of	
geologic units of the New Jersey Coastal	_
Plain	7
2-8Water-level data for wells screened in the:	
2. lower aquifer of the Potomac-Raritan-Magothy	
aquifer system	17
3. upper aquifer of the Potomac-Raritan-Magothy	
aquifer system	27
4. Englishtown aquifer	35
5. Wenonah-Mount Laurel aquifer	40
6. Atlantic City 800-foot sand of the Kirkwood	
Formation	46
7. Kirkwood aquifers	47
8. Cohansey aquifer in Cape May County	51

GLOSSARY

- Artesian aquifer. An aquifer containing water under sufficient pressure to cause the water level in a well open to the aquifer to rise above the top of the aquifer. Also called confined aquifer.
- Cone of depression. A low area in the potentiometric surface usually centered in the area of greatest concentration of withdrawals.
- Confining layer (confining bed). A body of relatively impermeable material stratigraphically adjacent to one or more aquifers. The hydraulic conductivity may range from nearly zero to some value several orders of magnitude lower than that of the aquifer.
- Head, static. The height above a standard datum of the surface of a column of water (or other liquid) that can be supported by the pressure at a given point. Head, when used alone in this report, is understood to mean static head.
- Hydraulic conductivity. A measure of the ability of a material to transmit water.
- Hydraulic gradient. The change in static head per unit of distance in a given direction. If not specified, the direction is understood to be that of the maximum rate of decrease in head.
- National Geodetic Vertical Datum of 1929 (NGVD of 1929). A geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada, formerly called mean sea level. NGVD of 1929 is referred to as sea level in the text of this report.
- Porosity. The porosity of a rock or soil is its property of containing interstices or voids and may be expressed quantitatively as the ratio of the volume of its interstices to its total volume. It may be expressed as a decimal fraction or as a percentage.
- Potentiometric surface. A surface which represents the static head in an aquifer. The potentiometric surface is defined by the levels to which water will rise in tightly cased wells open to the aquifer. See head, static.

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM (SI) UNITS

Multiply inch-pound unit	By	<u>To obtain SI unit</u>
foot (ft)	0.3048	meter (m)
feet per mile (ft/mi)	0.189	meters per kilometer (m/km)
mile (mi)	1.609	kilometer (km)
million gallons per day (Mgal/d)	0.04381	cubic meter per second (m³/s)
feet per year (ft/yr)	0.3048	meters per annum (m/a)

EVALUATION OF WATER LEVELS IN MAJOR AQUIFERS OF THE NEW JERSEY COASTAL PLAIN, 1978

By Richard L. Walker

ABSTRACT

Water levels and changes in water revels in the major aquifers are documented and evaluated to provide fundamental data for ground-water investigations and management.

Increased ground-water withdrawals from the major artesian aquifers that underlie the New Jersey Coastal Plain have caused large cones of depression in the artesian heads. These cones of depression are delineated on detailed potentiometric-surface maps produced from water-level data collected in the field in 1978. Water levels for 1978 are compared with those from 1970 or 1973, and water-level changes are evaluated and compared with hydrographs from observation wells.

The Potomac-Raritan-Magothy aquifer system is divided into lower and upper aquifers. These aquifers have large cones of depression centered in Camden, Middlesex, and Monmouth Counties. Measured water levels declined 5 to 20 feet in these areas between 1973 and 1978. The lowest levels measured were 90 feet below sea level in Camden County and 76 feet below sea level in the Middlesex-Monmouth County area.

Deep cones of depression in coastal Monmouth and Ocean Counties in the Englishtown and Wenonah-Mount Laurel aquifers are similar in location and shape, owing to a good hydraulic connection between these aquifers. Measured water levels declined 2 to 31 feet in the Englishtown aquifer and 12 to 26 feet in the Wenonah-Mount Laurel aquifer between 1973 and 1978. The lowest levels measured were 247 feet below sea level in the Englishtown and 195 feet below sea level in the Wenonah-Mount Laurel.

Water levels in the Atlantic City 800-foot sand of the Kirkwood Formation define an extensive elongated cone of depression. Water levels are lower than 70 feet below sea level at Margate and Ventnor, Atlantic County. Measured water-level changes ranged from a decline of 4 feet to a recovery of 9 feet during 1970-78. The lowest head measured in the Cohansey aquifer was 26 feet below sea level at Cape May, Cape May County, situated less than 0.5 mile from salty ground water.

. Na

INTRODUCTION

Purpose and Scope

The purpose of this report is to document and evaluate water levels and changes in water levels in the major artesian aquifers of the New Jersey Coastal Plain. Fundamental data for ground-water investigations and management are provided.

Ground water is the source of nearly 80 percent of the potable water supply in the Coastal Plain of New Jersey (Vowinkel, oral communication, 1981). Ground-water withdrawals from Coastal Plain aquifers have increased steadily since 1900. Present (1978) rates exceed 270 million gallons per day (Vowinkel and Foster, 1981, table 6). By the 1950's, the withdrawals produced large regional cones of depression in the major artesian aquifers. Withdrawals increased into the 1970's causing these cones to deepen and expand.

This report presents water-level data and the potentiometric surfaces of the major artesian aquifers in 1978 with reference to earlier years. Water-level data collected in 1978 are evaluated and compared with data collected since 1970. The report was prepared in cooperation with the New Jersey Department of Environmental Protection, Division of Water Resources, as part of a statewide water-resources investigation. Water-level data was collected from October to December, 1978 from wells screened in the major artesian aquifers of the Coastal Plain.

Study Area

The principal area of study is the Coastal Plain of New Jersey (fig. 1). The study area covers about 4,000 sq mi, bounded by the Atlantic Ocean to the east and the Delaware River to the west. The Fall Line marks the northwestern extent of the Coastal Plain. The study area includes Atlantic, Burlington, Camden, Cape May, Cumberland, Gloucester, Monmouth, Ocean, Salem, and parts of Mercer and Middlesex Counties.

Previous Investigations

The geohydrology and potentiometric head distribution in specific aquifers have been discussed on a county-by-county basis by numerous investigators. Other investigators described the hydrology of the aquifers on a regional basis. Barksdale and others (1958) discussed the ground-water resources adjacent to the Delaware River. Gill and Farlekas (1976) presented geohydrologic maps of the Potomac-Raritan-Magothy aquifer system of the Coastal Plain, including potentiometric maps for 1900, 1956, and 1968. Luzier (1980) used a digital model to simulate head changes in the Potomac-Raritan-Magothy aquifer system. Luzier presented maps of potentiometric heads for 1973 and projected the heads from 1973 to 2000. Farlekas (1979) reported on the geohydrology of the

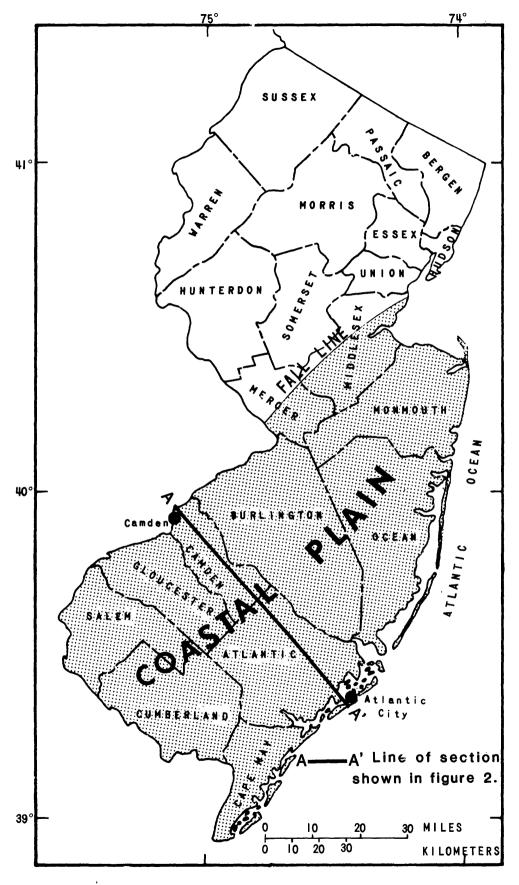


Figure 1.--Location of study area.

Farrington aquifer in the northern Coastal Plain and presented potentiometric surface maps for the Farrington and Old Bridge aquifers of the Potomac-Raritan-Magothy aquifer system for 1959 and 1973.

The geohydrology and potentiometric head distribution for the Englishtown aquifer was discussed for the northern Coastal Plain by Nichols (1976) and for Camden County by Farlekas and others (1976).

Nemickas (1976) reported on the digital simulation of ground-water flow in the Wenonah-Mount Laurel aquifer and presented water-level data for part of the aquifer for 1959 and 1970. Geohydrology and water levels in the Kirkwood aquifers were discussed by Thompson (1928), Barksdale and others (1936), Gill (1962), Clark and others (1968), Anderson and Appel (1969), and Rhodehamel (1973).

Gill (1962) reported on the geology and ground-water resources of Cape May County and presented hydrologic data on the Cohansey aquifer.

Well-Numbering System

The well-numbering system in this report is based on the system used by the U.S. Geological Survey in New Jersey since 1978. The well number consists of a county code number and a sequence number of the well within the county. County codes are Atlantic (1), Burlington (5), Camden (7), Cape May (9), Cumberland (11), Gloucester (15), Mercer (21), Middlesex (23), Monmouth (25), Ocean (29), and Salem (33). Well number 15-137 is a typical example for the 137th well in Gloucester County.

Acknowledgments

The author gratefully acknowledges the assistance of the officials and individuals who provided information about their wells and allowed access to the wells for water-level measurements.

METHODS OF INVESTIGATION

Data Collection

During 1978, static water levels were measured in nearly 1,000 wells that are screened in major artesian aquifers in the Coastal Plain of New Jersey. Data collection began in October and ended in early December. During this time of year, heavy summer pumping has subsided. Water levels generally reach highs in winter and early spring. During fall, water levels approximate the average for the year. The Ground Water Site Inventory Data File (GWSI) of the U.S. Geological Survey, which contains well data for about 5,500 wells in New Jersey, was used to select wells measured in 1970 or 1973 for water-level measurements in 1978. These wells were evaluated with respect to their areal distribution, aquifer, and proximity to areas of heavy ground-water withdrawal. Where necessary, additional wells were selected to improve the distribution of data points.

To obtain an adequate distribution of measuring sites, many water-supply wells, including public supply, irrigation, industrial, and domestic wells, were measured. About 10 percent of the wells were water-level observation wells.

Various water-level-measuring techniques were used. The most direct and accurate is the wetted steel tape method, which was used for measuring observation and most water-supply wells. For some measurements, an electric tape (water-level finder) was more efficient, although slightly less accurate. The airline method is the least accurate, and the vertical length of the airline must be known. The airline method was used only when a steel or electric tape could not be used.

Nearby pumping was controlled at the time measurements were made. All large-capacity wells screened in the same aquifer within 1 mile were turned off for at least 1 hour before Several measurements were made in each well to measurements. determine if the water level had recovered sufficiently. In most Coastal Plain aquifers, water levels in large-capacity wells can be expected to recover to within 90 to 95 percent of the static head in about 1 hour.

Water levels were referenced to land surface datum at each measuring site. The altitude of land surface was used to adjust the measured water levels to sea-level datum. Altitudes of land surface were obtained from the GWSI file, field checked against topographic maps, and corrected when necessary. Some well owners provided more accurate altitudes from leveling surveys. Most altitudes, however, were estimated from U.S. Geological Survey $7^{1}/_{2}$ -minute topographic maps and are considered accurate within half the contour intervals (10 or 20 ft) of the map.

Aquifer designations were taken from the GWSI file, and wells are grouped according to aquifer system. In many areas, aquifer designations were revised based on information from recent geohydrologic investigations. The geohydrologic framework of the Coastal Plain is discussed in sections on geohydrology.

Data Presentation

Data presented include water levels and water-level changes, potentiometric surface maps, and water-level hydrographs. These data are grouped by major artesian aquifer and discussed in the six report sections representing these aquifers. A table containing well and water-level data is presented at the end of each section. These tables include the well number for each site, which is used for reference throughout the report, site location, owner name, local well number, year drilled, altitude of land surface, and well depth. Water levels measured in 1978 were compared with levels for earlier years (1970 or 1973). Change in water level for 1970-78 or 1973-78 is given for many sites.

Seasonal water levels may vary as much as 25 ft in some aquifers. Reliable comparisons can be made of water levels measured at the same time of year and these can be used for evaluating water-level trends. Variations in head change in a few randomly spaced wells may be caused by local variations in withdrawal or recharge, measurement accuracy limitations, and variations in the time allowed for water-level recovery before measurements in or near recently pumped wells.

A 1:250,000 scale potentiometric surface map for 1978 is shown for each aquifer. These maps were prepared from the water-level data in the tables. Locations of most wells are shown on the potentiometric maps. The accuracy of the contours is dependent upon the distribution of wells, accuracy of land surface altitude, and the accuracy of the measured water levels. These maps show the potentiometric head distribution for the confined part of each aquifer. Potentiometric maps are useful in defining recharge and discharge areas, the generalized path of ground-water flow from recharge to discharge areas, and the hydraulic gradient along these flow paths. The hydraulic gradient may be used to determine the average ground-water velocity along a given path if the local hydraulic conductivity and porosity of the aquifer are known. The outcrops shown on the potentiometric maps are modified from U.S. Geological Survey Miscellaneous Geologic Investigations Map I-514-B, 1967. The outcrops for the Old Bridge Sand Member of the Magothy Formation and the Farrington Sand Member of the Raritan Formation are from Barksdale and others, 1943, fig. 6.

Water-level hydrographs of selected observation wells for each aquifer for 5- or 8-year periods are given. The observation wells were selected from the U.S. Geological Survey Observation Well Network. The hydrographs were plotted using the lowest recorded monthly and quarterly water levels. Individual hydrographs show seasonal water-level fluctuations and local long-term trends. Together, they show long-term regional trends in each aquifer. Seasonal water-level fluctuations may be caused by natural variations in recharge and evapotranspiration and by variations in the withdrawal of ground water. The datum used in this report is sea level (NGVD of 1929).

SUMMARY OF COASTAL PLAIN GEOHYDROLOGY

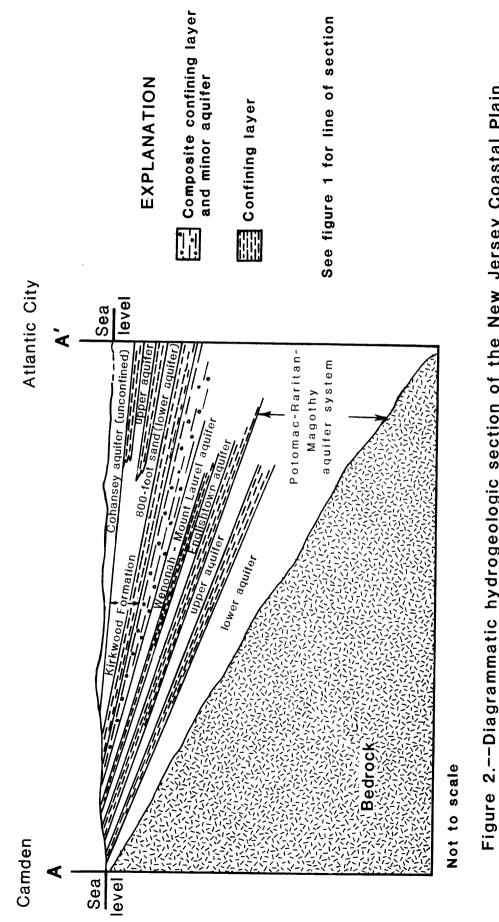
The aquifers of the Coastal Plain are the primary source of water supply in the region. They are part of a wedge-shaped mass of sand, silt, and clay, which range in age from Cretaceous to Quaternary (table 1) and lie on a pre-Cretaceous bedrock surface.

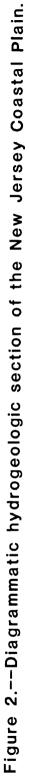
Table 1.--Stratigraphic and hydrologic characteristics of geologic units of the New Jersey Coastal Plain¹

SYSTEM	GEOLOGIC UNIT	LITHOLOGY	HYDROLOGIC CHARACTERISTICS			
Quater-	Alluvial deposits	Sand, silt, and black mud. Sand, quartz, light-colored, medium grained,	Locally may yield small quantities of water to shallow wells.			
nary.	Beach sand and gravel	pebbly.				
	Cape May Formation Pensauken Formation Bridgeton Formation	Sand, quartz, light-colored, heterogeneous, clayey, pebbly, glauconitic.	Thicker sands are capable of yielding large quantities of water.			
	Beacon Hill Gravel	Gravel, quartz, light-colored, sandy.	No known wells tap this formation.			
	Cohansey Sand	Sand, quartz, light-colored, medium to coarse-grained, pebbly; local clay beds.	A major aquifer. Ground-water occurs generally under water-table conditions. In Cape May County, the aquifer is under artesian conditions. Inland from the coast and in the northern part of Ceean County, the Cohansey Sand is in hydraulic connection with the Kirkwood Formation, forming the unconfined Kirkwood-Cohansey aquifer system.			
Tertiary	Kirkwood Formation	Sand, quartz, gray to tan, very fine- to medium-grained, micaceous, and dark- colored diatomaceous clay.	Includes a major and minor artesian aquifer near the coast. The major aquifer is the Atlantic City 800-foot sand. The minor aquifer is the Rio Grande water-bearing zone or upper aquifer. The Kirkwood Formation includes up to three confining layers near the coast. Inland from the coast and in the northern part of Ocean County, the Kirkwood Formation is hydraulically connected to the unconfined Cohansey Sand, forming the unconfined Kirkwood- Cohansey aquifer system.			
	Piney Point Formation	Sand, quartz and glauconitic, fine- to coarse-grained.	Minor aquifer in New Jersey. Greatest thickness in Cumberland County.			
	Shark River Marl Manasquan	Sand, quartz and glauconite, gray, brown, and green, fine- to coarse-grained, clayey, and green silty and sandy clay.	Locally may yield small quantities of water to wells.			
	Formation		Locally may yield small to moderate quantities of water to wells.			
	Vincentown Formation	Sand, quartz, gray and green, fine- to coarse-grained, glauconitic, and brown clayey, very fossiliferous, glauconite and quartz calcarenite.	Locally may yield small to moderate quantities of water to wells.			
	Hornerstown Sand	Sand, glauconite, green, medium- to coarse- grained, clayey.	Locally may yield small quantities of water to wells.			
	Tinton Sand	Sand, quartz, and glauconite, brown and gray,	No known wells tap this sand.			
	Red Bank Sand	fine- to coarse-grained, clayey, micaceous.	Yields small quantities of water to wells in Monmouth County.			
	Navesink Formation	Sand, glauconite, and quartz, green, black, and brown, medium- to coarse-grained, clayey.	Locally may yield small quantities of water to wells.			
	Mount Laurel Sand Wenonah Formation	Sand, quartz, brown and gray, fine- to coarse- grained, glauconitic. Sand, quartz, gray and brown, very fine- to fine-grained, glauconitic, micaceous.	A major aquifer in the northern part of the Coastal Plain. A sand unit within the two formations forms the Wenonah- Mount Laurel aquifer.			
Cretaceous	Marshalltown	Sand, quartz and glauconite, gray and black, very fine to medium-grained, very clayey.	Leaky confining bed.			
	Formation Englishtown Formation	Sand, quartz, tan and gray, fine- to medium-grained; local clay beds.	A major aquifer in the northern part of the Coastal Plain, the Englishtown aquifer consists of two sand units in Oceam and Monmouth Counties.			
	Woodbury Clay	Clay, gray and black, micaceous.	The two formations form the Merchantville-Woodbury confin-			
	Merchantville Formation	Clay, gray and black, micaceous, glauconitic, silty; locally very fine-grained quartz and glauconitic sand.	ing unit, a major confining layer throughout the New Jersey Coastal Plain. Locally the Merchantville may con- tain a thin water-bearing sand.			
	Magothy Formation	Sand, quartz, light-gray, fine-grained, and dark-gray lignitic clay.	Potomac- Upper aquifer referred to as Old Bridge aquifer in the northern Coastal Plain.			
	Raritan Formation	Sand, quartz, light-gray, fine- to coarse- grained, pebbly, arkosic, red, white, and variegated clay.	Karıtan- <u>Major confining layer</u> Magothy Middle aguifer referred to as the Farrington aquifer aguifer in the northern Coastal Plain is combined			
	Potomac Group	Alternating clay, silt, sand, and gravel.	system with sands of the Potomac Group forming a large lower aquifer, as used in this report.			
Pre- Cretaceous	Pre-Cretaceous basement	Precambrian and lower Paleozoic crystalline rocks, metamorphic schist and gneiss; locally Triassic basalt, sandstone, and shale	Except along Fall Line, no wells obtain water from these consolidated rocks.			

¹ Modified after Seaber, 1965, table 3.

These unconsolidated deposits thicken southeastward from less than 50 ft along the Fall Line to more than 6,500 ft in Cape May County (Gill and Farlekas, 1976).


The aquifers crop out in irregular bands, which trend northeast to southwest. In section, they appear as wedge-shaped layers, which dip to the southeast with a gradient of 10 to 100 ft/mi (Parker and others, 1964, p. 42). Several areally extensive confining layers define the lower and upper hydrologic boundaries of the aquifers. Figure 2 illustrates these aquifers and confining layers. Several minor aquifers, both water table and artesian, are not shown in figure 2 and are not discussed in this report.


The aquifers discussed in this report, from oldest to youngest, are

- lower aquifer of the Potomac-Raritan-Magothy aquifer system
- upper aquifer of the Potomac-Raritan-Magothy aquifer system
- Englishtown aquifer
- Wenonah-Mount Laurel aquifer
- Kirkwood aquifers
- Cohansey aquifer

Recharge to the Coastal Plain is largely by infiltration of precipitation on the outcrop areas. Leakage from the overlying surface-water bodies also contributes recharge. At several locations, this recharge is induced by the lowering of potentiometric heads in the aquifers due to withdrawals.

Water is discharged from the Coastal Plain by discharge to overlying surface-water bodies, by evapotranspiration, and by withdrawals from wells.

Withdrawals since 1900 have caused large cones of depression in several major Coastal Plain aquifers (Meisler, 1980, p. 21). The following table shows withdrawals from the major artesian aquifers. The Kirkwood-Cohansey aquifer system is a water-table aquifer and is not included.

Major ground-water withdrawals from the Coastal Plain of New Jersey by county and aquifer, 1978.¹ [In million gallons per day] [Modified from Vowinkel and Foster, 1981, table 6]

County	Potomac- Raritan- Magothy aquifer system	English- town aquifer	Wenonah- Mount Laurel aquifer	Kirkwood aquifers ² (upper and lower aquifer)	Cohansey aquifer (confined)
Atlantic Burlington Camden Cape May Cumberland Gloucester Mercer Middlesex Monmouth Ocean Salem	38.96 69.57 25.19 8.12 49.38 21.60 11.53 6.10	0.49 .76 6.25 4.59	1.14 .88 .02 1.31 .03 1.32	9.12 5.36 4.22	6.03
Total	230.45	12.09	4.70	18.70	6.03

¹Withdrawal data do not include domestic users, unavailable grandfather rights withdrawals, and some withdrawals from the water-table aquifer.

²Includes only Rio Grande water-bearing zone and Atlantic City 800-foot sand.

The generalized direction of flow in each of the aquifers may be approximated from the potentiometric maps by drawing lines at right angles to the contours from areas of higher head to areas of lower head. The paths of flow would be roughly parallel to these lines, converging toward the centers of the major cones of depression. In general, water is moving from the outcrop areas and from the confined downdip parts of the aquifers toward the major cones of depression. In some locations, the flow directions are toward natural points of discharge, such as where surface-water bodies overlie outcrop areas.

ARTESIAN AQUIFERS OF THE COASTAL PLAIN

Potomac-Raritan-Magothy Aquifer System

The Potomac-Raritan-Magothy aquifer system is made up of (in ascending order) the Potomac Group and Raritan and Magothy Formations of Cretaceous age. This aguifer system is composed of two major aquifers called the lower and upper aquifers in this report (fig. 2). Farlekas (1979) refers to these aquifers in the northern part of the Coastal Plain as the Farrington and 01 d Bridge aquifers. The specific composition of these aquifers are covered later in this report. However, in the central and southern coastal plain, the aquifer system has generally been represented as a hydrologic unit (Barksdale and others, 1958). Considerable geologic, lithologic, and hydrologic data have become available in recent years. The data suggest that water-bearing sands in the southern part of the aquifer system function as two or three distinct hydrologic units.

Gill and Farlekas (written communication, 1970) defined three aquifers of the system (lower, middle, and upper) underlying an area of about 400 sq mi southwest of Trenton adjacent to the Delaware River. Gill and Farlekas (written communication, 1970) suggest that the lower and middle aquifers are interconnected in Burlington and Camden Counties adjacent to the Delaware River and show a similarity in potentiometric head. Farlekas and others (1976) also interpreted three aquifers when analyzing the aquifer system in Camden County. More recent work by Zapecza (written communication, 1982) defines the regional hydrologic framework of the Coastal Plain aquifers. Zapecza redefined these three aquifers and extended the correlations over more of the Coastal The interpretations made by Zapecza indicate: Plain.

- a. The lower aquifer is recognizable in the subsurface from Salem County north to Burlington County, where the aquifer thins northward, and is absent in the northern Coastal Plain.
- b. The middle aquifer is laterally continuous with the Farrington aquifer.
- c. The lower and middle aquifers cannot be differentiated in the downdip areas of the southern Coastal Plain.
- d. The upper aquifer is laterally continuous with the Old Bridge aquifer.

Water-level data collected in 1973 and 1978 from wells screened in the lower and middle aquifers, show a similarity in potentiometric head over large areas. This similarity suggests some hydraulic connection. Furthermore, the confining layer separating the lower and middle aquifers is thin or absent in places adjacent to the Delaware River (Gill and Farlekas, written communication, 1970). Although the confining layer is well defined in a narrow band stretching from Burlington County to Salem County, it is not well defined in large areas to the east (Zapecza, written communication, 1982). In this report, the lower and middle aquifers are combined and referred to as the lower aquifer of the Potomac-Raritan-Magothy aquifer system.

Lower Aquifer of the Potomac-Raritan-Magothy Aquifer System

Geohydrology

The lower aquifer of the Potomac-Raritan-Magothy aquifer system consists mainly of undifferentiated sand, gravel, silt, and clay of the Potomac Group undivided and Raritan Formation. In the outcrop area (pl. 1), the aquifer may include younger surficial material. In the northern Coastal Plain, the lower aquifer is primarily the Farrington aquifer described by Farlekas (1979). The lower aquifer includes essentially all water-bearing zones within the aquifer system below the upper aquifer. The aquifer lies unconformably on pre-Cretaceous bedrock, which acts as the lower confining layer.

The upper confining layer, a thick sequence of silt and clay, separates the lower aquifer from the upper aquifer, and underlies much of the Coastal Plain (Zapecza, written communication, 1982). In the northern part of the Coastal Plain, this confining layer is the Woodbridge Clay Member of the Raritan Formation, which has been traced to southern New Jersey (Farlekas, 1979, p. 20).

Withdrawals from the lower aquifer are greatest in the northwestern parts of Burlington, Camden, Gloucester, and Salem Counties and in Middlesex and Monmouth Counties. Withdrawals diminish southward in Burlington, Camden, Gloucester, Ocean, and Salem Counties where the aquifer is at greater depth and contains salty ground water. Chloride concentrations range from 250 mg/L to 27,000 mg/L (Luzier, 1980, p. 10) and generally increase southward or southeastward and with increasing depth. Luzier (1980) discusses salty ground water in the southern part of the Potomac-Raritan-Magothy aquifer system.

Water Levels

Water levels were measured in 386 wells screened in the lower aquifer (table 2). Well density is greatest southwest of Trenton adjacent to the Delaware River and in parts of Middlesex and Monmouth Counties near Raritan Bay. Wells screened in the lower aquifer are sparse in parts of Burlington, Camden, Cumberland, Monmouth, and Ocean Counties, and no wells are known in Atlantic and Cape May Counties.

The potentiometric map on plate 1 shows two large cones of depression. The largest is centered in Camden County, where water levels are as low as 89 ft below sea level. Nearby smaller cones in Burlington, Gloucester, and Salem Counties have heads from 10 to 84 ft below sea level. The other cone of depression is centered in eastern Middlesex and northwestern Monmouth Counties, where levels are as low as 76 ft below sea level. The two cones coalesce in the vicinity of southern Monmouth and northern Ocean Counties, where levels are about 20 ft below sea level.

The highest water levels (65-88 ft above sea level) are adjacent to the outcrop (pl. 1) in central Mercer and Middlesex Counties.

Well 11-137 in eastern Cumberland County is an observation well screened in a saltwater zone in the lower aquifer. In 1974, the chloride concentration was 11,000 mg/L (Luzier, 1980, p. 9). The water level measured in 1978 was 37 ft below sea level. (See table 2 and figure 4.) However, for contouring the heads in plate 1, the water level was adjusted to an equivalent freshwater head of 20 ft below sea level, based on density, temperature, and pressure at the time of measurement. This is the only well in the lower aquifer where an adjustment was required.

Water-Level Fluctuations

Change in water level from 1973 to 1978 was calculated for 255 of the wells listed in table 2. These changes indicate a general decline in levels in much of the aquifer. Greatest declines (5-20 ft) were generally where the head was lowest.

Large declines, such as in well 5-337 (30 ft), 29-47 (38 ft), and 33-30 (75 ft), are due mostly to changes in local withdrawal. At well sites 29-47 and 33-30, no water was withdrawn from the lower aquifer before 1973. Since 1973, pumping from the lower aquifer at these sites caused large declines. The head decline at well 29-47 (38 ft) is partly related to regional declines. An observation well (29-85) near Toms River, Ocean County, indicates that regional heads declined at least 18 ft. The 75-foot decline noted for well 33-30 in Salem County, which greatly exceeds the 10-foot average decline, is the result of local withdrawal.

The areas of least head change were generally near the outcrop. In a few parts of the aquifer, levels rose in response to reductions in pumping. In a small area north of Pennsville, Salem County, levels recovered as much as 18 ft. Levels in the western part of Camden City, Camden County, recovered an average of 8 ft between 1973 and 1978.

Hydrographs of 10 observation wells screened in the lower aquifer are shown in figures 3 and 4. These hydrographs show a declining trend in water levels throughout the confined parts of the lower aquifer. Well locations are shown on plate 1.

The hydrographs in figure 3 represent wells near large centers of withdrawal and show cyclic seasonal variations combined with a long-term downward trend. The seasonal variations are caused largely by seasonal changes in pumping rather than by variations in recharge (Luzier, 1980, p. 39). The average decline ranged from 1.3 ft/yr in well 33-187, in northern Salem County, to 2.8 ft/yr in well 25-272, near the major cone of depression in eastern Middlesex and northwestern Monmouth County.

The hydrographs in figure 4 show regional water-level changes and little or no seasonal variations because they are downdip from the outcrop and far from large withdrawal centers. However, they show regional water-level changes. The average decline ranged from 1.7 ft/yr in well 11-137, 31 mi south of the cone of depression in Camden County, to 3.6 ft/yr in well 29-85, in northcentral Ocean County. The average decline in well 29-85 is about 1 ft/yr more than the greatest decline in the other wells. This is probably due to the development of nearby water-supply systems in the lower aquifer since 1973. Plate 1 shows the small cones of depression in Ocean County.

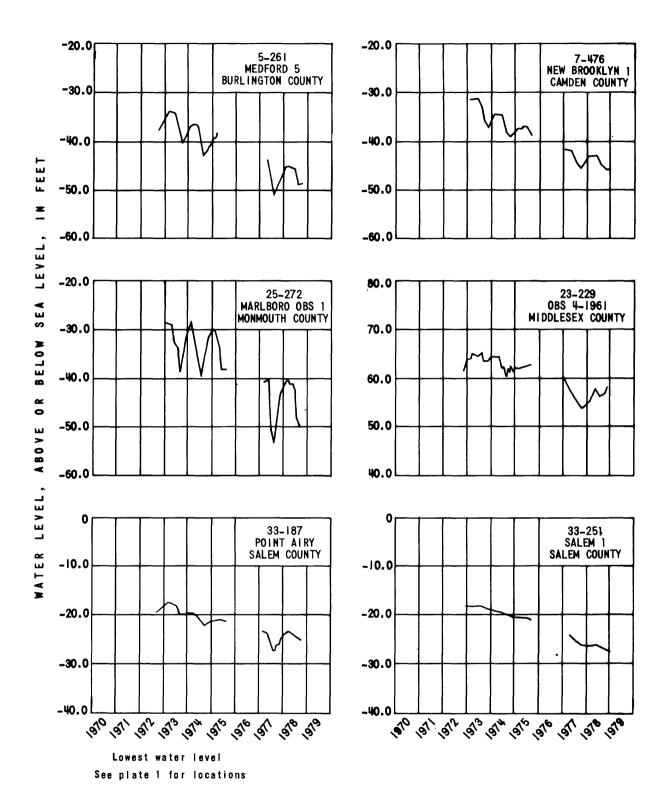
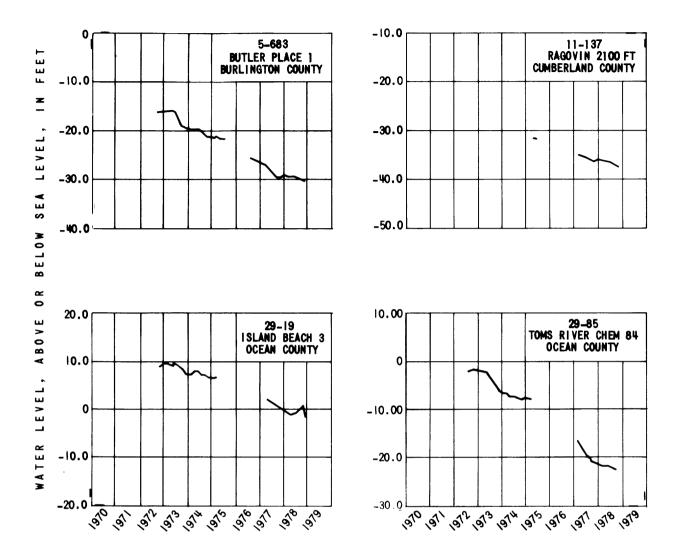



Figure 3.-- Hydrographs of observation wells screened in the lower aquifer of the Potomac-Raritan-Magothy aquifer system, near large centers of withdrawal.

Lowest water level See plate 1 for locations

Figure 4.-- Hydrographs of observation wells screened in the lower aquifer of the Potomac-Raritan-Magothy aquifer system, far from large centers of withdrawal.

WELL NUMBER	LOCATIO LATI- LO TUDE TU	NGI-	OWNER	LOCAL NUMBER	YEAR DRILLED	ALTITUDE LAND SURFACE (FT)	SCREEN INTERVAL (FT)	197 WATER ALTI- TUDE ¹ (FT)	LEVEL			CHANGE IN WATER LEVEL (FT)
5- 40 5- 42 5- 48 5- 50 5- 51	400405 745 400846 744 400800 744 400412 745 400453 745	1212 1309 157	DELA VALLEY W C BORDENTOWN W D NJ DEPT DEFENSE GENERAL HOME PR BURLINGTON C WD	DVWC 16 GILDER FIELD 1 NAT GUARD 1 INDUSTRIES 1 BCWD 3 1949	1955 1952 1953 1949	18 89 83 12 9	39- 51 355- 385 - 230 ³ - 120 ³ 64- 85	1 7 2	11/27 12/11 12/05 11/26 11/20	7 6 2 1 -1	11/15 10/11 10/26 11/07 11/13	0 5 -5 -1 1
5- 63 5- 98 5-101 5-109 5-110	400213 745 400525 744 400538 744 400632 744 400632 744	938 946 904	WILLINGBORO MUA HERCULES POWDER HERCULES POWDER NATIONAL GYPSUM NATIONAL GYPSUM	WMUA 1-OBS Hercules 3 Hercules 1 OBS NAT GYP 2 NAT GYP 3	1965 1961 1945 1955 1964	45 25 19 22 22	284- 294 111- 136 94- 104 113- 123 122- 142	0 -6	11/27 11/20 11/20 11/20	-16 1 -4 3	11/06 11/13 11/13 11/17 11/17	-5 1 2 1
5-114 5-121 5-122 5-123 5-125	400606 743 400934 744 400934 744 395904 750 395929 745	019 019 009	DEMARCO, RALPH NJS REFORMATORY NJS REFORMATORY NJ WATER CO DELA VALLEY W C	DEMARCO NJSR 4 NJSR 5 DVWC 28 DVWC 10	1958 1951 1964 1969 1961	85 97 75 30 79	388- 392 357- 387 337- 367 226- 261 239- 281		11/20 11/27	-7 0 4 -5 -11	11/03 10/26 10/26 11/09 11/09	-1 -5
5-126 5-127 5-130 5-131 5-134	395929 745 395938 745 400002 750 400002 750 400002 750	810 044 044	NJ WATER CO NJ WATER CO NJ WATER CO DELA VALLEY W C CINNAMINSON TSA	DVWC 12-POMONA RIVERTON 14 RIVERTON 13 DVWC 27 TEST WELL 68 1	1964 1963 1965	73 35 65 60 5	157- 196² 179- 229 167- 198 145- 176 24- 100		11/27 11/27	-8 -13 -9 -16 -4	11/09 11/09 11/09 11/09 11/09	-2 -6
5-135 5-137 5-140 5-145 5-146	400104 745 400147 745 400241 745 400110 745 400122 745	934 546 713	HOEGANAES IRON TAYLOR, H G CHANT, HARRY R HOLY CROSS H S NJ WATER CO	HOEGANAES TAYLOR 2 CHANT 1 HIGH SCHOOL DVWC 19	1951 1963 1965 1958 1959	35 14 22 70 25	119- 134 - 253 140- 155 154- 174 89- 130	7	11/28 11/27 11/27	7 12 2 3	11/07 11/06 11/06 11/15 11/15	-2 -5 1
5-147 5-180 5-187 5-190 5-206	400126 7450 400532 7440 400703 7440 400712 7440 400325 7440	833 832 842	NJ WATER CO WORKMAN, JAMES FLORENCE TWP WD FLORENCE TWP WD CARTY,RONALD	FAIRVIEW ST WORKMAN 1 FTWD 4 FTWD 1	1970 1951 1948 1931 1959	83 41 30 30 62	180- 235 170- 194 119- 134 99- 119 370- 380	-8 -7	11/20 11/20 11/20 11/20	-1 8 -3 -24	11/15 11/12 11/07 11/07 11/02	-2 5 9 -5
5-209 5-214 5-217 5-228 5-232	400412 744 400531 744 400632 744 395630 7458 395727 7459	430 234 855	COLUMBUS W C KELLEY, EDWARD INDUSTRIAL PARK MAPLE SHADE WD MAPLE SHADE W D	COLMBUS 3-1969 KELLEY TURNPIKE JCTN MSWD 10 8(MAIN STREET)	1969 1958 1975 1972	73 60 60 40 20	259- 274 - 319 ³ 293- 329 ² 440- 500 210- 270		11/20 11/20	-18 -10 -5 -47 -29	10/25 10/30 10/26 11/08 11/09	-1 -5
5-261 5-262 5-264 5-265 5-266	395525 7450 395524 7450 395704 7458 395702 7458 395703 7458	025 812 808	US GEOL SURVEY US GEOL SURVEY MOORESTOWN T WD MOORESTOWN T WD MOORESTOWN T WD	MEDFORD 5 MEDFORD 4 MTWD 5 MTWD 6 MTWD 3	1967 1967 1963 1963 1942	73 72 38 42 40	740- 750 1125-1145 248- 288 248- 288 269- 299	-40	09/21 09/21 11/27	-48 -48 -40 -38 -42	11/07 11/06 11/13 11/13 11/13	-8 -8 -3
5-268 5-272 5-273 5-274 5-283	395751 7458 395834 7459 395835 7456 395838 7459 395838 7459 395933 7454	910 643 905	PRICE BUILDERS MOORESTOWN T WD MOORESTOWN F C CAMPBELL SOUP MOORESTOWN T WD	LAYNE 1 7-1969 FIELD CLUB 1 CAMPBELL 1 SUPPLY 8	1960 1969 1964 1958 1969	70 40 70 40 65	- 288 ³ 335- 375 274- 302 241- 262 282- 332	-18 -23 -16	11/27 11/27 11/27 11/02 11/29	-30 -16 -27 -20 -27	11/15 11/24 11/16 11/24 11/24	-6 2 -4 -4 -2
5-284 5-290 5-291 5-303 5-304	395936 7454 395936 7446 395941 7447 395607 7456 395608 7456	655 734 648	MOORESTOWN T WD MOUNT HOLLY W C HOLLYFORD ICE MT LAUREL MUA MT LAUREL MUA	MTWD 4 MHWC 6 1 1946 1 2	1960 1972 1946 1961 1965	59 15 20 20	298- 338 530- 615 ² 470- 500 558- 589 362- 399 ²	-39	11/29 11/27 11/27	-51	11/24 11/14 11/14 11/15 11/15	-3 -16 -11
5-324 5-325 5-330 5-331 5-332	395620 7455 395616 7455 395949 7436 400034 7436 400106 7437	514 655 621	MT LAUREL MUA MT LAUREL MUA US ARMY FT DIX US ARMY FT DIX US ARMY FT DIX	3(TEST WELL 1) 4(TEST WELL 2) FORT DIX 4 FORT DIX 1 FORT DIX 5	1973 1973 1943 1941 1969	40 35 140 138 150	592- 642 590- 640 1056-1086 916- 960 1064-1104	-38 -42 -27	11/30 11/30 11/26 11/26 11/26	-43 -48 -49 -32 -39	11/16 11/16 11/02 11/02 11/02	-8 -10 -7 -5 -7
5-333 5-334 5-335 5-337 5-340	400129 7436 400138 7437 400141 7435 400216 7436 400300 7435	753 525 607	US ARMY FT DIX US ARMY FT DIX US AIR FORCE US AIR FORCE US AIR FORCE	FORT DIX 2 FORT DIX 3 MCGUIRE D MCGUIRE A MCGUIRE B	1941 1953 1953 1960	131 165 112 128 126	1030-1051 849- 869 1012-1075 992-1055 780- 835 ²	-39 -37 -37	11/26 11/26 11/26 11/26 11/26		11/02 11/02 11/02 11/02 11/02	-16 -2 -18 -30 -2
5-344 5-382 5-388 5-393 5-440	400546 7434 395839 7442 395939 7437 400209 7457 400242 7442	242 742 740	HOFFMAN LAROCHE IONAC CHEM CO US ARMY FT DIX RIVERSIDE INDUS RHODIA CORP	1974 WELL IONAC CHEM 4 FORT DIX 6 FTC 39 RHODIA 1	1974 1976 1970 1952 1964	136 30 160 15 72	783- 814 ² 773- 824 1090-1140 54- 67 603- 613		11/26 11/21	-61 -42 2	11/02 10/14 11/02 11/07 11/13	3 -7

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ³WELL DEPTH

 $+ \tilde{N}_{\mu}^{-1}$

WELL NUMBER	LOCATION LATI- LONG TUDE TUDE	I – OWNER	LOCAL Number	YEAR Drilled	ALTITUDE LAND SURFACE (FT)	1 SCREEN INTERVAL (FT)	1973 WATER LE ALTI- TUDE ¹ D (FT)	VEL	19 WATER ALTI- TUDE ¹ (FT)	LEVEL	CHANGE IN WATER LEVEL (FT)
5-634 5-635 5-645 5-648 5-649	400041 74480 400041 74504 400010 74521 400103 74540 400122 74530	9 INDEL 5 WILLINGBORO MUA 9 WILLINGBORO MUA	MHWC 5 INDUCT 1 WMUA 2-OBS WMUA 3-OBS WMUA 6	1965 1961 1965 1965 1959	55 60 40 34 39	- 516 ³ 411- 443 431- 441 - 318 ³ - 363 ³	-45 11 -27 11 -18 11	/28 /28 /12 /12 /21	-56 -50 -31 -20 -15	11/14 11/12 11/07 11/09 11/09	-15 -5 -4 -2 4
5-651 5-653 5-658 5-661 5-667	400139 74532 400152 74543 400158 74530 400225 74540 400225 74540 400250 74532	5 WILLINGBORO MUA 7 WILLINGBORO MUA 2 WILLINGBORO MUA	WMUA 3 WMUA 4 WMUA 7 WMUA 1 WMUA 5	1959 1958 1958 1955 1958	28 28 19 10 39	203- 304 ² 177- 280 179- 255 ² 147- 199 230- 256	-24 11 -9 11	/21 /21 /21 /21	-20 -11 -13 -10 -11	11/15 11/15 11/09 11/09 11/09	6 11 -1 -3
5-668 5-683 5-746 5-749 5-751	400308 74532 395122 74301 395727 74591 395508 74553 395546 74562	7 US GEOL SURVEY 5 MAPLE SHADE WD 9 RAMBLEWOOD CC	WMUA DCB 28 BUTLER PLACE 11 MAIN ST 3 2	1955 1 1964 1978 1972	43 141 20 75 20	222- 242 2102-2117 389- 450 - 425 ³ - 325 ³	-20 11	/21 /08	-6 -30 -29 -60 -55	11/09 11/13 11/09 11/16 11/17	-2 -10 -5
7- 12 7- 38 7- 40 7- 46 7- 47	395221 75063 395455 750710 395457 75064 395512 75064 395524 750720	5 SO JRSY PORT CM I CAMDEN CITY W D D CAMDEN CITY W D	BBWD 3 NY SHIP 7 CITY 7 CITY 11 SEWAGE PLANT	1956 1942 1945 1942 1942	35 12 21 13 9	331- 359 ² 188- 229 126- 165 124- 154 163- 193		/29 /26	-53 -23 -34 -31 -16	12/01 11/13 11/12 11/12 11/12 11/09	1 8
7- 48 7- 61 7- 64 7- 68 7- 70	395527 750640 395541 750622 395546 75053 395557 75053 395557 750629	5 CAMDEN CITY W D 2 CAMDEN CITY W D 3 CAMDEN CITY W D 5 CAMDEN CITY W D	CITY 6N CITY 4 CITY 17 CITY 13 CITY 3A	1948 1950 1954 1953 1953	14 41 34 30 15	111- 135 131- 156 230- 265 185- 225 90- 115	-44 11	/27 /29	-26 -37 -38 -36 -26	11/12 11/12 11/12 11/12 11/12 11/12	7
7- 78 7- 79 7- 83 7- 90 7- 94	395616 750632 395617 750710 395638 750622 395652 75060 395706 750553	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D	CITY 5N CITY 12 CITY 1A CITY 10 CITY 16	1963 1945 1953 1935 1954	22 23 10 10 23	134- 169 136- 166 135- 170 126- 158 149- 179	-40 11	/29	-26 -17 -33 -31 -32	11/12 11/12 11/09 11/09 11/08	9
7-106 7-108 7-109 7-110 7-121	395719 75051 395722 75051 395722 75052 395725 75052 395725 75052 395252 74594	NJ WATER CO NJ WATER CO NJ WATER CO	CAMDEN DIV 45 CAMDEN DIV 10 CAMDEN DIV 46 CAMDEN DIV 49 T-1 BROWNG	1950 1932 1950 1955 1973	13 11 11 9 80	143- 173 115- 155 148- 178 137- 169 672- 730 ²	-45 11 -39 11	/29 /02 /29 /19	-37 -34 -37 -36 -85	11/09 11/09 11/09 11/09 11/08	4 11 2 5
7-123 7-124 7-130 7-132 7-134	395252 74594 395252 74594 395353 745708 395353 745708 395353 745708	8 NJ WATER CO 8 NJ WATER CO 8 NJ WATER CO	BROWNING 46 BROWNING 45 OLD ORCHARD A OLD ORCHARD C OLD ORCHARD 3	1973 1973 1967 1967 7 1968	81 77 71 71 68	664- 735 ² 483- 626 ² 743- 748 - 500 ³ 454- 488		/04 /04	-84 -77 -67 -82 -80	11/08 11/09 11/08 11/08 11/08	-11 -9
7-144 7-146 7-147 7-163 7-171	395442 750103 395455 745924 395455 745929 395609 750028 395609 750514	NJ WATER CO NJ WATER CO NJ WATER CO	ELLISBURG 13 KINGSTON 27 KINGSTON 25 COLUMBIA 22 CWD 7	1960 1963 1961 1960 1965	39 40 44 39 10	491- 527 366- 417 309- 367 371- 453 224- 313	-59 12 -42 11	/04 /04 /29 /28	-60 -68 -65 -46 -41	11/09 11/08 11/08 11/09 11/07	-6 -6 -4 0
7-172 7-175 7-178 7-179 7-184	395426 750514 395521 750439 395522 750432 395526 750424 394950 745855	COLLINGSWOOD WD COLLINGSWOOD WD COLLINGSWOOD WD	CWD 6 CWD 1R CWD 3 CWD 5 GIBBSBORO OB 7	1965 1950 1960 1956 1956	10 25 15 10 70	218- 312 266- 306 257- 287 248- 278 1081-1091	-58 11.	/27 /28 /28 /25	-46 -51 -44 -46 -77	11/07 11/07 11/07 11/07 11/13	-1 7 -22
7-185 7-186 7-194 7-195 7-221	394950 745855 394950 745855 395308 750744 395308 750749 395356 750738	NJ WATER CO NJ ZINC CO NJ ZINC CO	GIBBSBORO OB 2 GIBBSBORO OB 3 4-DEEP 5-DEEP COAST GUARD 1		70 70 5 5	940- 950 - 680 ³ 249- 279 - 175 ³ 162- 170		/05 /05	-76 -77 -58 -59 -40	11/13 11/13 07/12* 07/12* 11/22	-21 -14
7-273 7-278 7-281 7-283 7-289	395030 750347 395238 750316 395242 750323 395246 750433 395403 750322	NJ WATER CO NJ WATER CO NJ WATER CO	OTTERBROOK 29 HADDON 15 HADDON 14 EGBERT HTWD 2	1965 1956 1954 1962 1952	60 65 76 24 60	612- 712 452- 594 506- 598 445- 455 4 39- 470	-67 11	/27 /29 /02	-72 -72	11/08 11/09 11/09 11/09 11/09	-13 -5 -1
7-290 7-292 7-302 7-315 7-320	395406 750317 395406 750332 395319 750140 395134 750229 395652 750307	HADDON TWP W D HADDONFIELD W D NJ WATER CO	HTWD 1 HTWD 4 RULON MAGNOLIA 16 WOODBINE 1	1952 1965 1956 1964 1963	56 45 25 78 65	436- 468 417- 448 523- 572 428- 510 245- 285	-66 11, -63 11, -82 11, -37 11,	/29 /27	-63 -72 -89	11/09 11/09 11/08 11/08 11/14	-1 -9 -7 0
² MULTIP ³ WELL DI	IS SEA LEVEL Le Screens EPTH Level Measured	IN 1979			18						

WELL NUMBER	LOCATION LATI- LONGI- TUDE TUDE	OWNER	LOCAL NUMBER	YEAR DRILLED	ALTITUDE LAND SURFACE (FT)	SCREEN INTERVAL (FT)	1973 WATER LEVEL ALTI- TUDE' DATE (FT)	1978 WATER LEVEL ALTI- TUDE' DATE (FT)	CHANGE IN WATER LEVEL (FT)
7-329 7-332 7-335 7-341 7-348	395628 750406 395711 750220 395720 750225 395752 750411 395801 750119	MCHVIL PNSK WCM MCHVIL PNSK WCM MCHVIL PNSK WCM MCHVIL PNSK WCM MCHVIL PNSK WCM	BROWNING 2A MARION 2 MARION 1 DELA GARDEN 2 PARK AVE 3	1965 1963 1957 1955 1958	20 60 61' 39 19	110- 140 223- 258 243- 278 115- 145 240- 275	-45 11/26 -34 11/26 -27 11/27 -31 11/26	-32 11/14 -47 11/14 -33 11/14 -28 11/14 -40 11/14	-2 1 -1 -9
7-354 7-359 7-367 7-368 7-370	395811 750549 395835 750308 395840 750307 395848 750347 395853 750348	CITIES SERVICE CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D	PETTY IS OBS PUCHACK 5 PUCHACK 3 DELAIR 1 DELAIR 3	1924 1924 1960 1930	12 30 10 10 8	- 143 ³ 136- 181 127- 175 103- 139 ² 87- 129 ²	0 11/02 -24 11/29 -18 11/30 -14 11/30	1 11/15 -20 11/19 -26 11/19 -13 11/19 -13 11/19	1 4 \ 5 1
7-373 7-375 7-379 7-382 7-390	395901 750320 395910 750307 395919 750302 395929 750253 395944 750211	CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D CAMDEN CITY W D	MORRIS 6 MORRIS 8 MORRIS 10 MORRIS 4A MORRIS 1	1932 1960 1960	14 10 16 8 9	98- 133 - 1243 75- 115 95- 134 - 1073	-14 11/30 -13 11/30 -5 11/30 -4 11/30	-14 11/19 -15 11/19 -16 11/19 -12 11/19 -6 11/19	0 -2 -7 -2
7-412 7-476 7-517 7-523 7-527	394922 745630 394215 745617 395243 750724 395152 750542 395556 750537	NJ WATER CO US GEOL SURVEY BROOKLAWN B W D BELLMAWR WD CAMDEN CITY W D	ELM TREE 2 NEW BROOKLYN BBWD 4 BBWD 5 PARKSIDE 18	1963 1960 1967 1977 1976	149 111 13 75 40	1082-1092 1485-1495 288- 319 458- 557 258- 288	-51 11/02 -36 11/15 -56 11/30	-62 11/16 -46 11/16 -56 11/09 -62 12/01 -37 11/12	-11 -10 0
7-528 11-137 15- 24 15- 69 15- 72	395835 750302 392512 745212 395115 750706 394920 751619 394936 751747	CAMDEN CITY W D DE ROSA DEPTFORD T MUA GREENWICH T W D E I DUPONT	PUCHACK 7 RAGOVIN 2100FJ DTMUA 4 GTWD 3(NEW 4) REPAUNO 3	1975 1964 1971 1959 1950	20 85 40 10 6	140- 180 2083-2093 282- 345 108- 168 91- 101	-44 11/28 -8 11/28	-23 11/19 -37 11/17 -48 11/09 -9 11/14 -1 11/17	-4 -1
15- 76 15- 96 15- 97 15-137 15-139	394939 751704 394959 751650 395000 751636 394535 752054 394608 752135	HERCULES CHEM HERCULES CHEM HERCULES CHEM PURELAND W CO PURELAND W CO	4 1970 GIBBSTOWN OB 2 GIBBSTOWN TH 8 PURE 2(3-1973) TEST WELL 3	1954	15 10 29 8	90- 121 ² 129- 134 102- 108 158- 208 301- 345	-7 11/28 -2 11/28 -2 11/30 -9 11/30	0 11/14 -6 11/14 -1 11/14 -5 11/16 -9 11/16	1 1 -3 0
15-140 15-143 15-144 15-146 15-158	394608 752135 394551 752313 394613 752129 394648 752318 394733 752351	PURELAND W CO PURELAND W CO PURELAND W CO PURELAND W CO MONSANTO CHEM	TEST WELL 4 LANDTECT TW-60 1-1973 LANDTECT TW-9 BRIDGEPORT W2	1970 1970 1973 1970 1970	8 19 8 5 11	132- 184 106- 149 81- 136 ² 82- 101 57- 82	1 11/30 1 11/30 -3 11/30 -21 12/04	0 11/16 3 11/16 -2 11/16 -3 11/16 -16 11/22	-1 2 0 5
15-163 15-166 15-170 15-175 15-207	394747 752410 394755 752108 394854 751906 394839 752145 395156 751053	MONSANTO CHEM PENNS GROVE W C CAMDEN LIME CO AM DREDGING CO NATIONAL PK W D	BRIDGEPORT OB3 BRIDGEPORT 2 REPAUP 1 RACCOON IS T 1 NPWD 2	1955 1970	5 5 8 30	- 118 ³ 65- 85 86- 106 100- 120 241- 282	-17 12/04 2 11/29 -1 11/29	-16 11/22 2 11/16 2 11/15 0 11/15 -31 11/14	1 0 1
15-210 15-212 15-213 15-279 15-282	394921 751419 394931 751449 394950 751422 394857 751250 394913 751105	PAULSBORO W D PAULSBORO W D PAULSBORO W D SHELL CHEM CO W DEPTFORD T WD	6-1973 PWD 4 PWD 5 SHELL OBS 7 5 KINGS HIWAY	1973 1951 1957 1962 1973	15 15 10 17 55	185- 227² 192- 220 135- 175 315- 320 388- 450	-12 11/29 -20 11/29 -21 12/27 -26 08/23	-14 11/15 -22 11/15 -10 11/15 -23 11/08 -30 11/15	-2 -2 -2 -4
15-296 15-308 15-309 15-311 15-312		SHELL CHEM CO PENNWALT CORP PENNWALT CORP PENNWALT CORP W DEPTFORD T WD	SHELL OBS 5 TEST WELL 8 TEST WELL 5 TEST WELL 7 6 RED BANK AVE	1962 1969 1969 1969 1973	21 10 10 10 20	321- 326 231- 271 - 288 ³ - 243 ³ 322- 372	-14 11/13 -11 11/30 -50 11/27	-16 11/08 -14 12/13 -13 12/13 -10 12/13 -58 11/15	-2 1 -8
15-313 15-316 15-323 15-326 15-327	395136 750944 395159 750907 395232 750942 395216 750739 395221 750737	W DEPTFORD T WD TEXAS OIL CO TEXAS OIL CO WESTVILLE W D WESTVILLE W D	WDTWD 2 EAGLE PT OBS 1 EAGLE PT OBS 3 5-1971 WWD 4		23 32 21 12 16	307- 353 288- 298 255- 275 243- 177 286- 313	-54 11/27 -49 10/03 -40 10/03 -47 11/29 -57 11/29	-53 11/15 -67 12/13 -52 08/15 -47 11/16 -55 11/16	1 -18 -12 0 2
15-331 15-347 15-349 15-350 15-354	394955 750908 394932 751722 394650 752316 394550 752313 394717 752117	WOODBURY W D GREENWICH TWD PURELAND W CO PURELAND W CO ROLLINS ENVIR	RAILROAD 5 GTWD 5 (2-A) LANDTECT 2 LANDTECT 1 DP 2	1960 1977 1970 1970 1976	35 20 5 20 13	405- 457 82- 117 170- 220 234- 284 8C 90	-41 11/26 -6 11/30	-44 11/14 -1 11/14 -6 11/16 -8 11/16 6 11/16	-3 0
15-357 15-358 15-359 15-382 21- 12		E I DUPONT E I DUPONT MONSANTO CHEM	OBS 7 OBS 10 C POWER 22 OBS 1(T-5) 6 TWIN RIVERS	1960 1971	4 3 5 10 115	- 105 ³ - 88 ³ - 103 ³ 70- 90 520- 560	-5 11/23 1 11/29	-4 11/14 -3 11/17 1 11/17 -4 11/22 28 10/19	1 0

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ³WELL DEPTH

/

WELL NUMBER	LOCATION LATI- LONGI- TUDE TUDE	OWNER	LOCAL NUMBER	YEAR DRILLED	ALTITUDE ¹ LAND SURFACE (FT)	SCREEN INTERVAL (FT)	ALTI-	LEVEL	ALTI-	LEVEL	CHANGE IN WATER LEVEL (FT)
21- 22 21- 25 21- 26 21- 27 21- 30	401702 743106 401717 743352 401725 743159 401730 743202 400954 743853	E WINDSOR MUA KENTILE CO E WINDSOR MUA E WINDSOR MUA GARDEN STATE WC	EWMUA 3 KENTILE 1 EWMUA 2 EWMUA 1 CROSSWICKS WC1	1965 1954 1964 1964 1959	100 100 100 98 23	337- 367 205- 226 ² 260- 290 279- 295 268- 299	43 67	12/05 12/05	47 65 74 73 20	10/19 10/26 10/19 10/19 10/11	4 -2
21- 34 21- 39 21- 43 21- 62 21- 75	401033 743740 401048 744036 401103 744155 401353 743951 401420 744002	N J TURNPIKE AU STAUFFER CHEM C BORDENTOWN W D GARDEN STATE WC GARDEN STATE WC	6N-1R 1 (KEYE TEX) WHITE HORSE 2 PARK AVENUE 11 PAXSON AVE 12	1972 1964 1965 1969 1974	91 55 10 100 76	291- 311 179- 199 118- 138 162- 207 ² 120- 137	2 -4 38	12/05 12/11 12/05	5 13 -4 42 51	10/18 10/20 10/11 10/11 10/11	3 0 4
21- 92 21- 99 21-101 21-120 21-145	401152 744528 401159 743403 401238 743448 401555 743704 401717 743352	CHAMPALE INC ENGLAND,ROBERT PRINCETN MEM PK ELIZABETHTWN WC KENTILE CO.	YARD WELL ENGLAND NO 2 MEMORIAL PK 1 WWWC 1-1965 KENTILE 2	1961 1966 1966 1965 1954	27 118 135 80 100	70- 80 404- 434 366- 421 96- 121 205- 226 ²	-2 34 43 75	12/05 12/05 12/05 12/06	-1 18 30 77 67	10/25 10/20 10/19 12/05 10/26	1 -16 -13 2
23- 1 23- 9 23- 11 23- 13 23- 16	403408 741326 401800 743206 401818 742932 401841 743355 401842 743055	US METLS AND RF DANSER,FRANK CARTER WALLACE STULTZ, STANLEY CRANBURY TWP WD	IRR-1950 1-1954(CLIFRD) CTWD 1A	1954 1950 1956 1954 1972	15 100 115 100 95	- 42 ³ 250- 280 255- 285 133- 163 230- 260	71 73 70	11/15 11/14 11/14	11 71 54 73 66	10/19 10/16 10/18 10/18 10/20	0 - 4
23- 17 23- 28 23- 29 23- 33 23- 50	401843 743055 401924 742909 401916 742920 401923 743247 402432 742212	CRANBURY TWP WD CARTER WALLACE NJ TURNPIKE AU DYAL, LEROY ANHEUSER BUSCH	CTWD 3 CW 5 7S-1 DYAL 1 (1951) BUSCH 5	1963 1964 1951 1963	98 105 125 90 37	268- 298 298- 335 - 385 ³ 170- 180 215- 265	72 65 72	11/14 11/14 11/15	67 60 57 66 -44	10/20 10/18 10/18 10/24 07/03*	-5 -5 -6
23- 56 23- 57 23- 58 23- 63 23- 64	402437 742535 402441 742448 402448 742700 402501 742440 402503 742812	E BRUNSWICK TWD CIAK BROS MIDDLESEX CO E BRUNSWICK TWD	TEST 2 COLONIAL OAKS TAMARACK 1-75 EBTWD 1 BEECHER OBS	1954 1975 1951 1941	97 122 108 110 85	- 175 ³ 216- 241 87- 107 181- 221 35- 40	5 -19 -21	11/13 11/13 11/13	-2 -28 30 -29 66	11/02 11/02 10/17 11/02 10/16	-7 -9 -8
23- 66 23- 70 23- 72 23- 73 23- 94	402527 742411 402553 742717 402635 742402 402649 742524 402239 742530	COLLINS, EDWARD FISCHER, ROBERT SMITH,LAWRENCE PREMIUM PLASTIC HELME PRODUCTS	COLLINS FISCHER SMITH 2-1972 1 PREM PLASTIC 5-1962 (OLD 2)		140 73 80 80 60	198- 223 - 21 ³ 120- 130 72- 82 183- 193	58 26 21	11/02 11/15 11/14	-7 57 -14 21 13	11/02 11/20 10/17 10/17 10/25	-1 -5 -8
23- 97 23-114 23-132 23-136 23-146	402247 742503 402319 742246 402335 742136 402345 742050 402350 741834	DUHERNAL W CO DUHERNAL W CO DUHERNAL W CO OLD BRIDGE MUA OLD BRIDGE MUA	DUHRNL OBS 49F DUHRNL OBS 52F DUHRNL OBS 56F OLD BRIDGE 5 BROWNTOWN 3	1945	39 25 30 80	236- 301 ² - 237 ³ 262- 267 280- 312 435- 480	10 -25 -34 -40 -51	11/21 11/21 11/21 11/15 11/15	2 -33 -44 -51 -55	11/20 07/03* 10/20 10/27 10/20	-8 -8 -10 -11 -4
23-171 23-176 23-179 23-194 23-202	402404 742204 402411 741925 402436 742041 402536 742018 402625 741611	DUHERNAL W CO OLD BRIDGE MUA OLD BRIDGE MUA PERTH AMBOY W D NJ DEPT CONSERV	DUHERNAL BF OBS 1-1972 OBS 2-1972 RUNYON 1 CHEESQUAKE SP1	1946 1972 1972 1930 1957	15 45 10 18 11	240- 300 321- 363 250- 292 - 160 ³ 299- 320	-53 -53 -73	11/15 11/15 11/02	-53 -61 -61 -76 -65	07/03* 10/20 10/27 09/07 10/19	-8 -8 -3
23-206 23-226 23-229 23-232 23-236	402700 741459 402013 742834 402015 742757 402023 742858 402038 742345	OLD BRIDGE MUA CITIES SERVICE MONROE TWP MUA MONROE TWP MUA NJ HOME FOR BOY	LAWRENCE HAR 9 2 OBS 4-1961 Forsgate 11 Boys Home 4	1954 1967 1961 1961 1963	60 1 32 147 130 95	360- 395 330- 364 319- 330 272- 314 410- 440	65	11/16 11/13 11/13 11/14		10/20 10/25 11/20 10/25 10/16	-10 -7 -11 2
23-238 23-240 23-243 23-255 23-257	402038 742755 402051 742746 402123 742215 403046 741827 403052 741654	FORSGATE FARMS MONROE TWP MUA DUHERNAL W CO CARBORUNDUM CO ALL STAR DAIRY	FARM WELL 4-R 12-1961 Duhrnl obs 41F 1 All STAR 1	1964 1961 1944 1955 1932	140 145 45 15 61	337-367 305-353 -348 ³ 57-67 -158 ³	7	11/13 11/14 11/16	63 58 -16 7 -29	10/25 10/25 10/20 10/16 10/16	-3 0 4
23-261 23-262 23-264 23-265 23-266	403150 741603 403150 741603 403200 741620 403211 741613 403212 741635	CHEVRON OIL CO CHEVRON OIL CO CHEVRON OIL CO CHEVRON OIL CO CHEVRON OIL CO	1 WELL 1 OBS WELL 2 OBS 11 3	1951 1951	30 30 45 14 57	74- 83 72- 82 96- 106 - 90 ³ 87- 96	1 -7 5 27	11/16 11/16 11/16 11/16 11/16	6 7 0 2 26	10/18 10/18 10/18 10/18 10/18 10/18	6 7 -3 -1
23-267 23-270 23-284 23-289 23-291	403212 741635 403231 741616 402022 743306 402056 742937 402109 743013	CHEVRON OIL CO AMER CYANMID CO SIMONSON BROS. MONROE TWP MUA MONROE TWP MUA	WELL 3 OBS TEST 2 1 15(KIMBRY-CLK) OBS 1-1961	1952 1956 1961	57 12 90 134 107	86- 96 - 57 ³ - 90 ³ 94- 124 192- 203	45 3 80 81	11/16 11/16 11/13 11/01	51 -5 81 73 73	10/18 10/18 10/24 10/25 10/20	6 -8 -7 -8

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ³WELL DEPTH ⁴WATER LEVEL MEASURED IN 1979

					<u> </u>		1973		19		CHANCE
WELL NUMBER	LOCATION LATI- LONG TUDE TUDE	I - Owner	LOCAL NUMBER	YEAR DRILLED	ALTITUDE LAND SURFACE (FT)	SCREEN INTERVAL (FT)	WATER L ALTI-	EVEL DATE		LEVEL	CHANGE IN WATER LEVEL (FT)
23-295 23-298 23-302 23-306 23-315	402125 74292 402129 74290 402138 74294 402147 74284 402204 74302	1 STAUFFER CHEM 0 MONROE TWP MUA 7 PHELPS DODGE CO	LAKES CARBON 1 FORSGATE 14 PHELPS DODGE 1 13	1965 1955	120 120 115 120 103	187- 233 217- 237 170- 200 191- 201 103- 138	80 1	1/13 2/06 1/15	77 71 82 75 77	10/18 10/18 10/18 10/18 10/18 10/18	-6 -5 -10
23-316 23-319 23-322 23-329 23-348	402206 74351 402220 74295 402230 74304 402315 74265 402605 74195	0 S BRUNSWICK MUA 0 S BRUNSWICK MUA 2 DEY BROTHERS	AEROCHEM 2 12 11 2 OBS WELL 101	1961 1963 1963 1955 1968	120 93 122 115 34	- 100 ³ 95- 115 110- 135 215- 248 269- 279	69 1 83 1 44 1	2/05 1/15 1/15 1/15 1/14	88 77 80 35 -60	10/23 10/18 10/18 10/17 10/20	-1 8 -3 -9 -3
23-350 23-353 23-365 23-370 23-376	402608 74195 402611 74195 402633 74212 402631 74205 402649 74202	5 SAYREVILLE W D D DUHERNAL W CO 3 HERCULES POWDER	OBS WELL 102 OBS WELL 103 DUH SAY 4 HERCULES 6 HERCULES 3	1968 1968 1931 1946 1928	30 35 6 20 41	267- 277 262- 273 - 160 ³ 164- 194 180- 220	-48 1	1/15 1/14 1/14	-69 -64 -52 -53 -58	10/20 10/20 10/19 10/20 10/19	-5 -5 -6
23-380 23-384 23-386 23-389 23-391	402659 74202 402705 74202 402701 74191 402710 74191 402713 74203	3 HERCULES POWDER 7 E I DUPONT 9 E I DUPONT	HERCULES 2 HERCULES 1REB1 6 5 HERCULES 4	1927 1939 1930 1928 1928	48 59 102 107 47	181- 237 ² 170- 225 253- 314 249- 304 ² 163- 226 ²	-56 1 -51 1	1/14 1/14 1/14 1/14	-56 -50 -63 -65 -56	10/19 10/19 10/25 10/24 10/20	-4 -7 -14 -6
23-392 23-393 23-401 23-404 23-411	402715 74192 402715 74193 402744 74162 402745 74164 402745 74164 402822 74163	2 E I DUPONT 3 SAYREVILLE W D 5 SAYREVILLE W D	1 3 Morgan P Morgan obs 1 Sawd 8	1924 1925 1967 1966 1947	102 94 44 23 10	237- 291 244- 285 ² 254- 288 238- 248 209- 234	-58 1 -57 1	1/14 1/14 1/16 1/13	-69 -62 -75 -73 -68	10/25 10/24 10/20 10/20 10/20	-8 -4 -16 5
23-415 23-418 23-419 23-423 23-425	402835 74181 402843 74180 402854 74180 402943 74180 402943 74180 402729 74193	 NATIONAL LEAD C NATIONAL LEAD C NATIONAL LEAD C 	4 2 Cl TEST 1 Duhrnl Obs 60F	1952 1934 1934 1956 1956	108 117 104 30 149	220- 251 240- 270 220- 253 75- 84 282- 287	-60 1 -59 1 -50 1	1/13 1/13 1/13 1/13 1/14	-60 -60 -58 -47 -47	10/23 10/23 10/23 10/23 10/25	-1 0 1 3 -6
23-429 23-430 23-432 23-438 23-439	402923 74164 402923 74165 402557 74213 402559 74214 402633 74220	1 JERS CENTRAL PL 3 SOUTH RIVER W D 2 SOUTH RIVER W D	WERNER STA 6 7-1972 SRWD 4 SRWD 5 SO RIVER 2	1969 1972 1975 1977 1977	22 12 18 20 21	154- 177 135- 165 149- 180² 132- 182 121- 126	-50 1	1/13 1/13 1/15	-35 -40 -50 -49 -40	10/20 10/20 10/24 10/24 11/20	10 10 -5
23-440 23-441 23-445 23-452 23-452 23-456	402648 74222 402748 74230 402328 74231 402401 74224 402404 74223	5 HERBERT SAND CO 3 SPOTSWOOD WD 3 SCHWEITZER, P J	1 HSC 3 TW 4F-76 8 1R	1922 1964 1976 1947 1956	15 6 12 36 21	- 195 ³ 49- 52 195- 264 ² 226- 276 235- 275		1/14 1/14	-32 2 -30 -38 -51	10/19 10/16 07/03* 07/03* 07/03*	-6 -3
23-462 23-480 23-482 23-484 23-492	403043 74184 403236 74161 403242 74161 403242 74161 403406 74143 402129 74282	AMER CYANMID CO AMER CYANMID CO PORT READING CO	CARBIDE 1 CYAN WDBRG P1 TEST 1 READING 6 BASF 3	1965 1910 1978	15 10 11 10 130	47- 57 - 28 ³ - 76 ³ - 42 ³ 230- 276	7 11. 3 11.		12 -5 -3 0 68	10/17 10/18 11/02 10/19 10/18	5 -6
23-502 23-510 23-511 23-514 25- 55	402432 74221 402234 74311 402232 74311 402755 74225 401744 74213	IBM CORP IBM CORP HERBERT SAND	BUSCH 7 GW-20 GW-18A NEW-2-76 ENGLISHTOWN 1	1978 1978 1978 1976 1963	30 119 118 5 70	210- 260 30- 60 65- 95 25- 35 651- 671	2 11.	/13	82	07/03* 10/18 10/18 10/16 10/19	-9
25-153 25-228 25-230 25-247 25-262	402444 741010 401733 741818 402004 741853 401902 74181 402102 741353	GORDONS CRNR WC GORDONS CRNR WC GORDONS CRNR WC	W KEANSBURG 4 GORDONS OBS 5-1972 GORDONS 2 STATE HOSP 15	1970 1975 1972 1964 1966	65 146 125 146 140	635- 690² 730- 746 580- 670 762- 832 730- 810	-17 11, -23 11,		-47 -20 -41 -26 -36	10/16 10/20 10/20 10/20 10/24	-24 -13
25-268 25-269 25-272 25-297 25-318	402117 74151 402122 74151 402208 741452 402603 741422 402700 735958	MARLBORO T MUA MARLBORO T MUA ABERDEEN W D	2-PROD 1-PROD OBS 1 MATAWAN TWP 1 FT HANCOCK 2	1972 1972 1972 1956 1906	114 111 117 80 8	632- 698 ² 647- 716 ² 670- 680 447- 487 600- 724	-27 11, -32 11, -59 11,	/14	-40 -41 -44 -71 -2	10/23 10/23 10/23 10/20 10/20	-13 -9 -12
25-320 25-416 25-453 25-466 29- 19	402705 735959 401128 743057 402632 741051 402610 741351 394829 740535	FIELDS,J. & SON UNION BEACH WD ABERDEEN W D	FT HANCOCK 5A FIELDS 1 3-77 3-77 IS BEACH 3	1970 1958 1977 1977 1962	14 120 10 56 9	838- 878 128- 537 ² 480- 532 420- 470 2736-2756	· -2 11/		-4 21 -73 -70 0	10/20 10/27 10/19 10/20 11/09	-2 -10

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ³WELL DEPTH *WATER LEVEL MEASURED IN 1979

TABLE 2WATER-LEVEL DATA	FOR WELLS	S SCREENED IN	THE	LOWER AQUIFER	OF	THE	POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEMCONTINU	ED
-------------------------	-----------	---------------	-----	---------------	----	-----	---	----

. <u></u>					ALTITUDE	1	1973 WATER LEVEL	1978 WATER LEVEL	CHANGE
WELL NUMBER	LOCATION LATI- LONGI- TUDE TUDE	OWNER	LOCAL NUMBER	YEAR DRILLED	LAND SURFACE (FT)	SCREEN INTERVAL (FT)	ALTI- TUDE ¹ DATE (FT)	ALTI- TUDE ¹ DATE (FT)	IN WATER LEVEL (FT)
29- 47 29- 85 29-118 29-132 29-133	400433 740833 395929 741421 400105 742244 400329 741949 400329 741945	BRICK TWP MUA TOMS RIVER CHEM LAKEHURST N A S CLAYTON SAND CLAYTON SAND	OBS 1 TRCHEM 84 LAKE NAS 32 SCM 3 SCM 2	1973 1968 1964 1962 1961	8 67 100 95 95	1709-1749 ² 1460-1480 -1583 ³ 1606-1728 1320-1477	2 11/16 -5 11/09 -13 11/28 -27 11/20 -28 11/20	-36 11/01 -23 11/09 -23 10/31 -33 10/26 -23 10/26	-38 -18 -10 -6 5
29-135 29-440 29-490 29-491 29-492	400333 741942 400504 741324 395900 742055 395900 742102 395906 742138	CLAYTON SAND NJ WATER CO AM SMELTNG & RF AM SMELTNG & RF AM SMELTNG & RF	SCM 4 LAKEWOOD 10 2 1 OBS 1	1962 1972 1972 1972 1972	95 72 89 89 97	1342-1552 1357-1602 ² 1436-1636 1460-1660 1561-1611	-33 11/20 -5 12/08 -33 11/20 -34 09/04 -25 11/20	-23 10/26 -20 11/03 -41 11/01 -44 11/02 -36 11/02	10 -15 -8 -10 -11
29-575 29-576 29-580 29-581 33- 30	400652 741717 400652 741717 400424 740822 400821 742634 392744 753153	JACKSON TWP MUA JACKSON TWP MUA BRICK TWP MUA JACKSON TWP MUA PUBLIC SERV E-G	JACKSON 9 JACKSON 8 OBS 2 MUA 10-77 ART ISLAND	1978 1977 1976 1977 1968	134 140 8 130 15	1276-1430 1276-1462 1730-1780 876- 976 ² 825- 830	-9 12/03	-35 10/26 -27 10/26 -36 11/01 -1 10/26 -84 05/18*	-75
33- 64 33- 65 33- 66 33- 67 33- 69	393912 752436 393912 752436 393912 752436 393912 752436 393936 752437 394139 752349	E I DUPONT E I DUPONT E I DUPONT E I DUPONT NJ TURNPIKE AU	COURSE LAND 34 COURSE LAND 35 COURSE LAND 30 COURSE LAND 97 SERVICE IN-1	3 1966 C 1966	30 30 30 10 40	568- 578 501- 512 375- 386 445- 601 ² 313- 333	-10 08/31 -10 08/31 -10 08/31 -14 12/04 -18 12/07	-14 11/28 -14 11/28 -14 11/28 -17 11/28 -19 11/14	-4 -4 -3 -1
33- 70 33- 71 33- 72 33- 80 33- 82	394141 752343 394151 752407 394154 752351 394542 752510 394542 752603	NJ TURNPIKE AU NJ TURNPIKE AU NJ TURNPIKE AU AIR REDUCTION BRIDGE,BRUCE H	SERVICE 1N-2 2-1S SERVICE 1S-1 AIRCO 1 BRIDGE	1953 1953 1963 1957	40 38 40 12 12	- 330 ³ - 344 ³ 342- 368 112- 132 - 205 ²	-16 12/07 -14 12/04	-20 11/14 -19 11/14 -19 11/14 -2 11/30 -11 11/27	-4 3
33- 85 33- 86 33- 93 33-107 33-119	394556 752530 394557 752523 394612 752521 393620 753310 394009 753043	B F GOODRICH CO B F GOODRICH CO B F GOODRICH CO NJ DEPT CONSERV PENNSVILLE T WD	6 (PW-2) 4 (PW-3) TEST 7 FT MOTT SP 1 PTWD 2	1967 1967 1967 1900 1949	10 13 5 8 7	109- 129 169- 189 - 180 ³ 300- 320 210- 230	-9 12/04	-8 11/30 -10 11/30 -10 11/30 -20 11/17 -46 11/21	-11
33-122 33-125 33-127 33-131 33-132	394045 753018 394051 753030 394100 753030 394109 753009 394109 753009	ATLAN CITY ELEC ATLAN CITY ELEC E I DUPONT	DEEPWATER 3R DEEPWATER 5 DEEPWATER 6 CHAMBERS 0B2-2 CHAMBERS 0B2-2		10 10 10 7 7	165- 235 149- 219² 158- 188 237- 247 192- 200	-78 12/05 -78 12/05 -68 11/26 -56 12/05 -62 12/05	-60 11/21 -61 11/21 -57 11/21 -48 11/21 -52 11/21	18 17 11 8 10
33-140 33-141 33-164 33-165 33-166	394131 753009 394131 753009 393928 752147 393942 752234 393942 752234	E I DUPONT E I DUPONT RICHMAN ICE CRM E I DUPONT E I DUPONT	CHAMBERS OB3-2 CHAMBERS OB3-3 RICHMAN 2 COURSE LAND 44 COURSE LAND 44	3 1965 1946 A 1966	5 20 47 47	341- 347 197- 207 - 446 ³ 634- 644 568- 578	-69 12/05 -61 12/05 -20 11/30 -9 09/04 -9 09/04	-71 11/21 -49 11/21 -29 11/28 -14 11/28 -14 11/28	-2 12 -9 -5 -5
33-167 33-187 33-198 33-251 33-298	393942 752234 394037 751915 394117 752207 393348 752755 393952 752429	E I DUPONT US GEOL SURVEY DUBOIS BROTHERS US GEOL SURVEY E I DUPONT	COURSE LAND 40 POINT AIRY IRR 74 SALEM 1 COURSE LAND P2	1958 1974 1965	47 73 51 3 9	430- 440 664- 672 337- 362 - 709 ³ 385- 635	-9 09/04 -20 11/28 -18 10/04 -16 12/04	-14 11/27 -25 11/12 -21 11/13 -27 11/28 -18 11/28	-5 -5 -9 -2
33-299 33-300 33-301 33-302 33-303	393957 752432 393957 752432 393957 752432 394000 752439 394000 752439	E I DUPONT E I DUPONT E I DUPONT	COURSE LAND 14 COURSE LAND 16 COURSE LAND 10 COURSE LAND 24 COURSE LAND 24	3 1966 2 1966 4 1966	26 25 26 30 30	604- 614 507- 517 404- 415 583- 593 533- 544	-14 12/04 -9 12/04 -8 12/04 -13 12/04 -6 12/04	-15 11/28 -12 11/28 -11 11/28 -14 11/28 -9 11/28	-1 -3 -3 -1 -3
33-304 33-305 33-308 33-317 33-328	394000 752439 394013 752459 394058 752918 394127 752953 394127 752918	E I DUPONT E I DUPONT E I DUPONT	COURSE LAND 20 COURSE LAND P RANNEY 2 LAYNE 2 CARNEY PT 1		30 14 18 5 5	435- 445 381- 457 394- 480 138- 159 175- 195	-5 12/04 -11 12/04 -35 12/05	-8 11/28 -13 11/28 -29 11/21 -31 11/21 -21 11/21	-3 -2 6
33-330 33-346 33-354 33-362 33-363	394205 752657 394256 752718 393904 751946 393926 751927 392732 752940	PENNS GROVE WSC PENNS GROVE WSC WOODSTOWN W D WOODSTOWN W D PUBLIC SERV E-G	LAYTON 11 LAYNE 1 WWD 2 3-75 OWH	1944 1956 1946 1975 1974	16 19 45 60 5	- 3943 317- 357 670- 705 692- 712 - 9443	-36 12/07 -26 11/29	-38 11/22 -34 11/22 -35 11/14 -28 11/14 -53 05/18*	-9 -9
33 -3 64	392743 753158	PUBLIC SERV E-G	PW 5	1974	17	765- 840		-78 05/18*	

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ³WELL DEPTH ⁴WATER LEVEL MEASURED IN 1979

· · ·

Upper Aquifer of the Potomac-Raritan-Magothy Aquifer System Geohydrology

The upper aquifer of the Potomac-Raritan-Magothy aquifer system underlies the Coastal Plain of New Jersey, from the outcrop of the Magothy Formation (pl. 2) to the southeast. The upper aquifer is composed of sand with some silt and clay, mainly of the Magothy Formation of Late Cretaceous age. In the outcrop the aquifer may include younger surficial material. In the northern part of the Coastal Plain the upper aquifer consists primarily of the Old Bridge Sand Member of the Magothy Formation. Southeast of the outcrop, the aquifer may include the underlying Sayreville Sand Member of the Raritan Formation (Farlekas, 1979, p. 22). According to Zapecza (written communication, 1982), the upper aquifer thickens from less than 50 ft along the outcrop to greater than 200 ft in northeastern Monmouth County. The aquifer has an average thickness of 150 ft in the central part of the Coastal Plain and thins southward.

The lower confining layer is a thick sequence of silt and clay that separates the upper and lower aquifers. In the northern Coastal Plain this confining layer is the Woodbridge Clay Member of the Raritan Formation.

Overlying the upper aquifer of the Potomac-Raritan-Magothy aquifer system is the Merchantville-Woodbury confining bed. The Merchantville Formation and the Woodbury Clay of Late Cretaceous age form an effective confining layer separating the upper aquifer from the overlying Englishtown aquifer. This layer thickens from about 40 ft where it crops out, to 325 ft downdip (Gill and Farlekas, 1976).

Withdrawals from the upper aquifer are greatest in the northwestern parts of Burlington, Camden, and Gloucester Counties and in parts of Middlesex, Monmouth, and Salem Counties. Withdrawals are limited to these areas because of saltwater at some locations and available water from aquifers at shallower depths. Withdrawals in northern Monmouth County resulted in a reduction in freshwater head causing saltwater intrusion into the aquifer from Raritan Bay (Schaefer and Walker, 1981).

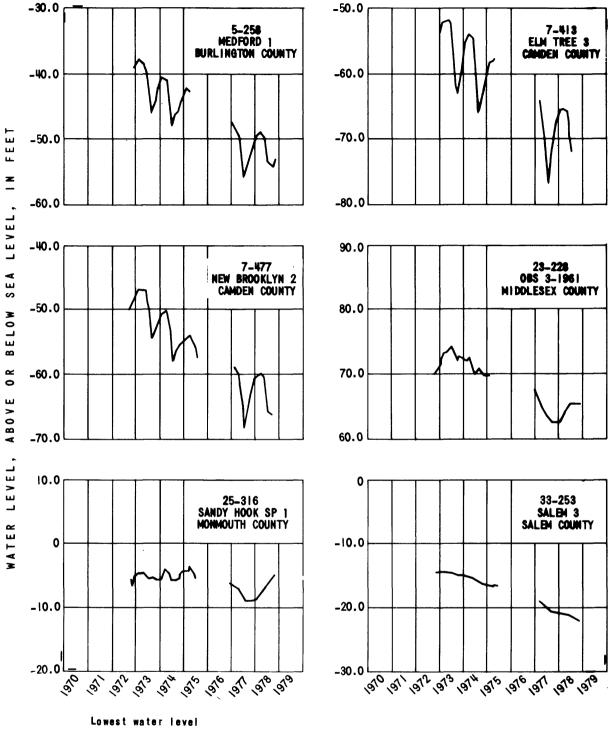
Water Levels

Water levels were measured in 279 wells screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system (table 3). Well density is greatest in the western part of the aquifer in Burlington, Camden, Gloucester, Middlesex, and Monmouth Counties. Well density is less in parts of Mercer, Monmouth, Ocean, and Salem Counties. No wells are known in Atlantic, Cape May, and Cumberland Counties.

ŧ

Three prominent cones of depression are in the upper aquifer (pl. 2). The largest cone is centered in Aid-Camden County where heads are as low as 90 ft below sea level. This cone in the upper aquifer is directly above the cone in the lower aquifer of the Potomac-Raritan-Magothy aquifer system (pl. 1). This may be caused by similar pumping in the two aquifers, a strong hydraulic connection between the aquifers, or both. In southwestern Gloucester and Salem Counties the heads are in part controlled by water-table conditions in and near the outcrop, but are also influenced by the pumping centered in Camden County.

Two other cones are in northern Monmouth County near Raritan Bay and in central Monmouth County. Heads are as low as 40 ft below sea level near Raritan Bay and 43 ft below sea level in central Monmouth County. These cones coalesce in northcentral Monmouth County. Heads are about 20 ft below sea level in this area, as well as in areas toward the southwest in the direction of the major cone centered in Camden County. These two smaller cones lie to the southeast and south of the large cone in the lower aquifer (pl. 1). Several smaller cones in the lower aquifer in Burlington and Salem Counties do not appear to influence the head distribution in the upper aquifer, indicating an ineffective hydraulic connection between upper and lower aquifers in these areas.


The highest heads are greater than 70 ft above sea level in southeastern Mercer and southern Middlesex Counties adjacent to the topographically high parts of the outcrop area (pl. 2). The highest heads in the upper aquifer generally coincide with high heads in the lower aquifer.

Water-Level Fluctuations

Change in water level from 1973 to 1978 was calculated for 167 of the wells (table 3). These values show a general decline in levels in much of the aquifer. Greatest declines were generally where head was lowest. In Burlington, Camden, and Gloucester Counties, near the large cone of depression, heads declined about 5 to 18 ft due to withdrawals. Near the potentiometric lows in Monmouth County the heads declined less than 10 ft. The areas of least decline or change are generally near the outcrop in parts of Burlington, Gloucester, Mercer, Middlesex, and Salem Counties. A few sites in eastern Monmouth County show small declines, possibly because of the use of surface water for public supply.

Hydrographs of six observation wells screened in the confined parts of the upper aquifer are shown in figure 5. In general, these hydrographs show a steady decline in water levels caused by withdrawals from the upper aquifer. Wells 5-258, 7-413, and 7-477, near the large cone of depression centered in Camden County (pl. 2.), show an average decline of about 2.5 to 3.0 ft/yr. Cyclic seasonal variations are caused by changes in pumping.

Wells 23-228, 25-316, and 33-253 are far from the large cones (pl. 2) and show a slower rate of decline. Well 33-253 in Salem County (fig. 5) shows a downward trend of 1.7 ft/yr. Well 23-228 is near the outcrop of the upper aquifer in Middlesex County (pl. 2). Although the well is not near a prominent cone, the decline is probably due to heavy pumping nearby. The patterns of the hydrographs for wells 23-228 (fig. 5) and 23-229 (screened in the lower aquifer at the same location, fig. 3) appear similar, although water levels are 8 ft lower in the lower aquifer. The similarity in the hydrographs and the difference in head in 1978 suggests vertical leakage between the aquifers. In well 23-228 and well 25-316 in northeastern Monmouth County, levels started recovering in early 1978. Well 25-316 shows an average decline of 0.5 ft/yr during 1973-78.

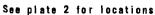


Figure 5.-- Hydrographs of observation wells screened in the upper aquifer of the Potomac-Raritan-Magothy aquifer system.

TABLE 3 WATER-LEVEL DATA	A FOR WELLS	SCREENED IN	V THE	UPPER AQUIFER	OF THE	POTOMAC-RARITAN-MAGOTHY	AQUIFER SYSTEM
--------------------------	-------------	-------------	-------	---------------	--------	-------------------------	----------------

WELL NUMBER	LOCATION LATI- LONGI TUDE TUDE	OWNER	LOCAL NUMBER	YEAR Drilled	ALTITUDE ¹ LAND SURFACE (FT)	SCREEN INTERVAL (FT)	19 WATER ALTI- 'TUDE' (FT)	LEVEL	19 WATER ALTI- TUDE ¹ (FT)	LEVEL	CHANGE IN WATER LEVEL (FT)
5- 70 5- 76 5- 84 5-116 5-160	400313 745004 400324 745152 400342 744948 400708 743836 400315 745408	BURLINGTON TWP HEAL,CHARLES JR MASONIC HOME CHESTRFD SCHOOL NJ WATER CO	TEST 1 HEAL MASONIC 1 1 DVWC 22	1970 1955 1921 1957 1963	60 50 79 102 45	140- 200 59- 80 174- 194 247- 253 102- 123		11/20 11/27	-13 -3 8 7 15	11/14 11/07 11/12 10/24 11/15	-2 7
5-165 5-167 5-169 5-170 5-171	395233 745418 395247 745157 395322 745300 395333 745440 395344 745503	EVESHAM M U A Evesham M u A Evesham M u A Evesham M u A Evesham M u A	EMUA 4 PROD 5 TEST 12-1972 EMUA 1 EMUA 2	1970 1973 1972 1956 1963	110 50 50 89 100	464- 500 458- 555² 455- 475 369- 389 405- 435	-66	11/29 12/05 12/05	-75 -70 -69 -68 -69	11/14 11/14 11/14 11/14 11/14 11/14	-2 -2 -5
5-173 5-174 5-198 5-207 5-211	395412 745619 395432 745709 395720 744822 400356 744039 400438 744519	LINCOLN HOMES EVESHAM M U A MOUNT HOLLY W C VAN MATER, CHAS O'BOYLE TRUCKIN	B.T. ROBERTS 2 EMUA 3 LLWS 2 CRESANT FARMS S J GROVE 1	2 1957 1967 1960 1970	93 60 10 95 80	322- 375 291- 331 336- 356 - 325° - 2203	-60	12/01 12/04 11/27	-66 -69 -45 -13 -5	11/08 11/08 11/14 10/31 11/07	-10 -9 -2
5-212 5-216 5-218 5-229 5-249	400515 744109 400603 744326 400718 744453 395630 745855 395209 745043	SCHOOL DISTRICT LOUNSBERRY,L RIVER FRT MOTEL MAPLE SHADE WD LAKES W C	N BURL CO HIGH ED PHARES MOTEL MSWD 9 LWC 3	1959 1949 1975 1968	83 95 60 40 55	290- 310 - 196 ³ - 100 ³ 160- 200 523- 541	-6	11/23 11/20 12/08	-13 -2 -2 -47 -65	11/02 10/30 10/26 11/09 11/02	-1 4 -16
5-251 5-252 5-253 5-258 5-285	395316 744946 395413 744922 395430 744850 395524 745025 395924 744702	MEDFORD W C MEDFORD W C MEDFORD LEAS US GEOL SURVEY MOUNT HOLLY W C	MWC 4(1968) MWC 3 1-1972 MEDFORD 1 MHWC 4	1968 1957 1972 1963 1964	49 48 32 71 16	506- 536 506- 536 447- 471 400- 410 307- 342	-47 -45	11/26 11/26 09/23 11/27	-57 -65 -58 -52 -40	11/20 11/20 11/20 11/06 11/14	-8 -18 -7 8
5-289 5-310 5-313 5-315 5-383	395935 744651 395728 745504 395830 745302 395845 745240 395839 744249	MOUNT HOLLY W C NJ TURNPIKE AU HAINES, WM JR HAINES, WM JR PERMUTIT CORP	MHWC 3 MAINT 2 FARM WELL 2 FARM WELL 1 IONAC CHEM 2	1953 1952 1967 1958 1960	19 40 25 55 30	316- 346 120- 160 - 238 ³ 200- 238 490- 521	-32	11/27 11/30 11/23	-34 -40 -46 -39 -34	11/14 11/14 11/16 11/17 10/14	13 -7 11
5-438 5-446 5-707 5-728 5-730	400218 744604 400328 744636 395307 745339 395819 744341 400741 744300	THE GOLF FARM INTERSTATE S-P MT. LAUREL MUA MOBILE ESTATES INTERSTA. WASTE	INTERSTATE 1 5 FIELD PUMP MONITOR 9	1957 1960 1976 1972 1978	41 75 70 55 75	220- 230 220- 245 405- 441 485- 500 - 135 [°]		11/27 11/26	-22 -14 -69 -31 5	11/07 11/07 11/14 10/30 10/26	10 -1
5-731 5-745 5-747 5-748 5-772	400739 744228 400157 744819 395921 745243 395848 745407 400134 744911	INTERSTA. WASTE BC COUNTRY CLUB DITTMAR USS RANCOCAS NJ TURNPIKE AU	MONITOR 8 CLUB 1R 1949 RANCOCAS 1 INTERCHANGE 5R	1978 1974 1949 1959 1952	91 102 80 80 68	118- 128 260- 290 - 2573 - 1703 175- 185		11/29 11/27	2 -18 -39 -35 -15	10/26 11/14 11/24 11/08 11/14	12 3
7- 15 7- 19 7- 30 7-114 7-117	394648 745622 394738 745614 395447 750711 395231 745910 395229 745712	BERLIN WATER D BERLIN WATER D SO JRSY PORT CM WOODCREST CT CL NJ WATER CO	11-1972 BWD 10 NY SHIP 5A CLUB 2 HUTTON HILL 1	1972 1967 1940 1955 1965	150 145 11 75 158	675- 745 645- 713 82- 100 354- 385 552- 562	-67	11/27 11/30 11/02	-78 -75 -22 -75 -75	11/01 11/16 11/13 11/05 11/17	5 -8 -10
7-120 7-131 7-133 7-143 7-148	395237 750031 395353 745708 395353 745708 395353 745708 395441 750104 395455 745929		HUSSMAN OLD ORCHARD B OLD ORCHARD 36 ELLISBURG 16 KINGSTON 28	1957 1967 1968 1957 1964	67 71 80 40 44	276- 306 - 342 ³ 299- 349 187- 220 175- 207	-64	12/04 12/04 12/04		11/12 11/08 11/08 11/09 11/08	-9 -9 -4
7-149 7-151 7-162 7-193 7-243	395502 750221 395514 750213 395608 750025 395256 750633 394712 750413	N J NATIONAL GD GARDEN STATE RA NJ WATER CO CRSCENT TRLR PK CAMDEN COUNTY	1 RACE TRACK COLUMBIA 24 1 LAKELAND 2	1956 1944 1961 1952	15 30 34 20 25	96- 111 - 1583 - 1673 59- 71 - 3863		11/27 11/26	-52 -51 -46 -39 -78	11/15 11/13 11/07 11/09 11/08	-3 -10
7-245 7-252 7-274 7-275 7-279	394717 750420 394759 750158 395030 750347 395231 750312 395238 750317	CAMDEN COUNTY GAR ST WC-BLKWD NJ WATER CO NJ WATER CO NJ WATER CO	LAKELAND 1 BLACKWOD DIV 6 OTTERBROOK 39 HADDON 20 HADDON 30	5 1971 1968 1958 1965	50 75 60 61 65	- 420 ³ 407- 477 269- 349 236- 267 224- 275	-61 -79	11/26 11/28 11/27 11/29	-70 -73 -81 -77 -76	11/08 11/09 11/08 11/09 11/09	-11 -12 -2 1
7-285 7-293 7-299 7-310 7-311	395248 750433 395418 750336 395322 750158 394928 750024 394928 750027	NJ WATER CO HADDON TWP BD E HADDONFIELD W D NJ WATER CO NJ WATER CO	EGGBERT 18 HADDON TWP HS1 LAYNE 2 LAUREL 13 LAUREL 15	1958 1966 1956 1954 1954	24 15 65 77 75	144- 191 142- 162 206- 246 394- 456 395- 473 ²	-55 -76	11/29 11/27 11/29 11/27	-63 -56 -80 -76 -80	11/09 11/15 11/08 11/08 11/08	-2 -1 -4 -4

¹DATUM IS SEA LEVEL -²MULTIPLE SCREENS ³WELL DEPTH

WELL	LOCATION LATI- LONGI-		LOCAL	YEA R	ALTITUDE ¹ LAND SURFACE	SCREEN INTERVAL	1973 WATER LEVEL ALTI- TUDE ¹ DATE	1978 WATER LEVEL ALTI- TUDE ¹ DATE	CHANGE IN WATER LEVEL
NUMBER	TUDE TUDE	OWNER	NUMBER	DRILLED	(FT)	(FT)	(FT)	(FT)	(FT)
7-322 7-392 7-398 7-404 7-410	395358 750447 394641 745909 394726 745911 395055 750420 395041 750056	NJ WATER CO PINE HILL MUA PINE HILL MUA NJ WATER CO NJ WATER CO	OAKLYN TEST PHMUA 1 PHMUA 2-1972 RUNNEMEDE 19 SOMERDALE 14	1961 1962 1972 1958 1956	33 150 200 67 95	101- 111 627- 669 668- 698 297- 339 - 441 ³	-52 11/29 -65 12/04 -69 12/04 -75 11/27 -77 11/27	-52 11/07 -71 11/07 -81 11/08 -78 11/13 -90 11/08	0 -6 -12 -3 -13
7-411 7-413 7-422 7-426 7-477	395238 750121 394922 745630 395124 745952 395129 745906 394215 745617	TAVISTOCK CLUB NJ WATER CO NJ WATER CO NJ WATER CO US GEOL SURVEY	COUNTRY CLUB 1 ELM TREE 3 ASHLAND 17 VOORHEES 21 NEW BROOKLYN 2	1963 1958 1959	30 149 68 129 111	219- 247 706- 717 379- 421 422- 482 829- 839	-70 11/27 -59 11/02 -78 12/05 -73 12/05 -53 11/15	-77 11/12 -69 11/16 -87 11/13 -84 11/13 -64 11/16	-7 -10 -9 -11 -11
15- 1 15- 3 15- 6 15- 8 15- 9	393912 750522 394015 750559 394627 750813 394628 750813 394746 750511	CLAYTON W D CLAYTON W D WOODBURY W D WOODBURY W D DEPTFORD T MUA	CWD 3 4-1973 SEWELL 1A SEWELL 2A 5-1971	1956 1973 1967 1973 1973	133 140 20 21 78	746- 800 ² 670- 740 263- 308 244- 307 414- 447	-56 11/28 -53 11/28 -47 11/26 -50 11/26 -56 08/20	-62 11/21 -63 11/21 -52 11/14 -50 11/14 -59 11/09	-6 -10 -5 0 -3
15- 11 15- 28 15- 60 15- 62 15- 63	394814 750914 394755 751327 394206 750758 394241 750642 394308 750702	DEPTFORD T MUA E GREENWICH W D GLASSBORO W D GLASSBORO W D GLASSBORO W D	DTMUA 2 EGWD 2 GWD 3 GWD 2 GWD 4	1958 1956 1956 1947 1961	58 70 150 145 146	255- 281 191- 216 562- 612 562- 602 549- 599	-39 11/28 -18 11/30 -51 11/27 -56 11/27 -55 11/28	-47 11/09 -21 11/08 -60 11/20 -66 11/20 -63 11/20	-8 -3 -9 -10 -8
15-127 15-129 15-147 15-183 15-191	394346 750959 394409 751328 394706 751951 394431 750911 394629 750859	LEONARD,WM SO JERSEY W C SHOEMAKER, R A PITMAN CNTY CLB SEWELL W C	LEONARD 5 SJWC 1 1 Country club 1 SWC 2	1958 1950 1954 1967 1965	140 35 10 85 60	- 524 ³ - 263 ³ 33- 39 378- 408 336- 368	-36 11/27 -22 11/27 -3 11/30 -46 11/28 -57 11/26	-46 11/22 -25 11/22 -4 11/20 -51 12/06 -60 11/09	-10 -3 -1 -5 -3
15-192 15-194 15-226 15-227 15-236	394641 751109 394732 751037 394411 750745 394426 750747 394434 751843	EDENWOOD W C MANTUA WATER CO PITMAN W D PITMAN W D SWEDESBORO B WD	EWC 1 MWC 3 PWD P2 PWD P3 SBWD 3	1957 1969 1947 1960 1969	88 10 130 99 75	315- 337 233- 265 475- 515 447- 487 241- 312 ²	-27 11/27 -45 11/29 -65 11/28 -65 11/28 -17 11/29	-37 11/08 -48 11/09 -67 12/06 -60 12/06 -21 11/15	-10 -3 -2 5 -4
15-238 15-240 15-242 15-248 15-253	394438 751833 394510 751838 394512 751830 394339 750433 394437 750249	SWEDESBORO B WD DEL MONTE CORP DEL MONTE CORP WASHINGTON TMUA WASHINGTON TMUA	SBWD 2 9 6 WTMUA 5 6(FRIES MLS 1)	1940 1963 1944 1973 1964	30 30 25 125 152	217- 240 190- 231 267- 298 559- 618 584- 652	-12 11/30 -56 11/30	-21 11/15 -22 11/15 -21 11/15 -63 11/21 -65 11/21	-10 -9
15-261 15-268 15-275 15-276 15-281	394520 750218 394732 750447 394751 750912 394821 751026 394912 751026	WASHINGTON TMUA WASHINGTON TMUA WENONAH WATER D W DEPTFORD T WD W DEPTFORD T WD	WTMUA 1 4–1972 WWD 2 WDTWD 4 WDTWD 3	1959 1972 1951 1963 1957	100 77 50 60 61	581- 612 369- 417 ² 268- 310 242- 288 227- 243	-65 11/30 -46 11/27 -39 11/27	-72 11/08 -72 11/21 -51 11/15 -39 11/15 -35 11/15	-7 -5 0
15-297 15-303 15-330 15-332 15-339	394942 751317 395030 751236 394858 750845 395017 750928 394350 751910	SHELL CHEM CO PENNWALT CORP WOODBRY HGTS BO WOODBURY W D GRASSO,J S	SHELL OBS 6 TEST WELL 1 1 HELEN AVE PARKING LOT 3 1	1962 1969 1972 1946 1969	21 10 40 50 90	113- 118 - 114 ³ 190- 235 148- 188 247- 267	-9 12/27 -7 11/30 -9 11/26 -17 12/03	-11 11/08 -6 12/13 -44 11/16 -31 11/14 -19 11/13	-2 1 -22 -2
15-345 15-348 15-355 21- 4 21- 7	394642 751823 394910 751541 394822 751247 401408 743114 401458 743152	MUSUMECI,PETER GREENWICH TWD E GREENWICH W D PRNCTON TURF FM CONOVER DAIRY	1 GTWD 6 EGWD 3 S.KRISTAL 1973 1-1949	1954 1978 3 1973 1949	62 20 42 145 145	94- 100 105- 135 205- 245 290- 330 241- 251	-11 12/04	-12 11/16 -9 11/14 -28 11/08 49 04/30* 53 10/20	-1
21- 16 21- 18 21- 19 21- 21 21- 33	401604 743358 401558 743003 401608 743354 401631 743246 401030 743753	E WINDSOR MUA CAPAZELLO FARMS E WINDSOR MUA MCGRAW HILL PUB N J TURNPIKE AU	EWMUA 4 1-IRR EWMUA 5 MCGRAW HILL 1 6N-2	1962 1941 1966 1958 1956	90 110 90 97 85	125- 145 - 250° 133- 181 153- 173 164- 184	74 12/05 74 12/05 59 12/05 5 12/05	71 10/19 52 10/17 71 10/19 57 10/23 8 10/18	-3 -3 -2 3
21- 46 21- 81 21- 84 21- 95 21-102	401119 743810 401621 743129 401621 743129 401052 743525 401240 743741	CHRYANOWSKI,L S HIGHTSTOWN W D HIGHTSTOWN W D ALLENTOWN W D MERCER MOBLE HM	1-1957 HIGHTSTOWN 1 HIGHTSTOWN 2 AWD 1 1973 WELL	1957 1946 1947 1952 1973	60 100 100 70 110	138- 141 181- 205 181- 205 - 273 ³ 145- 155	76 12/06 77 12/06 27 11/13	32 11/02 75 10/17 77 10/17 24 10/25 43 10/30	-1 0 -3
21-103 21-104 21-130 21-144 2315	401309 743702 401344 743236 401844 743543 401622 743130 401842 743055	SUB PRO NAT GAS GELLER AL DRUMAND, ALEX HIGHTSTOWN CRANBURY TWP WD	SUBURBAN 1 1953 E Hahn 1 Obs for T3 CTWD 2	1953 1953 1956 1977 1917	110 120 90 100 95	183- 186 245- 248 92- 95 - 200 ³ - 110 ³	62 12/05 45 11/06 74 11/14	61 10/20 47 10/25 45 10/26 74 10/17 59 10/20	-1 0 -15

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ³WELL DEPTH ⁴WATER LEVEL MEASURED IN 1979

WELL NUMBER	LOCATION LATI- LONGI- TUDE TUDE	OWNER	, LOCAL Number	YEAR DRILLED	ALTITUDE ¹ LAND SURFACE (FT)	SCREEN INTERVAL (FT)	ALTI-	73 Level Date	19' WATER ALTI- TUDE' (FT)	LEVEL	CHANGE IN WATER LEVEL (FT)
23- 18 23- 22 23- 24 23- 32 23- 35	401841 742905 401857 742908 401858 743015 401918 743048 402010 742838	CARTER WALLACE CARTER WALLACE DANSER, CLENDON BARCLAY FARMS CITIES SERVICE	CW 2 CW 9 1 1 (C.DANSER) 1	1957 1951 1959 1954 1956	98 120 115 120 138	161- 201 - 209 ³ - 152 ³ - 152 ³ 167- 197	66 62	11/14 11/14 11/14 11/14 11/14	60 59 76 69 69	10/18 10/18 10/25 10/26 10/25	-8 -7 14 -4
23- 96 23- 98 23-101 23-109 23-140	402239 742540 402051 742604 402030 742115 402302 742256 402247 742132	HELME PRODUCTS NJ WATER CO MOLDER FISH DUHERNAL W CO DUHERNAL W CO	4R JAMESBURG 6 1973 DUHERNL OBS 26 DUHERNL OBS 23		40 50 50 24 34	32- 42 99- 120 211- 223 - 101 ³ - 78 ³		11/13 11/21	38 47 17 1 13	10/25 10/16 10/23 10/27 10/27	-2 -2
23-142 23-144 23-145 23-159 23-161	402346 741832 402347 742241 402348 742050 402358 742156 402358 742211	OLD BRIDGE MUA DUHERNAL W CO OLD BRIDGE MUA DUHERNAL W CO DUHERNAL W CO	BROWNTOWN 1 Duhernal 6 11–1972 Duhernal obs 5 Duhernal 2	1967 1938 1972 1938 1938	90 18 30 20 18	199- 249 51- 71 80- 120 55- 63 62- 73	2	11/21 11/21 11/21	8 1 8 0 -17	10/27 10/27 10/28 10/27 10/27	8 -2 -11
23-163 23-172 23-173 23-174 23-180	402359 742220 402404 742205 402406 741620 402407 741920 402439 742124	DUHERNAL W CO DUHERNAL W CO MADISON T BD ED OLD BRIDGE MUA DUHERNAL W CO	DUHERNAL 3 DUHERNAL 1 IRA-71 BROWTOWN OBS DUHERNAL OBS 1	1938 1938 1971 1961 1938	22 13 60 45 19	61- 76 55- 75 173- 193 - 150 ³ 57- 67	12	11/15 11/15 11/21	-15 -22 -4 10 4	10/27 10/27 10/19 10/23 10/27	-1 -2 0
23-182 23-190 23-203 23-205 23-208	402449 741819 402526 741603 402632 741459 402700 741459 402712 741806	BOWNE, CLYDE NAPPI TRUCK CO OSCHWALD BRICK OLD BRIDGE MUA OLD BRIDGE MUA	BROWNTOWN 2-1965 1 LAWRENCE HAR 8 1-HOPE PK.	1932 1965 1914 1948 1956	31 140 50 60 140	66- 71 - 253 ³ 156- 200 193- 213 167- 181		11/06 11/16	17 5 -1 -6 23	11/20 10/23 11/01 10/20 10/23	-2 -2
23-228 23-237 23-244 23-245 23-250	402015 742757 402038 742755 402131 742245 402202 742305 402252 742301	MONROE TWP MUA FORSGATE FARMS REESE, AUGUST MONROE TWP MUA DUHERNAL W CO	OBS 3-1961 FORSGATE FARM4 1971 RELIABLE 1 DUHERNL OBS 10	1961 1954 1971 1963 1938	147 140 60 55 22	128- 138 178- 222 152- 158 131- 161 83- 93	19	11/02 11/13 11/21	66 47 -2 20 9	11/20 10/25 10/17 10/27 10/27	-7 1 -2
23-292 23-296 23-343 23-344 23-351	402109 743013 402126 742939 402553 742033 402558 742013 402608 741957	MONROE TWP MUA QUALITY EGG CO NJ WATER POLICY SAYREVILLE W D SAYREVILLE W D	OBS 2-1961 2 (ABEEL,J.F.) SUN BISCUIT 5 SWD 2 SWD 1	1961 1968 1957	107 115 17 22 35	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	9 17	11/01 11/02 11/02 11/02	77 104 8 15 22	10/20 10/18 10/19 10/24 10/28	-6 -1 -2 3
23-359 23-369 23-383 23-403 23-413	402618 741952 402630 741949 402703 741859 402745 741631 402824 741631	SAYREVILLE W D SAYREVILLE W D E I DUPONT SAYREVILLE W D SOUTH AMBOY W D	SAYREVILLE D SAYREVILLE H 8A SWD Q-1973 SAWD 9	1958 1960 1954 1973 1965	29 45 97 40 10	64- 75 67- 83 97- 116 78- 136 ² 25- 47	18	11/14 11/13 11/13	21 35 40 10 8	10/20 10/20 10/25 10/20 10/20	-3 -8 2
23-414 23-427 23-433 23-442 23-444	402825 741632 402900 741644 402555 742133 402252 742432 402326 742313	SOUTH AMBOY W D SWAN HILL ICE C NJ WATER POLICY SPOTSWOOD WD DUHERNAL W CO	SAWD 10 SWAN HILL 1 SO RIVER 4 3-73 DUHERNAL 9	1967 1922 1968 1973 1938	10 20 20 30 14	38- 48 40- 52 30- 33 63- 78 ² 62- 72	14 8 (11/13 11/13 03/12 11/21	9 13 7 20 10	10/20 10/20 10/24 10/27 10/27	8 - 1 - 1 0
23-447 23-490 23-494 23-500 23-507	402329 742319 401925 742620 402338 742315 402018 743021 401801 743154	SPOTSWOOD WD MONROE TWP MUA SPOTSWOOD WD S BRUNSWICK TWP DANSER,FRANK	SWWD 1 8-R 5 BROADWAY T UNUSED DOM	1957 1974 1978 1978	18 167 23 105 105	64- 85 287- 325 83- 97 131- 161 - 130 ³	11	11/13	14 51 12 68 69	10/27 10/17 10/27 10/18 10/16	3
23-508 23-509 23-517 25- 3 25- 8	401801 743154 402530 741602 401923 742830 401002 743554 402441 740233	DANSER,FRANK NAPPI TRUCK CO KAISER AG CHEM TOTTEN FARM ATLAN HIGH W D	DOMEST-73 MARZ MASON KAISER TOTTEN 1 AHWD 3	1973 1961 1962 1975 1946	105 130 120 90 15	- 90° 126- 136 165- 196 210- 243 547- 572	-16	11/15	68 61 15 -15	10/16 10/28 10/18 10/23 10/24	1
25- 13 25- 34 25- 36 25- 37 25- 45	401137 740121 401558 740908 401604 741144 401610 741205 401742 741228	AVON WATER DEPT NAD EARLE HOMINY HIL FARM HOMINY H GOLF C FLOCK AND SONS	AWD 4 NAD EARLE 2(B) 1 MERCER,H D GLF CLB 2-1963 1	1974 1944 1942 1963 1963	29 135 109 137 66	1105-1165 810- 836 - 6863 686- 706 649- 677	- 35	11/16 11/16 11/16	-16 -24 -35 -30 -31	10/31 10/18 10/20 10/19 10/19	0 0 1
25- 56 25- 62 25- 82 25- 85 25- 89	401744 742135 401134 741014 401412 741606 401436 741525 401452 741727	ENGLISHTWN B WD ROKEACH & SONS FREEHOLD TWP WD 3M COMPANY CLAYTON, WM D	ENGLISHTOWN 2 4-DEEP KOENIG LANE 1 1 CLAYTON 1	1965 1961 1957 1957 1955	70 75 130 120 185	363- 384 831- 885 619- 670 653- 700 582- 612	-25 -34 -42	11/13 12/08 11/14 11/14 11/13	9 -25 -43 -39 -58	10/19 10/25 10/25 10/25 11/02	-3 0 -9 3 0

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ³WELL DEPTH

WELL NUMBER	LOCATION LATI- LONGI- TUDE TUDE	OW NER	LOCAL Number	YEAR DRILLED	ALTITUDE ¹ LAND SURFACE (FT)	SCREEN INTERVAL (FT)	1973 WATER LE ALTI- TUDE ¹ D. (FT)	VEL WATER ALTI-		CHANGE IN WATER LEVEL (FT)
25- 91 25- 97 25- 99 25-101 25-103	401516 741530 401625 741501 401633 741728 401635 741721 401646 741737	BROCKWAY GLASS FREEHOLD TWP WD FREEHOLD BOR WD FREEHOLD BOR WD FREEHOLD TWP WD	BROCKWAY 2 6-OLD SO.GULF2 FREEHOLD 3 FREEHOLD 5 7-74	1969 1966 1964 1970 1974	140 195 110 123 107	632- 685 596- 656 482- 567 518- 572 478- 575	-41 11/ -39 11/ -24 11/ -27 11/	14 -42 14 -26	10/24 10/25 10/24 10/24 10/25	3 -3 -2 -4
25-111 25-112 25-116 25-118 25-119	402532 740932 402537 740933 402400 735912 402401 735934 402403 735923	W KEANSBURG W C W KEANSBURG W C HIGHLANDS W D HIGHLANDS W D HIGHLANDS W D	W KEANSBURG 1 W KEANSBURG 2 HWD 2 NEW HWD 1 HWD 3	1957 1960 196 1 1949 197 3	59 44 10 15 15	326- 366 312- 352 600- 660 649- 709 719- 779	-32 11/ -32 11/ -12 11/ -15 11/	12 –40 16 –15	10/16 10/16 10/25 10/29 10/25	-7 -8 -3 0
25-121 25-146 25-154 25-175 25-177	402023 741100 402327 741114 402445 741019 401246 741516 401255 741147	S.S. WHITE DIV. BELL TELE CO W KEANSBURG W C ADELPHIA W C SCHROTH, EMIL A	1 (PENNWALT) CRAWFRD HILL 1 W KEANSBURG 3 1(HOVBILT CO) SCHROTH	1960 1962 1964 1969 1969	80 280 73 100 95	560- 590 555- 585 400- 430 681- 762 781- 801	-29 11/	16 –26 –31 –39 –29 –16	10/18 10/23 10/23 11/01 11/01	3
25-196 25-197 25-199 25-201 25-202	402628 740744 402535 741214 402542 741220 402615 741055 402623 741147	KEANSBURG W D KEYPORT BORO WD KERR GLASS CO ESSIE CONST. CO KEYPORT BORO WD	KWD 3 KEYPORT 7 REPLACEMENT 2 LEX LUCAS 1 KEYPORT BORO 5	1942 1976 1964 1965 1955	12 35 20 20 20	308- 348 304- 354 285- 315 250- 282 204- 267	-28 11/	-40 -27 -34 15 -23 -14	05/17* 10/18 10/18 10/17 10/23	5
25-203 25-206 25-207 25-214 25-218	402626 741146 402625 741145 402626 741145 401429 742146 401557 742318	KEYPORT BORO WD KEYPORT BORO WD KEYPORT BORO WD MANALAPAN T W D BOY SCOUTS AMER	KEYPORT BORO 1 KEYPORT BORO 4 KEYPORT BORO 6 LAMBS RD 1 QUAIL HILL 2	1939	11 15 11 190 250	211- 271 225- 249 247- 277 585- 641 510- 527	-23 11/ -19 11/ -2 11/	-14 14 -14	10/23 10/23 10/23 10/19 10/16	9 5 -4
25-220 25-244 25-251 25-252 25-259	401537 742012 401850 741459 401908 741510 401909 741512 402034 741420	BATTLEGROUND CC GORDONS CRNR WC GORDONS CRNR WC GORDONS CRNR WC MARLBORO S HOSP	IRRIGATION GORDON WC7 GORDON WC9 GORDON WC8 STATE HOSP 12	1967 1969 1971 1969 1950	120 160 125 125 155	539- 569 524- 594 478- 575 ² 506- 577 508- 593	-19 11/ -39 11/	-35 -35	10/19 10/20 10/20 10/20 10/24	-2 2
25-282 25-284 25-288 25-292 25-293	402507 741344 402515 741450 402349 741232 402359 741233 402403 741245	BAYSHORE Matawan Boro Wd Aberdeen T Mua Aberdeen T Mua Aberdeen T Mua	BAYSHORE 1 Matawan Boro 3 Matawan Mua 3 Matawan Mua 1 Matawan Mua 2	1976 1956 1967 1962 1962	10 90 83 87 70	245- 260 231- 271 345- 425 341- 414 316- 354		-13 -7 -31 -33 -32	10/19 10/18 10/17 10/17 10/17	
25-294 25-295 25-314 25-316 25-317	402428 741345 402427 741348 402500 740811 402536 735905 402612 740511	MATAWAN BORO WD MATAWAN BORO WD ENGI PREC CASTG STATE OF NJ SEA COAST PROD.	MATAWAN BORO 1 MATAWAN BORO 2 1-1964 SANDY HOOK SP1 SMITH 1	2 1943 1965	20 20 20 11 10	222- 252 228- 258 354- 364 371- 397 - 420 ³	-23 11/ -2 09/	-22 -38	10/19 10/19 10/17 10/20 10/23	0 -3
25-321 25-322 25-332 25-333 25-334	402706 735952 401157 742418 401930 735841 401214 740355 401214 740355	NATIONAL PK SER RESTINE, P J MON BCH CLD STR MONMOUTH CON WC MONMOUTH CON WC	FT HANCOCK 4 RESTINE 1 MBCS 1971 DEEF JUMPING BR 5 JUMPING BR 4	1941 1956 1971 1956 1951	5 210 10 35 23	332- 486 667- 697 817- 850 - 870' 1013-1065	3 11/ -27 11/ -23 11/	-13 15 -22	10/20 11/01 12/05 10/31 10/31	1 5 2
25-343 25-345 25-358 25-360 25-362	401232 740101 401233 740100 402047 740420 402054 740320 401312 742802	ASBURY PARK W D MONMOUTH CON WC RED BANK W D RED BANK W D ROOSEVELT W D	LAYNE 2R-1956 LAYNE 3-1958 1B-1950 4-75 ROOSEVELT 3	1956 1958 1950 1975 1956	20 20 40 146 198	1084-1124 1085-1125 637-687 668-759 ² 442-472	-16 11/		10/30 10/30 10/25 10/25 11/01	2
25-363 25-419 25-420 25-424 25-434	401315 742812 402632 741049 402634 741051 402641 740911 400926 740749	ROOSEVELT W D UNION BEACH W D UNION BEACH WD INT FLAVOR FRAG STATE OF N J	ROOSEVELT 2 UBWD 1 1962 UBWD 2 1969 IFF2 ALLAIRESP3	1935 1962 1969 1955 1967	160 10 10 10 40	415- 445 235- 285 262- 289 302- 326 1004-1029		28 -22 -16 -31 -31	11/01 10/19 10/19 10/17 10/31	
25-436 25-456 25-457 25-459 25-462	400952 740725 402640 740904 401551 742212 402219 740337 402717 740816	BRISBANE C T C INT FLAVOR FRAG KNOB HILL C C NAVESINK C C KEANSBURG AMUSE	3-1971 IFF-3R KNOB 1-74 1-78 1-69	1971 1976 1974 1978 1969	60 10 108 80 10	990-1033 277- 316 475- 495 551- 612 ² 200- 250 ²	-22 11/	-34 13	10/31 10/17 10/19 08/08 10/18	-4
29- 70 29-100 29-134 29-238 29-453	395905 740359 395956 740344 400333 741942 400824 742630 395808 740416	OCEAN CO W C OCEAN CO W C Clayton Sand Jackson TWP MUA Lavallette W D	MONTEREY 1 NORMANDY 3 SCM 1 JACKSON 7 LWD 4	1967 1954 1961 1974 1960	5 8 95 130 5	1375-1495 ² 1428-1479 746-962 584-648 ² 1358-1515	-10 11/ -30 11/ -21 11/	20 -24 -10	11/03 10/30 10/26 10/26 11/06	-8 6 ·2

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ³WELL DEPTH ⁴WATER LEVEL MEASURED IN 1979

	LOCATION					ALTITUDE LAND	SCREEN	1973 WATER LEVEL ALTI-		ALTI-	LEVEL	CHANGE IN
WELL Number	LATI- Tude	LONG1 TUDE	OWNER	LOCAL NUMBER	YEAR DRILLED	SURFACE (FT)	INTERVAL (FT)	TUDE (FT)	1 DATE	TUDE ¹ (FT)	DATE	WATER LEVEL (FT)
29-504 29-524	400210 400409		OCEAN CO W C PT PLEASANT W D	MANTOLOKING PPWD 7	7 1960 1967	5	1263-1368 ² 1183-1260	-16 -29	11/19	-18 -20	10/30	-2 9
29-531	400454		PT PLEASANT W D	PPWD 5	1960	18	1256-1342	-18	11/19	-19	11/04	-1
33- 75 33- 76	394258 394328	752200 752446	BOY SCOUTS AMER Dawson,h w	AUBURN HILL DAWSON 1	CP 1941 1957	17 27	129- 134 118- 123	-6 4	12/03 12/10	-11 3	11/14 11/22	-5 -1
33-105 33-109	393458 393734		DILWORTH,J R Siegfried chem	DILWORTH 1973-1	1950 1973	10 5	- 2633 116- 131	-15	11/30	-21 -2	11/21 11/20	-6
33-111	393746		PENNSVILLE T WD	HOOK RD OBS	1971	10	190- 235	-12	01/30°	-14	11/28	-2
33-117 33-126	393954 394057		PENNSVILLE T WD E I DUPONT	PTWD 3 RANNEY 7	1956 1966	7 15	87- 102 52- 140²	-3 0	12/05 12/05	-4 1	11/21 11/21	-1 1
33-128	394102	752946	E I DUPONT	RANNEY 6	1966	15	50- 60	-2	12/05	-3	11/22	-1
33-135	394110		E I DUPONT	RANNEY 5	1963	16	47- 116	0	12/05	2	11/21	2
33-253	393348		US GEOL SURVEY	SALEM 3	1965	3	335- 340	-14	10/04	-22	11/28	-8
33-325 33-333	394149 394208		E I DUPONT E I DUPONT	CARNEY PT 3 CARNEY PT 5	1933 1957	5 5	- 102³ - 81°	-9 -5	12/07 12/07	-7 -2	11/22 11/22	2 3
33-342	394236		NJ WATER POLICY	PENNS GROVE		18	46- 51	-4	11/13	-5	11/28	-1
33-355	393914		WOODSTOWN ICE C PENNSVILLE T WD	C1	1927	58 10	- 360 ³	-20	11/29	-29	11/09 11/21	-9
33-360 33-361	393750 394205		PENNS GROVE WSC	5 SCULTZ 4	1979 1978	13	101- 117 54- 64			-7 -9	11/22	

 TABLE 3. --WATER-LEVEL DATA FOR WELLS SCREENED IN THE UPPER AQUIFER OF THE POTOMAC-RARITAN-MAGOTHY

 AQUIFER SYSTEM--CONTINUED

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ³WELL DEPTH ³WATER LEVEL MEASURED IN 1974

Englishtown Aquifer

Geohydrology

The Englishtown Formation is composed largely of medium to fine grained quartz sand and clayey silt of Late Cretaceous age. The outcrop of the Englishtown Formation (pl. 3) stretches in an irregular band from Raritan Bay to the Delaware River.

Several lithofacies of the Englishtown Formation have been recognized in New Jersey. Probably the most significant are the upper and lower sand and interbedded clayey silt facies described by Nichols (1976, p. 12-15). The Englishtown aquifer is composed of the upper and lower sand facies of the Englishtown Formation (Nichols, 1976, p. 20). In this report, as in Nichols' (1977) analysis of the Englishtown aquifer, the areal head distribution is represented by the upper sand in southern Monmouth and northern Ocean and Burlington Counties because of limited data for the lower sand.

The greatest thickness of the aquifer is about 140 ft in parts of northern and southern Monmouth and northern Ocean Counties (Nichols, 1976, fig. 11, p. 23). The aquifer thins southward and is absent in the deeper subsurface of the southeastern Coastal Plain (Zapecza, written communication, 1982).

According to Nichols (1976, p. 43), the underlying sequence of sediments, including the combined thickness of the Merchantville Formation and the Woodbury Clay, acts as the lower confining layer for the Englishtown aquifer. The overlying Marshalltown Formation and the fine grained lower part of the Wenonah Formation form a leaky upper confining layer separating the Englishtown aquifer from the overlying Wenonah-Mount Laurel aquifer. Nemickas (1976) and Nichols (1977) discuss leakage through this layer. Vertical leakage from overlying beds provides a significant source of recharge to the Englishtown aquifer (Nichols, 1977, p. 62).

Withdrawals from the Englishtown aquifer are greatest in southeastern Monmouth County and northeastern Ocean County where the upper sand is the principal aquifer. However, two wells (29-438, 29-449) are screened in both the upper and lower sands near Lakewood. At Lavallette two wells (29-452, 29-454) withdraw water from only the lower sand. Irrigation, domestic, and other wells are in and near the outcrop. No known large-capacity wells exist south of Camden County.

Water Levels

Water levels were measured in 85 wells screened in the Englishtown aquifer (table 4). Most wells are near the coast in southern Monmouth and northern Ocean Counties. A few are in Burlington, Camden, and Middlesex Counties. No wells were measured in Atlantic, Cape May, Cumberland, Gloucester, Mercer, and Salem Counties.

The lowest heads in the Englishtown aquifer are near Point Pleasant in northern Ocean County (pl. 3). Locally, heads are lower than 200 ft below sea level; the lowest measured head was 247 ft below sea level. Heads are also low near Lakewood, Ocean County (160-230 ft below sea level). The highs (greater than 120 ft above sea level) are southeast of the outcrop in Monmouth County.

The lowest heads in the Englishtown aquifer are about 140 ft lower than in either aquifer of the Potomac-Raritan-Magothy aquifer system. However, withdrawals from the Englishtown are about 5 percent of the withdrawal from the Potomac-Raritan-Magothy aquifer system. The transmissivity of the Englishtown is relatively low (Nichols, 1976, p. 59), contributing significantly to its lower heads.

Water levels were measured in two water supply wells in the Lakewood area (29-438 and 29-449). These wells are screened in both the lower and upper sands, and the water levels are a composite of the heads in both sands. The level in a nearby observation well (29-441), screened in only the lower sand, is 14 ft higher than well 29-438 and 34 ft higher than well 29-449. Therefore, the composite heads in these water-supply wells may be higher than the heads in the upper sand.

In east central Ocean County where the upper sand thins and is not used for water supply, wells (29-452, 29-454, 29-534) screened in the lower sand show heads from 78 to 119 ft below sea level.

Water-Level Fluctuations

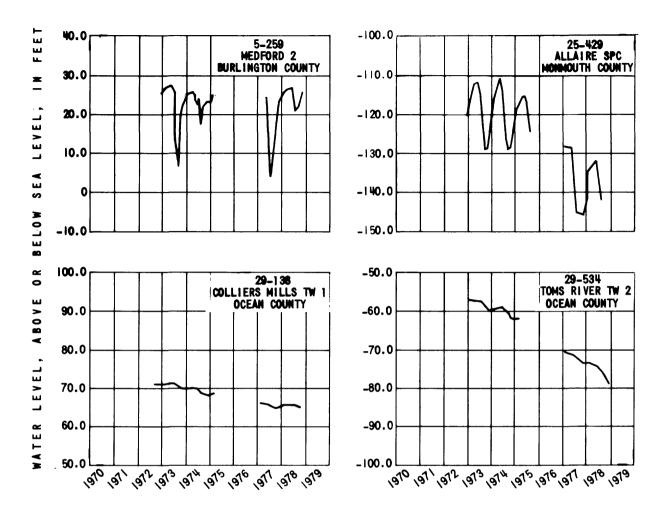

Change in water level from 1973 to 1978 was calculated for 56 of the wells (table 4). The changes show a general decline in potentiometric heads in most of the aquifer. Greatest head declines (2 to 31 ft) were generally where the head was lowest (pl. 3). In Ocean County declines in the lower sand ranged from 19 to 31 ft in three wells (29-452, 29-454, and 29-534). The smallest head changes were generally in the northern and western parts of the aquifer near the outcrop.

Figure 6 shows hydrographs of four observation wells (5-259, 25-429, 29-138, 29-534) screened in the Englishtown aquifer; locations are on plate 3. The hydrographs show unique patterns relating to their proximity to pumping wells and large withdrawal centers. Well 5-259 in northern Burlington County is far from the large pumping center. The large seasonal variations in well 5-259 in 1973 and 1977 are probably due to pumping at a nearby irrigation well and do not represent regional seasonal variations for the aquifer. The long-term trend (fig. 6) shows little or no change.

Observation well 29-138 in northwestern Ocean County is about 12 mi west of Lakewood. The hydrograph shows small cyclic seasonal variations and declining water levels (1.2 ft/yr). Levels at this site respond to regional pumping in the Englishtown aquifer.

Well 25-429 is close to areas of lowest head (pl. 3). The hydrograph shows an average decline of 3.8 ft/yr. Seasonal variations of 15 to 18 ft/yr are probably caused by seasonal withdrawal changes 3 to 4 mi east of the site and similar regional changes where head was lowest.

Well 29-534, screened in the lower sand facies in northern Ocean County, is 7.5 mi southwest of the nearest pumping wells (29-452 and 29-454) at Lavallette. The hydrograph shows an average decline of 3.5 ft/yr. The decline is similar to well 25-429. screened in the upper sand north of heavy pumping centers. Seasonal fluctuations for well 29-534 are similar to well 29-138, screened in the upper sand in western Ocean County, demonstrating possible hydraulic continuity of the lower sand with the updip parts of the aquifer. Unpublished data show about 4 percent of withdrawals from the Englishtown aquifer in Ocean and Monmouth Counties in 1978 were from the lower sand. The lower sand is lithologically and hydrologically continuous with the aquifer over some undefined areas in southern Monmouth County (Nichols, 1976, p. 22). Therefore, levels in well 29-534 are affected by pumping elsewhere in the Englishtown aquifer. The decline in August 1978 is probably a response to increased withdrawals at the Lavallette wells during July, August, and September 1978. The annual withdrawal from the Lavallette wells increased about 40 percent between 1977 and 1978.

Lowest water level See plate 3 for locations

Figure 6.-- Hydrographs of observation wells screened in the Englishtown aquifer.

TABLE 4.--WATER-LEVEL DATA FOR WELLS SCREENED IN THE ENGLISHTOWN AQUIFER

WELL NUMBER	LOCATION LATI- LONGI- TUDE TUDE	OWNER	LOCAL NUMBER	YEAR DRILLED	ALTITUDE ¹ LAND SURFACE (FT)	SCREEN INTERVAL (FT)		73 LEVEL DATE			CHANGE IN WATER LEVEL (FT)
5-195 5-197 5-202 5-205 5-259	395833 745042 395653 744921 395804 744811 395909 744807 395524 745025	THOMAS, ALFRED JONES, LESTER ELEC PART SPECI PLASTICON CORP US GEOL SURVEY	THOMAS D-1 ELECTRONIC P 1 1955 WELL MEDFORD 2	1954 1953 1953 1955 1955	60 41 33 45 73	70- 74 148- 159 101- 121 97- 107 253- 263	24 28 17 19	11/24 06/25 11/28 09/23	25 26 9 18 25	11/14 11/09 11/08 11/09 11/07	-1 -2 1 6
5-387 5-437 5-733 5-753 5-754	395943 744120 400210 744138 400412 743822 400541 743642 395941 743250	PEM T BDED KAUFFMAN MINTER BRIGHT VIEW FAR WEIDEL REAL EST US ARMY FT DIX	3 1 Range hq 7	1973 1960 1975	42 74 139 95 100	208- 228 94- 105 203- 205 - 141 ³ 418- 447			44 62 77 71 50	11/01 11/01 10/31 11/06 11/03	
7-166 7-529 23-211 23-516 25- 1	394807 745806 394832 745915 401819 742248 402122 741846 401401 740025	CLEMENTON W D CLEMENTON W D VLCEJ, STEPHEN NOVAK ALLENHURST W D	CWD 9 CWD11 1972 HULSART AWD 4	1954 1978 1972 1950	150 60 105 110 17	367- 457 ² 250- 283 43- 49 - 19 ³ 525- 565	19 98 -73	12/04 11/05 11/15	0 6 90 94 -86	11/06 11/06 10/17 11/20 10/31	-19 -4 -13
25- 5 25- 9 25- 16 25- 23 25- 26	401346 740034 402441 740234 401037 740148 401040 740146 401102 740045	MONMOUTH CON WC ATLAN HIGH W D BELMAR BORO WD BELMAR BORO WD BELMAR BORO WD	APWD 4 AHWD 2 BWD 3 ELEC(12) BWD 13 BWD 4 ELEC(11)	1963 1923 1949 1973 1941	8 15 20 20 15	540- 580 - 200 ³ 563- 594 555- 605 601- 671	-80 7 -170 -171 -150	11/15 11/15 11/21 11/21 11/21	-89 10 -188 -183 -165	10/31 10/24 10/30 10/30 10/30	-9 3 -18 -12 -15
25- 28 25- 30 25- 38 25- 46 25- 47	400623 740429 400645 740345 401622 741156 401747 741221 401803 740814	BRIELLE WATER D BRIELLE WATER D HOMINY H GULF C CEDAR DR EL SCH ROSENBERG, M	BWD 3 BWD 2 GLF CLB 1-1941 ROSENBERG 1	1967 1950 1941 1963 1957	90 33 126 122 80	770- 820 690- 750 328- 338 212- 232 322- 342	-202 -202 61 72 32	11/21 11/21 11/16 11/16 11/16	-219 -233 60 70 35	11/03 11/03 10/19 10/20 10/18	-17 -31 -1 -2 3
25- 54 25- 64 25- 79 25- 80 25- 90	401742 740232 401155 741011 401331 741944 401415 741501 401513 741528	OLD ORCHARD C C FARMINGDALE W D CLAYTON, WM D WORTHINGTON BIO BROCKWAY GLASS	OLD ORCHARD 1 FARMINGDALE 4 CLAYTON 2 1-1967 BROCKWAY 1	1952 1970 1955 1967 1956	40 85 170 120 140	360- 380 410- 470 303- 333 294- 334 240- 260	-66 77 86	11/15 11/14 11/14	10 -73 123 75 89	10/30 10/25 11/02 11/01 10/24	-7 -2 3
25- 96 25-105 25-107 25-132 25-150	401624 741502 401654 741736 401701 741417 402202 741002 402432 740848	FREEHOLD TWP WD FREEHOLD TWP WD MUELLER,DR.R.W. BELL TELE CO LILY TULIP CUP	5-OLD SO.GULF1 POINT IVY 1 DURAND,E. 1960 BELL LAB 2 LILY TULIP 2	1964 1967 1960 1960 1962	200 130 163 120 65	327 - 356 150 - 212 ² 249 - 257 191 - 221 97 - 122	88 112 76 75 34	11/14 11/14 11/16 11/17 11/17	87 104 81 64 36	10/25 10/25 10/30 10/20 10/22	-1 -8 5 -11 2
25-151 25-161 25-162 25-213 25-216	402439 740849 400745 741333 400815 741043 401253 742122 401518 742230	LILY TULIP CUP HOWELL T BD ED NJ NATURAL GAS BLUE STAR STABL MANALAPAN T W D	LILY TULIP 1 KENT RD 1-1973 1969 MANALAPAN 1	1962 1955 1973 1969 1967	60 110 69 165 122	101- 126 558- 582 500- 560 275- 285 113- 174 ²	-100 119	11/24 11/05	33 -101 -114 117 119	10/22 11/02 10/30 11/03 11/22	-14 0
25-217 25-239 25-250 25-256 25-263	401545 742137 401838 741324 401918 741529 401937 741428 402103 741351	LAWN ELECT CO MARLBORO IND PK GORDONS CRNR WC MARLBORO S HOSP MARLBORO S HOSP	1–1958 1 VILLAGE 215 STATE HOSP 4 STATE HOSP 13	1958 1963 1964 1953	100 128 139 125 140	- 83 ³ 201- 231 185- 215 - 124 ³ 142- 168	90 100 87	11/15 11/05 11/16	98 108 100 88 87	10/23 10/26 11/03 10/24 10/24	18 0 0
25-264 25-306 25-353 25-371 25-374	402103 741357 402232 740831 401542 740530 400800 740231 400804 740227	MARLBORO S HOSP HARMYK AND SONS US ARMY SEA GIRT W D SEA GIRT W D	STATE HOSP 6 HARMYK 2 F Monmuth 1nco SGWD 4 SGWD 5	1936 1963 1972 1949 1963	135 225 140 18 20		90 -5 -190 -191	11/15 11/16 11/21 11/21	92 51 -7 -209 -205	10/24 10/20 11/01 10/26 10/26	2 -2 -19 -14
25-383 25-384 25-385 25-386 25-388	400849 740207 400845 740210 400915 740146 400952 740149 400845 740312	SPRING LAKE W D SPRING LAKE W D SPRING LAKE W D SPRING LAKE W D SPRING LK HT WD	SLWD 1 SLWD 2 SLWD 3 SLWD 4 SPRING LK HGT3	1940 1941 1941 1967 1966	15 15 20 15 25	640- 705	-213 -194 -182 -178	11/16 11/16 11/16 11/16 11/16	-205 -207 -197 -186 -204	10/26 10/26 10/26 10/26 10/27	8 - 13 - 15 - 8
25-389 25-408 25-414 25-427 25-428	400859 740308 401007 743201 401119 743108 400824 740508 400823 740455	SPRING LK HT WD THECKER, DUNCAN VANHISE, MR WALL TWP W D WALL TWP W D	SPRING LK HGT2 D T ASSOC 1 1954 ALLENWOOD 2 ALLENWOOD 1	1953 1969 1954 1959 1959	60 105 140 80 100	660- 711 96- 119 126- 131 658- 710 623- 740 ²	-194 98 -202	11/21 11/24 11/16	-203 101 114 -204 -219	10/27 04/30* 10/24 10/25 10/25	-9 3 -2
25-429 25-441 25-442 25-461 25-463	400834 740834 401028 740638 401053 740341 402432 740848 402240 741539	US GEOL SURVEY WALL TWP W D WALL TWP W D LILY TULIP CUP GARRISON	ALLAIRE S P C RT 34 WELL IMPERIAL PARK TEST FOR 2 DUG-1924	1963 1968 2 1943 1962 1924	98 120 70 65 110	549- 649	-127 -136 -147	11/06 11/20 11/20	-143 -162 -164 35 93	11/03 10/25 10/25 10/22 10/23	-16 -26 -17
	IS SEA LEVEL										

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ³WELL DEPTH *WATER LEVEL MEASURED IN 1979

TABLE 4.--WATER-LEVEL DATA FOR WELLS SCREENED IN THE ENGLISHTOWN AQUIFER--CONTINUED

						ALTITUDE 1			73 Level		78 Level	CHANGE
WELL Number		ON ONGI- JDE	OWNER	LOCAL NUMBER	YEAR DRILLED	LAND SURFACE (FT)	SCREEN INTERVAL (FT)	ALTI- TUDE' (FT)	DATE	ALTI- TUDE' (FT)	DATE	IN WATER LEVEL (FT)
29- 5 29- 35	400405 740		OCEAN CO W C BRADLEES CORP	BAY HEAD 5 Bradlees Well	1947 1969	10 25	750- 834 670- 710	-237	11/19	-226	10/26 10/27	11
29-138 29-229 29-233	400414 742 400712 741 400742 741	1512	US GEOL SURVEY JACKSON TWP MUA JACKSON TWP MUA	COLL MILLS TW1 JACKSON 1 JACKSON 4	1964 1961 1965	137 110 80	417- 427 511- 557 448- 500	70	11/09	65 -84 -52	11/13 10/26 10/26	-5
29-430 29-431 29-433	400220 741 400250 741 400312 741	1044	LAKWD TMUA Lakwd Tmua Lakwd Tmua	S LAKEWOOD 1 S LAKEWOOD 2 S LAKEWOOD 3	1969 1963 1966	90 40 45	752- 817 680- 762 ² 673- 741	-177	11/28	- 178 - 202 - 207	11/02 11/02 11/02	-25
29-434 29-438	400354 741 400443 741		LAKEWOOD W C	LWC 7 LWC 8	1964 1965	85 78	697- 757 600- 758 ²	-229	11/28	-227 -152	11/01	2
29-441 29-449	400505 741		LAKEWOOD W C LAKEWOOD W C	LWC OBS LWC 9	1966 1968	30 55	726- 736 569- 698²	-135 -163	11/28 11/28	-136 -170	11/01 11/01	-1 -7
29-450 29-451 29-452	400622 741 400636 741 395741 740	1515	LAKEWOOD W C LAKEWOOD TWP LAVALLETTE W D	LWC 6 ST GABRIELS 1 LWD 3	1960 1957 1948	70 60	520- 582 510- 530 1120-1180	-110 -92 -86	11/28 11/24 11/19	-135 -102 -117	11/01 11/03 11/06	-25 -10 -31
29-454 29-519	395808 740 400401 743	3200	LAVALLETTE W D New Egypt WC	LWD 2 1	1931 1907	65	1009-1136 214- 239	-90	11/19	-119	11/06 11/03	-29
29-530 29-532 29-534	400454 740 400459 740 395609 741	359	PT PLEASANT W D PT PLEASANT W D US GEOL SURVEY	PPWD 6 PPWD 3 Toms river TW2	1965 1946 1965	20 10 18	730- 790 748- 798 1080-1146	-249 -59	11/19 11/09	-236 -247 -78	11/04 11/04 11/01	2 -19

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS

Wenonah-Mount Laurel Aquifer

Geohydrology

The Wenonah Formation and overlying Mount Laurel Sand of Late Cretaceous age are composed primarily of fine- to coarsegrained sand. The Mount Laurel Sand is a coarser sand unit than the Wenonah Formation, and is the principal component of the aquifer (Nemickas, 1976, p. 8). These units crop out as an irregular band from Raritan Bay to the Delaware River (pl. 4).

The Wenonah Formation and Mount Laurel Sand are hydraulically connected (Nemickas, 1976, p. 8) and their combined sand thickness forms the Wenonah-Mount Laurel aquifer. The aquifer is about 40 ft thick near Raritan Bay and along the outcrop. The aquifer thickens downdip and southward to about 130 ft in northcentral Salem County. The subsurface thickness exceeds 100 ft south of Camden County (Zapecza, oral communication, 1980).

The Marshalltown Formation and the fine grained lower part of the Wenonah Formation form the leaky lower confining layer separating the Wenonah-Mount Laurel aquifer from the underlying Englishtown aquifer. This confining layer transmits significant quantities of water from the Wenonah-Mount Laurel aquifer to the Englishtown aquifer (Nemickas, 1976, and Nichols, 1977).

The Navesink Formation lies directly above the Wenonah-Mount Laurel aquifer and is the basal unit of the upper confining layer. In addition to the Navesink Formation the upper confining layer can include most or only a few of the following geologic units: the Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Marl, Piney Point Formation, and the basal clay of the Kirkwood Formation. Locally, some units may act as minor aquifers. However, for this report all units that lie stratigraphically between the top of the Wenonah-Mount Laurel aquifer and the base of the Kirkwood-Cohansey aquifer system or Atlantic City 800-foot sand of the Kirkwood Formation (fig. 2) are considered to act as a confining layer (Zapecza, written communication, 1982). Recharge to the Wenonah-Mount Laurel aquifer is mainly from vertical leakage from overlying units (Nemickas, 1976, p. 17).

Withdrawals from the Wenonah-Mount Laurel aquifer are greatest in parts of Burlington, Camden, Monmouth, and Salem Counties (about 1.1 Mgal/d per county in 1978). Gloucester County withdrawal was less than 0.1 Mgal/d. Nemickas (1976, p. 37) indicates that about two thirds of the total decline (1959-70) in the Wenonah-Mount Laurel aquifer can be attributed to withdrawals from the Englishtown aquifer. Nichols (1977, p. 62-64) showed that from 1959 to 1970, losses by leakage through the lower confining layer to the Englishtown aquifer were significant.

Water Levels

Water levels were measured in 93 wells tapping the Wenonah-Mount Laurel aquifer (table 5). Approximately 90 percent of the wells measured were in Burlington, Camden, Monmouth, and Salem Counties. Five wells are in Gloucester County, five, in Ocean County, and one, in Cumberland County. No wells were measured in Atlantic, Cape May, Mercer, or Middlesex Counties.

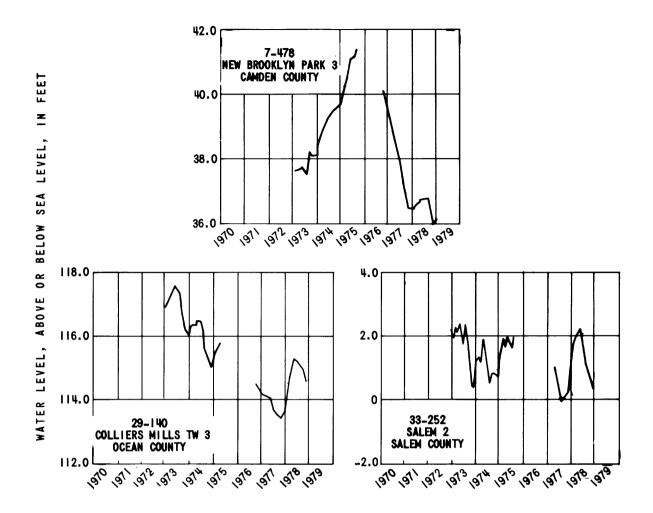
The lowest observed heads were near Avon-by-the-Sea and Spring Lake Heights, southern Monmouth County, where levels ranged from 140 ft to 195 ft below sea level (wells 25-336 and 25-391). These lows are in the northern part of the most extensive cone in the aquifer. The configuration and position of the major cones in plate 4 are similar to the major cones in the Englishtown aquifer (pl. 3). They are centered where little or no water is withdrawn from the Wenonah-Mount Laurel aquifer and where the heavy concentration of withdrawal is from the Englishtown aquifer. This similarity of head distributions and the absence of significant local withdrawal from the Wenonah-Mount Laurel aquifer indicates a strong hydraulic connection between the two aquifers.

Lesser cones exist where small municipal supplies are withdrawn from the Wenonah-Mount Laurel aquifer in Burlington and Salem Counties (pl. 4). The lowest potentiometric levels ranged from 4 to 42 ft below sea level.

The highest levels are along the outcrop generally coincident with the topographic highs in Burlington and Monmouth Counties. Levels are greater than 120 ft above sea level in Burlington County and 140 ft in Monmouth County.

The position and configuration of several potentiometric contours in Lakewood and coastal Ocean County were approximated because of insufficient data.

Water-Level Fluctuations


Change in water level from 1973 to 1978 was calculated for 45 of the wells (table 5). The greatest change was in Monmouth County, north and west of the center of the large cones of depression shown in plate 4, where levels declined between 12 and 26 ft. In central Burlington County near the small potentiometric low shown in plate 4, head declines ranged from 3 to 13 ft. The heads were unchanged near the outcrop from Monmouth to Salem County.

Hydrographs of three observation wells screened in the Wenonah-Mount Laurel aquifer are shown in figure 7 and their locations are shown on plate 4. Well 29-140 is in northwestern Ocean County approximately 20 mi west of the cone of depression in Monmouth County. The hydrograph shows cyclic seasonal variations with declines of approximately 0.6 ft/yr. This well is 6 mi downdip from the outcrop near topographic highs. Nemickas (1976, p. 17) states that recharge to the aquifer is largely from downward vertical leakage. The aquifer receives recharge where topographic and potentiometric highs coincide. The seasonal variations shown on the hydrograph are interpreted as a response to evapotranspiration and recharge in the water-table aquifer. The seasonal effects of evapotranspiration and recharge are transmitted to the aquifer by downward vertical leakage through the composite upper confining layer.

A shallow water table probably influences the seasonal fluctuations of levels in the Wenonah-Mount Laurel aquifer near the outcrop. However, declines for well 29-140 are most likely due to the hydraulic relationship between the Wenonah-Mount Laurel aquifer and the Englishtown aquifer. At well 29-140 the head in the Englishtown was 50 ft lower than the Wenonah-Mount Laurel in 1978. The difference in head is inducing significant leakage through the lower confining layer to the Englishtown aquifer.

The hydrograph for well 7-478 shows the effects of withdrawals from the aquifer in southcentral Camden County. Farlekas and others (1976, p. 72 and 74) showed that declining trends in water levels were mainly caused by increased withdrawals 3.5 to 6 mi north of the observation well. Changes in levels between 1975 and 1978 can also be attributed to variations of withdrawal. Levels rose about 2 ft in 1975 in response to a reduction in nearby withdrawals. The water level declined about 5 ft between 1975 and 1978, corresponding to increased withdrawals beginning in late 1975 and continuing into 1978.

The hydrograph for well 33-252 represents the shallow part of the artesian system at Salem, Salem County (pl. 4). The graph shows no change in water level for the long term. Seasonal variations are influenced by vertical leakage from the overlying water-table aquifer. The closest significant pumping ceased in late 1969. Therefore, the effects of withdrawals are not apparent.

Lowest water level See plate 4 for locations

Figure 7.-- Hydrographs of observation wells screened in the Wenonah-Mount Laurel aquifer.

TABLE 5WATER-LEVEL	DATA	FOR	WELLS	SCREENED	IN	THE	WENONAH-MOUNT	LAUREL A	QUIFER	
--------------------	------	-----	-------	----------	----	-----	---------------	----------	--------	--

WELL NUMBER	LOCATION LATI- LONGI- TUDE TUDE	- Owner	LOCAL NUMBER	YEAR DRILLED	ALTITUDE ¹ LAND SURFACE (FT)	SCREEN INTERVAL (FT)			WATER ALTI-	78 LEVEL DATE	CHANGE IN WATER LEVEL (FT)
5-247 5-257 5-352 5-354 5-355	395145 745111 395516 745103 395801 744120 395813 743950 395826 744109	LAKES W C JOHNSON, W E JR PEMBERTON WD SUNBURY VILLAGE PEMBERTON WD	LWC2 Johnson New PBWD 3 SVWC 1 PBWD 1	1950 1965 1968 1953 1939	52 80 62 65 81	180- 200 - 90 ³ 132- 163 178- 198 155- 185	26 37 47 42	11/29 11/26 07/09 07/10	36 27 38 43 39	11/02 11/07 10/31 10/31 10/31	1 1 -4 -3
5-359 5-361 5-365 5-366 5-371	395727 744118 395707 743246 395752 743452 395755 743239 395755 743239 395756 743814	LAKE VALLEY WC PEMBRTON TWP WD PEMBRTON TWP WD PEMBRTON TWP WD BURLINGTON CO I	LVWC 1 CTRY LKS 5 PTWD 4 PTWD 4 INCH OE BURL. CCI 4	1967 1959 1960 1972 1970	70 82 93 90 80	181- 242 ² 329- 345 290- 330 301- 323 366- 386	24	11/20	36 -14 16 -42 11	10/31 11/02 11/02 11/02 11/01	-13
5-375 5-378 5-379 5-380 5-389	395807 743837 395815 743840 395821 743409 395835 743511 395958 743933	BURLINGTON CO I BURLINGTON CO I PEMBRTON TWP WD PEMBRTON TWP WD PEMB TWP HIGH S	BUR CO INST 3 5-1972 PTWD 2 PTWD 3	1956 1972 1947 1955 1959	70 65 63 112 80	343- 378 328- 368 257- 282 277- 303 140- 150	27 29 7 18 67	11/20 11/20 12/27 12/27 07/09	19 21 -5 21 64	11/01 11/01 11/02 11/02 11/01	-8 -8 -12 3 -3
5-427 5-428 5-430 5-442 5-464	395330 744205 395342 744253 395541 744415 400248 743827 395114 744542	HAMPTON LAKE WC HAMPTON LAKE WC VINCENTOWN WC HUTCHINSON, C B ALLEN,AMOS	HLWC 2 HLWC 1 VINCENTOWN HUTCHINSON TRAILER PARK 1	1972 1954 1923 1960 1969	70 49 40 180 130	260- 348 247- 268 - 153 ³ 124- 134 - 381 ³	29 125	07/09 11/21	11 19 30 125 38	10/31 10/31 11/01 10/31 11/02	-10 0
5-695 5-701 5-720 5-724 5-725	395328 743720 400215 743721 395116 744541 395413 744231 400212 743708	SUNY PINE CONT MC PHERSON ALLEN,AMOS HAMPTON LAKE WC WRIGHTSTOWN MUA	TEST HOLE 1-74 MCPHERSON EAST Allen 2 Hlwc 3 WMUA 2		111 121 135 43 135	428- 496 - 138 ³ - 410 ³ 198- 275 142- 162	123 109	11/21 12/10	33 126 30 18 118	11/01 11/02 11/02 10/31 11/02	3 9
5-744 7- 22 7-118 7-180 7-181	395639 742953 394738 745614 395229 745712 394923 745714 394927 745715	J.J. WHITE BERLIN WATER D NJ WATER CO US AIR FORCE US AIR FORCE	DOMEST '66 BWD 8 HUTTON HILL 2 RADAR 2 RADAR 1	1966 1952 1965 1960 1959	112 147 158 193 191	- 456 ³ 310- 360 137- 147 280- 310 - 290 ³	36 70 58	12/06 11/02 11/20	9 34 69 63 57	11/09 11/14 11/17 11/15 11/15	-2 -1 -1
7-228 7-307 7-308 7-391 7-401	394556 745835 394928 750021 394928 750021 394639 745750 394722 745810	CAMDEN CO BD ED NJ WATER CO NJ WATER CO L CAMDEN CO REG PINE VALLEY G C	VOC&TECH H S 1 LAUREL 8 LAUREL 10 OVERBROOK HS 1 GOLF CLUB	1920 1923	145 77 77 160 85	325- 400 105- 125 - 126 ³ 315- 335 - 267 ³	58 54 40	11/27 11/27 12/04	40 56 57 28 36	11/07 11/08 11/08 11/15 11/15 11/09	-2 3 -4
7-414 7-421 7-428 7-449 7-478	394922 745630 395109 745715 395148 745615 394618 745413 394215 745617	NJ WATER CO RADIO CORP AMER OWENS,FRANK IVYSTONE W W US GEOL SURVEY	ELM TREE 26 RCA DECAU,T 1 WATER WKS 3-65 NEW BROOKLYN 3		150 175 115 159 111	237- 275 220- 234 127- 147 420- 460 520- 530	49 91 82 38	12/05 11/30 11/30 11/30	60 91 83 20 36	11/13 11/08 11/19 11/09 11/16	11 0 1 -2
7-526 11- 72 15- 14 15- 31 15-125	394934 745852 392442 751916 394827 750758 394001 751234 394324 751315	LINDNWLD BO MUA CUMBERLAND CO THOMPSON,MARION MOOD RICHARD J CHRIST CHURCH	SEWAGE PL2 Sheppards 1 1 1	1972 1972 1953 1954 1950	78 32 102 120 92	138- 158 - 638 ³ 83- 107 - 285 ³ 84- 105	9	10/11	63 10 75 68 57	11/30 11/28 11/07 11/22 11/21	1
15-256 15-336 25- 11 25- 14 25-164	394452 750243 394257 751825 401136 740120 401138 740125 400839 741440	GINO'S REST STRING,CLARENCE AVON WATER DEPT AVON WATER DEPT ALDRICH W CO	1 STRING 1 AWD 2 AWD 1 ALDRICH W CO 1	1970 1954 1925 1925 1956	150 120 22 28 125	278- 310 76- 85 419- 501 424- 504 349- 370		11/16 11/16		12/07 11/14 10/31 10/31 10/27	-13 -13
25-168 25-173 25-179 25-182 25-185	400957 741317 401244 741135 401354 741224 401629 741015 401438 741025		ALDRICH W CO 2 LATVIAN 1 TRANS DEPOT S7	1965 1963 1963	150 90 120 125 119	354- 440 ² 226- 257 270- 280 229- 236 229- 250	-62 68 66 61	11/14 11/15 11/16 11/16	-56 23 67 65 59	10/27 10/31 10/31 10/26 10/26	6 -1 -1 -2
25-243 25-335 25-336 25-366 25-391	401848 741324 401215 740409 401216 740108 402048 740109 400928 740211		WARDELL 1 Ocean Grove 21 Rumson C C 1 Spring LK HGT4	1910	120 80 20 15 20	- 80 ³ 465- 480 395- 430 - 165 ³ 485- 561	-94 5	11/16 11/15	-140	10/26 10/31 10/31 10/24 10/27	-24 8
25-392 25-396 25-405 25-412 25-426	400617 743037 400658 743135 401000 742908 401045 742821 400817 740744	HOPKINS,RUSSELL RUTGERS UNIV PUNK BROS ERB, GEORGE H G THOMPSON M H	1 3 1 Geraldine m H2	1970 1964 1966	90 122 158 190 120	- 87 ³ 92- 102 - 124 ³ 100- 140 - 580 ³	85	12/10	127 149	06/29* 11/03 10/31 10/31 10/30	0
¹ DATUM	IS SEA LEVEL				~~						

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ⁴WELL DEPTH ⁴ATER LEVEL MEASURED IN 1979

40

~

WELL	LATI-	TION LONGI-		LOCAL	YEAR	ALTITUDE ¹ LAND SURFACE	SCREEN INTERVAL	19' WATER ALTI- TUDE ¹		ALTI- TUDE ¹	78 LEVEL DATE	CHANGE IN Water Level
NUMBER	TUDE	TUDE	OWNER	NUMBER	DRILLED	(FT)	(FT)	(FT)		(FT)		(FT)
25-435 25-437 25-443 25-444 25-465	400942 400953 401055 400831 401107	740726 740351 740615	STATE OF N J BRISBANE C T C WALL TWP W D WALL TWP SCHOOL WALL TWP WD	ALLAIRE S P 4 BRISBANE 2R Imperial parki Imperial 3-T	1973 1963 1959 1949 1978	63 70 75 134 65	385- 414 405- 425 435- 465 460- 476 430- 460	-73 -121	11/16 11/20	-84 -85 -147 -107 -153	10/31 10/31 10/25 10/26 10/26	-12 -26
25-478 29- 31 29- 37 29-140 29-227	400642 400239 400429 400414 400604	740721 740652 742702	AMERADA HESS BRICK TWP BD ED ST DOMINICS CH US GEOL SURVEY MEADOWBRK VILL	2-79 EMMA YOUNG 1 1 Coll Mills TW3 Holmansville 1		65 17 20 135 110	377- 392 605- 625 576- 591 257- 267 - 358 ³	1 16 48	11/09 11/16	-115 -113 -136 115 42	04/09* 11/02 10/26 11/13 10/27	- 1 - 6
29-234 33- 2 33- 20 33- 22 33- 34	400745 393202 393534 393534 392742	751630 751752 751018	GREAT ADVENTURE CUMBERLAND CO Horner, Ephraim Elmer WC PUBLIC SERV E-G	GA 2 BOSTWICK NO 3 Horner EWC 3 PW 1	1974 1972 1963	140 85 77 105 17	180- 200 462- 472 - 283 ³ 460- 500 248- 298	29 29	11/30 12/03	123 23 33 28 -16	11/01 11/16 11/16 12/07 05/18*	4 - 1
33- 35 33- 38 33- 44 33- 50 33- 51	392744 392808 393446 393538 393538	752208 752721 752640	PUBLIC SERV E-G HOLLY MOUNT INC MANNINGTN MILLS SALEM MEM HOSP SALEM MEM HOSP	PW 2 1-1973 SCHULTES 3 HOSP 1-1950 HOSP 2-1954	1970 1973 1959 1950 1954	20 100 10 20 20	230- 281 441- 527 96- 127 73- 97 82- 112			-14 6 -4 5 5	05/18* 11/20 11/21 11/20 11/20	
33- 56 33-192 33-241 33-244 33-245	393606 394051 393253 393404 393337	752148 752422 752811	MANNINGTN T E S KELLY BROTHERS SALEM CITY W D SALEM CITY W D SALEM CITY W D	NTES 1 2-1954 QUINTON SWD 4 SCWD 5	1959 1954 1947 1961	25 60 10 10 8	- 93 ³ 45- 65 - 248 ³ 93- 124 96- 168	46 -1 1	11/29 12/03 08/20	7 44 6 1 0	11/20 11/13 11/22 11/22 11/22	-2 2 -1
33-249 33-252 33-279	393342 393348 393622	752755	SALEM CITY W D US GEOL SURVEY GARRISON HENRY	SWD 2 Salem 2	1936 1965 1922	5 3 120	110- 150 91- 96 - 4253	- 5 1	12/03 10/04	0 1 40	11/22 11/28 11/16	5 0

TABLE 5.--WATER-LEVEL DATA FOR WELLS SCREENED IN THE WENONAH-MOUNT LAUREL AQUIFER--CONTINUED

¹DATUM IS SEA LEVEL ³Well Depth

WATER LEVEL MEASURED IN 1979

Kirkwood Aquifers

Geohydrology

The Kirkwood Formation of middle Miocene age is composed of sand, silt, clay, and some gravel. The formation crops out as an irregular band from southern coastal Monmouth County to the Delaware River (pl. 5). Westward the water-bearing sands are hydraulically connected to the overlying unconfined Cohansey Sand, forming the Kirkwood-Cohansey aquifer system (Rhodehamel, 1973, p. 23). The water-bearing sands of the Kirkwood Formation become confined and more permeable toward the coast where two distinct artesian aquifers have been identified (fig. 2).

The upper aquifer or Rio Grande water-bearing zone (Gill, 1962, p. 18) has been identified in Cape May and Cumberland Counties. The upper aquifer has been traced northward to Ocean County (Zapecza, written communication, 1981). However, the principal aquifer of the Kirkwood Formation is the lower aquifer (Atlantic City 800-foot sand, Thompson, 1928). The correlation of these two aquifers with water-bearing sands of the Kirkwood as near as 20 mi west of the coastline is unclear. Therefore, the extent of these aquifers is limited to coastal areas. The water-supply potential of the Rio Grande water-bearing zone (upper aquifer) is greatest in Cape May County. The aquifer is a medium- to coarse-grained sand and has an average thickness of 50 ft (Gill, 1962, p. 18). Saltwater intrusion has limited the use of the upper aquifer in southern and eastern Cape May County. In general, the upper aquifer is sparsely used northward due to thinning and a reduction in grain size. Although a few wells are screened in the upper aquifer northward to southern Ocean County, the aquifer is of minor importance outside of Cape May County.

The Atlantic City 800-foot sand (lower aquifer) is a medium- to coarse-grained sand, identified as one continuous hydrologic unit from Cape May to southern Ocean County (Anderson and Appel, 1969, p. 48). The thickness of the aquifer ranges from about 50 ft along its western boundary, 10 to 20 mi west of the coastline, to about 150 ft along the barrier islands, and is as much as 250 ft thick in Cape May County (Zapecza, oral communication, 1980).

The hydraulic conductivity of the 800-foot sand is greatest in the Atlantic City area and, in general, declines rapidly in all directions (Gill, 1962, p. 46). The sand has been defined as a barrier beach deposit (Rhodehamel, 1973; Anderson and Appel, 1969) and grades into finer grained material northward and northwestward.

The Alloway Clay Member is the basal marine clay in the Kirkwood Formation in Atlantic, Camden, Cumberland, Gloucester, and Salem Counties (Nemickas and Carswell, 1976, p. 3). It is characterized as a dark brown or gray-brown to light tan silty clay ranging from 64 to 152 ft thick (Nemickas and Carswell, 1976, p. 2). In Cape May County, Gill (1962, p. 17) identifies a tough brown clay, 70 to 140 ft thick, below the 800-foot sand. Zapecza (written communication, 1982) identifies a confining bed beneath the aquifers of the Kirkwood Formation that appears to correlate with the Alloway Clay Member of the Kirkwood Formation and form part of the lower confining layer for the Atlantic City 800-foot sand.

A blue silty diatomaceous clay unit, ranging from 40 to 280 ft thick, lies directly above the 800-foot sand in Cape May County (Gill, 1962, p. 18). The clay unit confines the 800-foot sand (lower aquifer) from the overlying Rio Grande water-bearing zone (upper aquifer) in Cape May County. The upper aquifer becomes very thin (less than 20 ft) northward of Cape May County. Therefore, the upper confining unit includes the thickness of silty clay facies of the Kirkwood Formation lying stratigraphically between the Atlantic City 800-foot sand and the unconfined Kirkwood-Cohansey aquifer system (Zapecza, written communication, Although the extent of this upper confining unit is 1982). unknown, the western boundary has been approximated by Zapecza (written communication, 1980). The boundary extends from Barnegat Light, west of Egg Harbor City, to the Cape May-Cumberland County line at Delaware Bay. Water levels suggest that water-bearing sands of the Kirkwood Formation are largely unconfined west of this boundary.

The 800-foot sand is probably recharged primarily by vertical or lateral movement of water from the Kirkwood Formation west of the limit of the upper confining layer (fig. 2). Some recharge is probably through the confining layers induced by head differentials in the coastal areas.

During 1978, about 55 percent of withdrawals from the 800-foot sand were near Atlantic City. Withdrawals on or near the barrier islands in Cape May and Ocean Counties account for 25 and 20 percent, respectively, of the total from the 800-foot sand.

Water Levels

Water levels were measured in 122 wells screened in the Kirkwood Formation. Table 6 contains data for 53 wells screened in the Atlantic City 800-foot sand. Most wells are on or near the barrier islands of Atlantic, Cape May, and Ocean Counties. Table 7 contains data for the remaining wells in Atlantic, Burlington, Camden, Cape May, Cumberland, Gloucester, Monmouth, and Ocean Counties.

The potentiometric map of the Atlantic City 800-foot sand (pl. 5) shows an elongated regional cone from Cape May to southern Ocean County. The lowest heads (greater than 70 ft below sea level) were near Margate and Ventnor, Atlantic County. In the northeastward extension of the cone, near Ship Bottom, Ocean County, levels were lower than 30 ft below sea level. The highest levels in the 800-foot sand were greater than 25 ft above sea level at Egg Harbor City, Atlantic County.

Wells 1-219, 1-227, 9-71, 9-149, 11-116, 29-455, 29-465, and 29-552 (table 7) are screened in sands of the confined upper aquifer of the Kirkwood Formation. This well data can be used to examine the head relationship between the 800-foot sand and the upper aquifer. Levels in the 800-foot sand are 9 ft lower than those in the upper aquifer near Tuckerton, Ocean County (wells 29-464 and 29-465, pl. 5). It is likely that this relationship exists throughout the 800-foot sand. The head differential is probably greater in heavily pumped areas on or near the barrier islands.

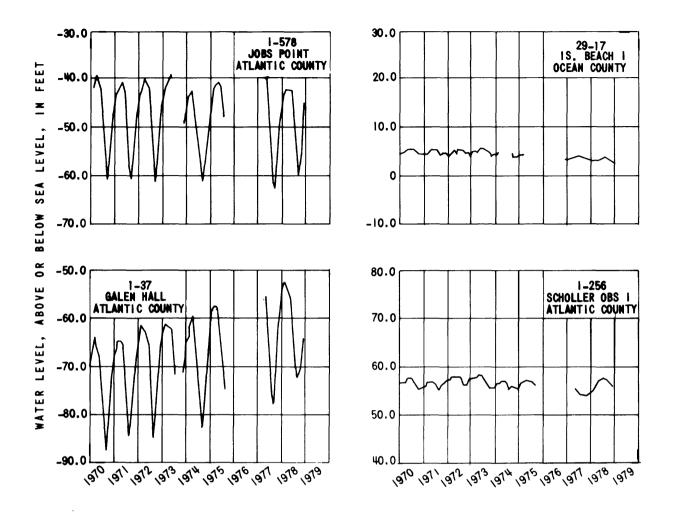
Data for 62 wells (table 7) screened in the basal parts of the unconfined Kirkwood-Cohansey aquifer system were analyzed. These data show that surface drainage influences levels in the aquifer system. Therefore, the head distribution was not interpreted in the unconfined system because of insufficient data points.

43

Water-Level Fluctuations

Change in water level from 1973 to 1978 were calculated for 43 wells (tables 6 and 7). In general, the changes in the aquifers indicate no significant regional water-level trend. However, some changes were noted in the 800-foot sand.

Heads recovered 5 to 9 ft near Atlantic City between 1970 and 1978. Head changes ranged from -4 to +9 ft along the barrier islands of Cape May County. Heads showed little change in the 800-foot sand in Ocean County, except for wells 29-111 and 29-112, which show head declines of 13 and 6 ft, respectively. The level in observation well 29-17 (table 7), about 6 mi northward, declined 1 ft. However, well 29-17 is in the unconfined part of the Kirkwood. This change may be due to fluctuations of natural recharge.


In northern Ocean County levels in the basal part of the Kirkwood may have declined as much as 17 ft. However, this is based only on data from well 29-68 (table 7) measured using the airline method.

Hydrographs of levels in four observation wells screened in the Kirkwood aquifers are shown in figure 8. Well locations are shown in plate 5. Wells 1-37 and 1-578 are screened in the 800-foot sand.

Well 1-37 is on the northern end of the barrier island near the center of the large cone at Atlantic City. The hydrograph varied seasonally about 25 ft/yr because of changes in pumping. Thompson (1928, p. 60) shows the relationship of pumpage to seasonal fluctuations in the 800-foot sand. Levels recovered steadily (approximately 1.3 ft/yr) from 1970 to 1978. The hydrograph shows that the actual change in water level may be somewhat greater than the values in table 6 indicate. This demonstrates that hydrographs are important when evaluating the changes in an aquifer where heads fluctuate greatly.

Well 1-578 is west of the barrier islands near the Atlantic-Cape May County line. The hydrograph's seasonal pattern is similar to well 1-37 with a 20-ft fluctuation range. However, there was no discernible declining or rising trend at well 1-578.

Wells 1-256 and 29-17 hydrographs show small irregular seasonal variations and a very slight downward trend. Both wells are screened in sands near the base of the Kirkwood just west of the approximate boundary of the 800-foot sand, where the Kirkwood is part of the unconfined Kirkwood-Cohansey aquifer system. These wells are 6 to 8 mi from the nearest significant withdrawal. The seasonal variations appear to be related to variations in recharge rather than pumping. The yearly lows in well 29-17 occur later than the other wells. This may suggest a poor interconnection of this zone with the 800-foot sand or a distant connection with the water table closer to the outcrop. The slight downward trend noted (well 29-17) may suggest some hydraulic connection with the 800-foot sand. However, the time lag of the seasonal fluctuations should be smaller if these units are effectively interconnected.

Lowest water level See plate 5 for locations

Figure 8.-- Hydrographs of observation wells screened in the Kirkwood aquifers.

WELL NUMBER	LOCAT LATI- TUDE		OWNER	LOCAL NUMBER	YEAR DRILLED	ALTITUDE ¹ LAND SURFACE (FT)	SCREEN Interval (FT)	19 WATER ALTI- TUDE ¹ (FT)	LEVEL	19' WATER ALTI- TUDE ¹ (FT)	LEVEL	CHANGE IN WATER LEVEL (FT)
1- 15 1- 37 1- 39 1- 40 1- 41	392058 7 392151 7 392336 7 392342 7 392431 7	42459 42330 42328	PRESIDENT HOTEL ATLANTIC C WD BRIGANTINE W D BRIGANTINE W D BRIGANTINE W D	PRESIDENT GALEN HALL NEW 4 BAYSHORE 3 ROOSEVELT 1	1955 1904 1966 1952 1925	10 10 10 10 9	780- 831 782- 837 733- 788 706- 766 736- 827 ²	-72 -54	12/01 11/15	-51 -65 -60 -58 -45	12/13 11/27 11/20 11/20 11/20	7 -6
1- 42 1-116 1-117 1-121 1-180	392456 7 393211 7 393206 7 391852 7 392754 7	43829 43836 43216	BRIGANTINE W D EGG HAR WTR WKS EGG HAR WTR WKS SEAVIEW HRBR WC US GEOL SURVEY	BWD 2-14TH ST EGG HARBOR 3 OW41 5 1958 WELL OCEANVILLE 1	1929 1942 1964 1958 1959	12 45 45 5 27	718- 778 342- 394 350- 432 740- 780 560- 570	23 -34	11/06 10/28	-40 25 28 -82 -28	11/20 11/15 11/15 11/22 11/27	2 6
1-366 1-367 1-372 1-565 1-566	391821 7 391859 7 391933 7 392438 7 392434 7	43122 43058 43047	LONGPORT W D LONGPORT W D MARGATE CITY WD ATLANTIC CO WC ATLANTIC C WD	LONGPORT OBS LONGPORT 2 MCWD 7 1950 ACWD 14 ACWD 600	1947 1963 1950 1925	6 10 5 8 12	- 803 ³ 750- 800 760- 800 610- 660 - 565 ³	-73 -73 -78 -47	10/27 11/18 11/18 12/01	-64 -66 -72 -53 -39	1 1/27 11/22 1 1/22 11/21 1 1/27	9 7 6 8
1-568 1-578 1-598 1-600 9- 2	392437 7 391826 7 392032 7 392045 7 390420 7	43709 42855 42840	ATLANTIC C WD US GEOL SURVEY VENTNOR CITY WD VENTNOR CITY WD AVALON WATER D	ACWD 15 Jobs Point VCWD 9 VCWD 8 AVALON WD 7-71	1961 1959 1965 1931 1971	8 10 8 8 5	583- 633 670- 680 740- 800 750- 810 821- 861	-47	12/01	-44 -45 -72 -69 -36	11/21 11/28 11/21 11/21 11/21	2
9- 4 9- 5 9- 8 9- 92 9-100	390528 7 390545 7 390621 7 390525 7 390525 7 390641 7	44326 44248 44851	AVALON WATER D AVALON WATER D AVALON WATER D NEPTUNUS WC MIDDL TWP W DIS	AVALON WD 6 AVALON 8-76 AVALON WD 3 NEPTUNUS WC 7 AVALON M WW 1	1968 1976 1930 1967 1963	10 8 10 15 5	880- 920 784- 839 845- 925 681- 791 763- 815	-36 -30 -37	11/17 11/17 11/17	-40 -34 -35 -32 -37	11/21 11/21 11/21 11/20 11/21	-4 -2 0
9-106 9-109 9-110 9-124 9-127	391343 7 391535 7 391604 7 391712 7 390847 7	43611 43539 43340	OCEAN CITY NJWC OCEAN CITY NJWC OCEAN CITY NJWC OCEAN CITY NJWC SEA ISLE C W D	OCEAN CITY 7 OCEAN CITY 9 OCEAN CITY 12 OCEAN CITY 13 SICWD 4	1924 1946 1965 1970 1954	8 8 7 8 7	760- 810 749- 809 - 814 ³ 757- 840 742- 830	-43 -71 -39	11/18 11/18 11/17	-46 -49 -53 -66 -38	11/21 11/21 11/21 11/21 11/21 11/20	-3 5 1
9-132 9-133 9-135 9-144 9-148	390301 7 390314 7 390323 7 391703 7 391707 7	44532 44525 43756	STONE HARBOR WD STONE HARBOR WD STONE HARBOR WD ATL CITY ELEC ATL CITY ELEC	STONE HARBOR L STONE HARBOR 2 STONE HARBOR 3 ACEC 5 ACEC 3-LAYNE L	2 1924 3 1949 1975	10 10 9 9 9	830- 880 - 890 ³ 837- 877 650- 690 645- 675	-40 -28 -28	11/17 11/17 11/17	-31 -32 -30 -47 -47	11/20 11/20 11/20 12/14 12/14	9 -4 -2
9-166 29- 9 29- 12 29-111 29-112	390351 7 393346 7 393346 7 394134 7 394218 7	41430 41434 40832	STONE HARBOR WD BEACH HAVEN W D BEACH HAVEN W D HARVEY CDRS W D HARVEY CDRS W D	SHWD 5 BHWD 8 BHWD 7 HCWD 4 HCWD 3	1976 1957 1940 1968 1956	7 5 5 5 5	820- 860 572- 656² 544- 668² 465- 500 451- 493	-13 -14	11/04 11/04	-33 -28 -23 -26 -20	11/20 10/30 10/30 11/03 11/03	-13 -6
29-457 29-458 29-459 29-460 29-462	393510 7 393510 7 393510 7 393724 7 393253 7	41330 41330 41151	LONG BEACH W C LONG BEACH W C LONG BEACH W C LONG BEACH W C MYSTIC ILAND WC	TERRACE 3 TERRACE 1 TERRACE 2 BRANT BEACH 2 MySTIC 3	1970 1949 1949 1951 1951	8 5 5 6 8	465- 650² 523- 578 523- 577 530- 580 509- 553			-26 -28 -28 -23 -20	11/03 11/03 11/03 11/03 11/02	
29-464 29-544 29-549 29-557 29-559	393428 7 393839 7 393848 7 394042 7 393912 7	41052 41053 41411	LITTLE EGG HMUA SHIP BOTTOM W D SHIP BOTTOM W D STAFFORD TWP WC SURF CITY W D	MYSTIC 2 SBWD 4 SBWD 5 STAFFORD 3 SCWD 3	1963 1953 1974 1965 1947	25 5 8 5 5	485- 542 536- 578 527- 588 ² 385- 428 516- 557	-8 20 -27	11/05 06/26 11/04	-10 -31 -30 22 -26	11/02 10/31 10/31 11/02 10/31	-2 2 1
29-560 29-561 29-565	393938 7 393948 7 393610 7	40954	SURF CITY W D SURF CITY W D TUCKERTON WW CO	SCWD 4 SCWD 5-1970 TWWC4	1964 1970 1949	5 10 10	514- 554 521- 562 460- 497 ²			-29 -25 -4	10/31 10/31 11/02	

¹DATUM IS SEA LEVEL ²MULTIPLE SCREENS ³WELL DEPTH

•

WELL NUMBER	LOCATION LATI- LONGI- TUDE TUDE	OWNER	LOCAL Number	YEAR Drilled	ALTITUDE ¹ LAND SURFACE (FT)	SCREEN INTERVAL (FT)	19 WATER ALTI- TUDE ¹ (FT)	LEVEL			CHANGE IN WATER LEVEL (FT)
1-219 1-227 1-256 1-280 1-281	392653 744252 392709 744439 393333 744426 393759 744824 393759 744824	HAMILTON TWP WD HAMILTON TWP WD SCHOLLER BROS HAMMONTON W D HAMMONTON W D	TEST-1-73 HTMUA 5 OBS 1 2 1	1973 1966 1955 1917 1922	20 10 93 110 110	- 378 ³ 316- 347 254- 275 256- 300 255- 315	56 60 74	11/20 09/04 11/09	19 0 56 74 76	06/01* 11/15 11/27 11/06 11/03	0 14 2
1-292 1-349 5- 12 5-458 5-459	393833 744651 394041 744604 393945 743126 394858 743746 395017 743853	HAMMONTON W D ST OF NJ HARRISVILLE BIRCHES CRNBERY BIRCHES CRNBERY	4 MULLICA 2D IW1 BIRCHES 1 BIRCHES 2	1967 1975 1966 1968	90 59 15 77 92	201- 241 145- 150 - 375 ³ - 90 ³ 44- 88 ²	74 81	11/09 11/09	66 56 18 74 82	11/03 11/13 11/08 11/02 11/08	0 1
5-511 5-612 7-430 7-479 9- 71	394009 743251 394305 743357 394204 744921 394215 745617 390138 745348	STATE OF NJ STATE OF NJ STATE OF NJ US GEOL SURVEY WILDWOOD W D	MULLICA 6D MULLICA 13D MULLICA 7D NEW BROOKLYN 4 RIO GRANDE 23	1975 1975 1975 1975	42 41 94 111 8	245- 250 267- 272 115- 120 200- 210 - 523 ³	110 -11	11/20 11/17	33 36 79 110 -12	11/08 11/08 11/13 11/16 11/21	0 -1
9-149 11- 22 11- 43 11- 45 11- 52	391816 744953 392650 751331 392732 750929 392726 750729 391420 751023	MORRIS APRIL BR BRIDGETON WD CUMBERLAND CO PIZZO, JOSEPH FORTESCU KEALTY	BWD 12 Vocat SCH 1 2 Fortescue 4	1948 1967 1971 1967 1974	12 58 82 110 8	250- 290 99- 129 133- 138 100- 150 283- 303			12 31 77 67 7	11/16 11/18 11/18 11/17 11/22	
11- 60 11- 77 11- 79 11- 97 11-114	391838 750701 392523 751723 392733 751621 391830 751208 392211 750604	PA GLASS SAND ERNEST, WILBERT HOLDINGS, J CUMBERLAND CO INGRALDI, PETER	OBS 2 1 HOLDING 1 JONES ISLAND 1 2	1964 1973 1967 1971 1969	75 105 80 10 80	300- 340 110- 145 44- 124 ² 166- 171 120- 150	16	11/08	50 51 53 1 52	11/21 11/20 11/18 11/24 11/29	34
11-116 11-123 11-161 11-169 11-180	391118 745705 391356 745751 392527 750642 392724 751236 392953 751324	MOORES BEACH FD NJ DEPT OF INST CUMBERLAND CO BRIDGTN WD SEABROOK FARMS	FIRE DEPT LEESBURG SPF 1 FAIR GROUNDS 1 TEST 3-75 SEABROOK 3B		5 13 80 100 95	295- 315 248- 268 171- 176 123- 192 ² 155- 185	5	11/18	9 19 63 57 67	11/16 11/16 05/03* 11/21 11/20	4
11-185 11-225 11-233 11-254 11-266	392958 751317 392811 750236 392909 750005 393208 750245 392446 751552	SEABROOK FARMS VINELAND W D VINELAND W D VINELAND W D CUMBERLND MANOR	SEABROOK 13 9-1968 12-1971 10-1968 MANOR 1	1944 1968 1971 1968 1937	108 69 83 90 100	155- 180 151- 181 144- 174 130- 160 114- 124	55	11/10	79 59 63 76 33	11/20 11/16 11/16 11/24 11/20	4
11-273 11-275 11-276 11-277 15- 55	392724 751236 392138 751338 392217 750417 392216 750412 393649 750651	BRIDGETON WD LANING BROTHERS MILLVILLE W D MILLVILLE W D CLEMICK,A	BWD 15 LANING 1-R AIRPORT 1 AIRPORT 2 1	1978 1942 1942 1968	100 30 70 75 135	150- 190 - 1503 179- 181 168- 170 20- 120			58 14 33 41 113	11/21 11/21 11/16 11/16 12/08	
25-425 25-464 29- 17 29- 22 29- 28	400706 740442 400801 740231 394829 740535 395422 740458 400121 740602	BENNET SAND CO SEA GIRT W D US GEOL SURVEY SHORE WATER CO BRICK TWP MUA	2 SGWD 6 IS BEACH 1 SWC 1 (SHORE ACRES2)	1968 1972 1962 1954 1959	98 19 9 10 6	155- 170 92- 123 377- 397 175- 200 198- 213	5 1	1 1/09 1 1/04	42 2 4 7 4	11/02 10/26 11/09 11/03 11/01	-1 3
29- 30 29- 62 29- 68 29- 98 29-131	400213 740637 395719 741233 395803 741024 395945 741222 400314 741952	PINELAND W C TOMS RIVER W C TOMS RIVER W C TOMS RIVER W C CLAYTON SAND	PWC 1 TRWC 16 TRWC 15 DUGANS 23 SCM 5	1959 1963 1958 1970 1960	12 5 25 80 105	90- 103 196- 226 195- 225 254- 275 66- 91	15	11/03	4 -17 -2 1 73	11/01 11/02 11/06 11/10 10/26	-17
29-141 29-230 29-455 29-465 29-509	400416 742701 400724 742342 393206 741548 393509 742048 394613 741215	US GEOL SURVEY ST VLADIMIR CEM LONG BEACH W C LITTLE EGG HMUA INDIAN SURF BCH	COLL MILLS TW4 CEMETERY 1 LBTWD 2 HOLLY LAKE INDIAN SURF 1	1964 1964 1963 1956 1959	135 150 5 20 8	46- 71 85- 100 426- 451 308- 329 133- 153	127 - 15	10/15 11/05	130 133 -17 -1 11	11/13 11/06 10/31 11/02 10/31	3 -2
29-511 29-514 29-515 29-521 29-523	394616 741215 394742 741420 395558 741013 400536 740252 400551 740243	INDIAN SURF BCH US GEOL SURVEY PINE BEACH W U PT PLEAS BCH WD PT PLEAS BCH WD	INDIAN SURF 2 GARDEN S PKY 2 PBWU 1 PPBWD 9 PPBWD 10	1967 1962 1963 1950 1966	10 44 30 5 5	129- 150 - 317 ³ 135- 197 96- 134 ² 87- 130 ²	2 -9	11/04 11/04	21 32 3 -1 -9	10/31 10/26 11/06 10/31 10/31	-3 0
29-533 29-538 29-552 29-578	400501 740455 395636 740439 394008 741303 395530 741220	PT PLEASANT W D SEASIDE HGTS WD STAFFORD TWP WC BEACHWOOD W D	PPWD 4 SHWD 1R 1963 STAFFORD 1 BWD 5	1952 1963 1953 1975	7 5 5 60	45- 75 144- 175 226- 235 207- 248 ²	4	11/04	-3 2 11 19	11/04 11/06 11/03 11/02	-7
29-579 33-209 33-211 33-212 33-230	400512 740251 393013 750816 393018 750803 393038 750800 393320 750809	PT PLEAS BCH WD PARVIN STE PARK PARVIN STE PARK PARVIN STE PARK PAULITIS,C	PPBWD 11 PW B PW A OFFICE WELL PAULITIS 1	1972 1960 1945 1967	5 75 73 75 120	130- 142 - 154 ³ - 80 ³ - 90 ³ 84- 156	67 96	11/10 11/10	-7 68 63 74 103	10/31 12/06 12/06 12/06 12/07	7 7
¹ DATUM	IS SEA LEVEĻ	² MULTI	PLE SCREENS		³ WELL D	EPTH		*WATER	LEVEL	MEASURED) IN 1979

TABLE 7.--WATER-LEVEL DATA FOR WELLS SCREENED IN THE KIRKWOOD AQUIFERS

.

Cohansey Aquifer

Geohydrology

The Cohansey Sand is composed of sediments from coarse gravels to dense clays of Miocene age (Owens and Minard, 1979, p. D6). The Cohansey Sand overlies the Kirkwood Formation and is present throughout the Coastal Plain southeast of the outcrop of the Kirkwood Formation (pl. 5). The southeasterly limits of the Cohansey outcrop lie northward and westward of the Cape May County boundary.

Throughout most of its outcrop the Cohansey Sand is a water table, or locally, semiartesian aquifer and is part of the Kirkwood-Cohansey aquifer system (Rhodehamel, 1973, p. 23). Only the artesian part of the Cohansey in Cape May County is discussed in this report. The Cohansey Sand is the most productive aquifer in Cape May County. It thickens from about 50 ft in the northwestern part of the county to as much as 225 ft at Avalon (Gill, 1962, p. 19). Gill (1962) noted that the most permeable material lies near the base of the aquifer, although its average hydraulic conductivity declines markedly south of Rio Grande in Cape May County.

In Cape May County the uppermost unit of the Kirkwood Formation is a diatomaceous clay ranging in thickness from 65 to 260 ft (Gill, 1962, p. 18). This unit forms a relatively impermeable layer separating the Cohansey Sand from the Rio Grande water-bearing zone of the Kirkwood Formation.

The confining bed above the Cohansey Sand in Cape May County has relatively low permeability and is very thin near Cape May City (Gill, 1962, p. 119). This bed separates the Cohansey from the overlying sediments of Pleistocene age which provide the primary source of recharge to the aquifer. Much of the recharge in the southern part of the County is downward vertical leakage through the confining bed induced by the lowering of heads in the Cohansey aquifer (Gill, 1962, p. 109-110).

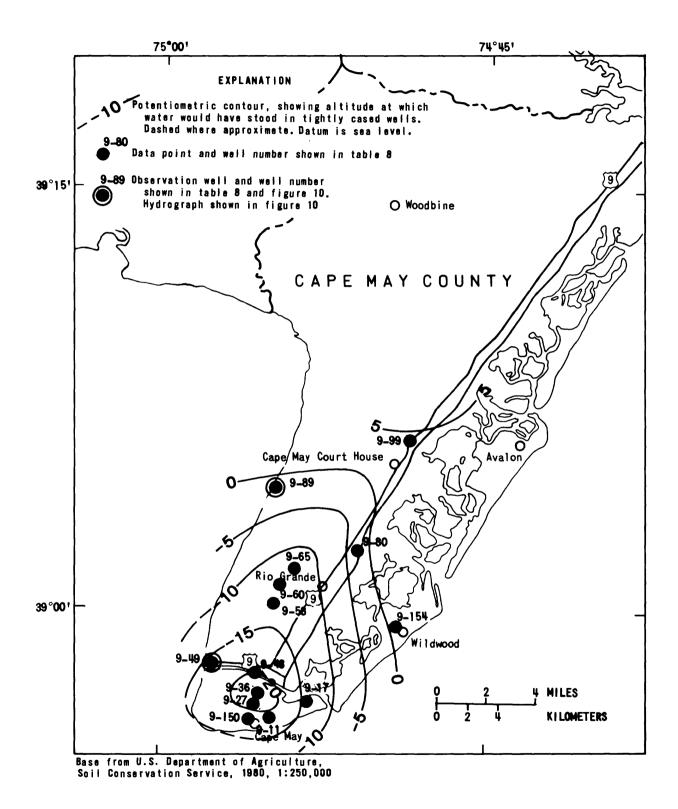
Withdrawals from the Cohansey aquifer are south of Cape May Court House. In 1978, 46 percent of withdrawals were near Cape May City. Most of the remaining withdrawals were at the Wildwood City Water Department pumping station near Rio Grande.

Water Levels

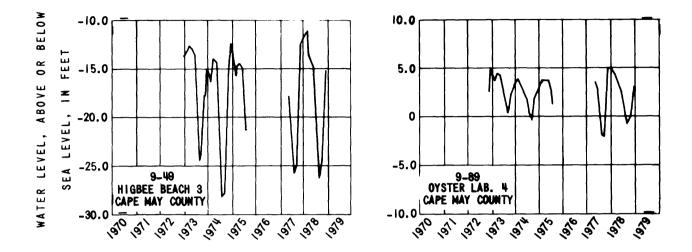
Water levels were measured in 14 wells screened in the confined part of the Cohansey aquifer in Cape May County (table 8). Most wells were near Cape May City. A few wells, distributed more sparsely, are near Rio Grande and as far north as Cape May Court House. Two heavily pumped areas are shown on the potentiometric surface map (fig. 9). Water levels were 26 ft below sea level at the center of the cone of depression at Cape May City. The cone elongates northward and includes the area near Rio Grande. At well 9-58 the lowest head was 18 ft below sea level. This level, however, is presumed to be affected by drawdown from a nearby pumping well. The other levels in the Rio Grande area, were 13 ft below sea level.

The cone at Cape May City is important because of the nearby (within 0.5 mi) freshwater/saltwater interface in the aquifer. Gill (1962) discusses saltwater intrusion into the principal aquifers of Cape May County. Chloride data collected by the U.S. Geological Survey in 1977 show that saltwater continues to threaten the water supplies near Cape May City.

The highest level was 4 ft above sea level north of Cape May Court House. However, data presented by Gill (1962, p. 108) indicate heads in northwestern Cape May County can be greater than 30 ft above sea level.


Water-Level Fluctuations

Change in water levels from 1973 to 1978 was calculated for eight of the wells (table 8). Heads near the two pumping centers declined approximately 2 ft between 1973 and 1978. However, this is not considered significant since the daily fluctuations of levels due to tide or pumping may be as large. Head declines diminish north of Rio Grande, and no change was observed near Cape May Court House.


Hydrographs of the observation wells screened in the Cohansey aquifer are shown in figure 10 and their locations are shown in figure 9. Well 9-49 is northwest of the center of the cone. Its hydrograph shows a slight downward trend of 0.3 ft/yr. Levels fluctuate seasonally as much as 15 ft due to pumping variations. This indicates that during the summer, the months of heaviest water use, water levels are probably lower than 40 ft below sea level near the center of the cone (fig. 9).

The hydrograph for well 9-89 shows similar cyclic seasonal variations of about 5 ft/yr. It also shows a slight decline of about 1 ft between 1973 and 1978.

Well 9-49 probably responds primarily to pumping in the Cape May City area, whereas well 9-89 responds to the pumping near Rio Grande.

Lowest water level See figure 9 for locations

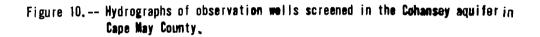


TABLE 8. -- WATER-LEVEL DATA FOR WELLS SCREENED IN THE COHANSEY AQUIFER IN CAPE MAY COUNTY

WELL NUMBER	LOC/ LATI- Tude	ATION LONGI- TUDE	OWNER	LOCAL NUMBER	YEAR Drilled	ALTITUDE ¹ LAND SURFACE (FT)	SCREEN Interval (FT)	19 WATER ALTI- TUDE ¹ (FT)	73 LEVEL DATE	19 WATER ALTI- TUDE ¹ (FT)	LEVEL	CHANGE IN WATER LEVEL (FT)
9- 11 9- 17 9- 27 9- 36 9- 48	385651 385643 385701	745457 745310 745533 745528 745533	CAPE MAY C W D US COAST GUARD CAPE MAY C W D CAPE MAY C W D US GEOL SURVEY	CMCWD 1 OBS USCG 1 CMCWD 1 CMCWD 2 CANAL 5	1940 1943 1950 1966 1957	7 11 12 10 18	281- 321 292- 322 277- 306 - 282° 242- 252	- 17 - 18	11/30	-19 -14 -21 -26 -18	04/11 ² 11/21 12/13 12/13 04/11 ²	-2
9- 49 9- 58 9- 60 9- 65 9- 80	385804 390015 390058 390130	745742 745440 745427 745350 745055	US GEOL SURVEY CAPE MAY CO US GEOL SURVEY WILDWOOD WD US GEOL SURVEY	HIGBEE BEACH 3 1 AIRPORT T7 RIO GRANDE 34 CAPE MAY 42CC		6 20 13 12 14	241- 250 - 279° 242- 257 172- 242 242- 252	-14	11/30 11/30	-16 -18 -13 -13 -2	11/28 11/21 11/21 11/21 11/21 11/21	-2 -2 -1
9- 89 9- 99 9-150 9-154	390425 390608 385607 385932	745552	US GEOL SURVEY US GEOL SURVEY US GEOL SURVEY WILDWOOD W D	OYSTER LAB 4 County PK T8 WCM 1 WWD 2	1957 1957 1957 1928	7 11 7 10	195- 210 215- 230 283- 293 293- 354	-1 4 -16	11/30 10/11 11/30	-2 4 -18 1	11/22 11/20 11/28 12/14	-1 0 -2

¹DATUM IS SEA LEVEL ²WATER LEVEL MEASURED IN 1979 ³WELL DEPTH

SUMMARY AND CONCLUSIONS

The purpose of this report is to document and evaluate water levels and changes in water levels in the major artesian aquifers of the New Jersey Coastal Plain. The report provides fundamental data for ground-water investigations and management.

The principal sources of water supply in the Coastal Plain of New Jersey are the major artesian aquifers that underlie the region. Increased withdrawal has stressed these aquifers, causing large regional cones of depression.

Hydrologic data collected in 1970, 1973, and 1978 were evaluated for six aquifers. Water levels measured in 1978 were used to develop potentiometric-surface maps for the major artesian aquifers. Water-level hydrographs from observation wells screened in the major artesian aquifers were used to evaluate seasonal and long-term trends.

The Potomac-Raritan-Magothy aquifer system can be separated into upper and lower aquifers. The largest cones of depression are in these aquifers. Heads are lowest in the Camden and the Middlesex-Monmouth County areas where levels reached 90 and 76 ft below sea level, respectively.

The lowest levels in the Wenonah-Mount Laurel and Englishtown aquifers ranged from 195 to 247 ft below sea level in coastal Monmouth and Ocean Counties. The potentiometric lows for the Wenonah-Mount Laurel aquifer were generally in the same areas as those for the Englishtown aquifer. This is due primarily to the lowering of heads in the Englishtown aquifer and the resultant leakage of water from the Wenonah-Mount Laurel to the Englishtown.

The 1978 potentiometric heads for the Atlantic City 800-foot sand of the Kirkwood Formation define an extensive elongated cone of depression that encompasses the barrier islands from Cape May to Ocean County. The lowest heads were greater than 70 ft below sea level near Margate and Ventnor in Atlantic County.

A cone in the Cohansey aquifer is centered near Cape May City. Heads were about 26 ft below sea level. The cone, although small in comparison to those in other aquifers, is significant because of its proximity to salty ground water.

Water levels measured in 1978 were compared with levels for earlier years (1970 or 1973) and hydrographs were examined. Heads in most of the Potomac-Raritan-Magothy aquifer system have declined 5 to 20 ft between 1973 and 1978. Declines in the Englishtown aquifer were widespread and generally ranged from 2 to 31 ft. During the same period, heads in the Wenonah-Mount Laurel aquifer declined between 12 and 26 ft northwest of the large cone in Monmouth and Ocean Counties. Analysis of 1970 to 1978 data for wells screened in the Kirkwood aquifers show no significant regional change in water levels. However, head changes in the Atlantic City 800-foot sand along the barrier islands ranged from -4 to +9 ft.

Heads in the heavily used confined areas of the Cohansey aquifer declined less than 2 ft between 1973 and 1978.

Future interpretation of the potentiometric head distribution in the aquifers would be improved if observation wells were drilled at strategic locations. These locations are in Monmouth and Ocean Counties in the Potomac-Raritan-Magothy aquifer system and the Englishtown and Wenonah-Mount Laurel aquifers. If the potentiometric head distribution in the artesian aquifers were evaluated every 5 years, and if select observation wells were monitored frequently, valuable data could be provided for continued management of ground water in the Coastal Plain aquifers.

SELECTED REFERENCES

- Anderson, H. R., and Appel, C. A., 1969, Geology and ground-water resources of Ocean County, New Jersey: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 29, 93 p.
- Barksdale, H. C., Sundstrom, R. W., and Brunstein, M. S., 1936, Supplementary report on the ground-water supplies of the Atlantic City region: New Jersey State Water Policy Commission Special Report 6, 139 p.
- Barksdale, H. C., Greenman, D. W., Lang, S. M., Hilton, G. S., and Outlaw, D. E., 1958, Ground-water resources in the tristate region adjacent to the lower Delaware River: New Jersey Department of Conservation and Economic Development Special Report 13, 190 p.
- Barksdale, H. C., Johnson, M. E., Schaefer, E. J., Baker, R. C., and DeBuchananne, G. D., 1943, The ground-water supplies of Middlesex County, N.J.: New Jersey State Water Policy Commission Special Report 8, 160 p.
- Clark, G. A., Meisler, Harold, Rhodehamel, E. C., and Gill, H. E., 1968, Summary of Ground-Water Resources of Atlantic County New Jersey with special reference to public water supplies: New Jersey Department of Conservation and Development Circular 18, 53 p.
- Farlekas, G. M., 1979, Geohydrology and digital-simulation model of the Farrington aquifer in the northern Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations 79-106, 55 p.
- Farlekas, G. M., Nemickas, Bronius, and Gill, H. E., 1976, Geology and ground-water resources of Camden County, New Jersey: U.S. Geological Survey Water-Resources Investigations 76-76, 146 p.
- Gill, H. E., 1962, Ground-water resources of Cape May County, New Jersey, salt-water invasion of principal aquifers: New Jersey Department of Conservation and Economic Development Special Report 18, 171 p.
- Gill, H. E., and Farlekas, G. M., 1976, Geohydrologic maps of the Potomac-Raritan-Magothy aquifer system in the New Jersey Coastal Plain: U.S. Geological Survey Hydrologic Investigations Atlas HA-557.
- Luzier, J. E., 1980, Digital-simulation and projection of head changes in the Potomac-Raritan-Magothy aquifer system, Coastal Plain, New Jersey: U.S. Geological Survey Water-Resources Investigations 80-11, 72 p.

SELECTED REFERENCES -- Continued

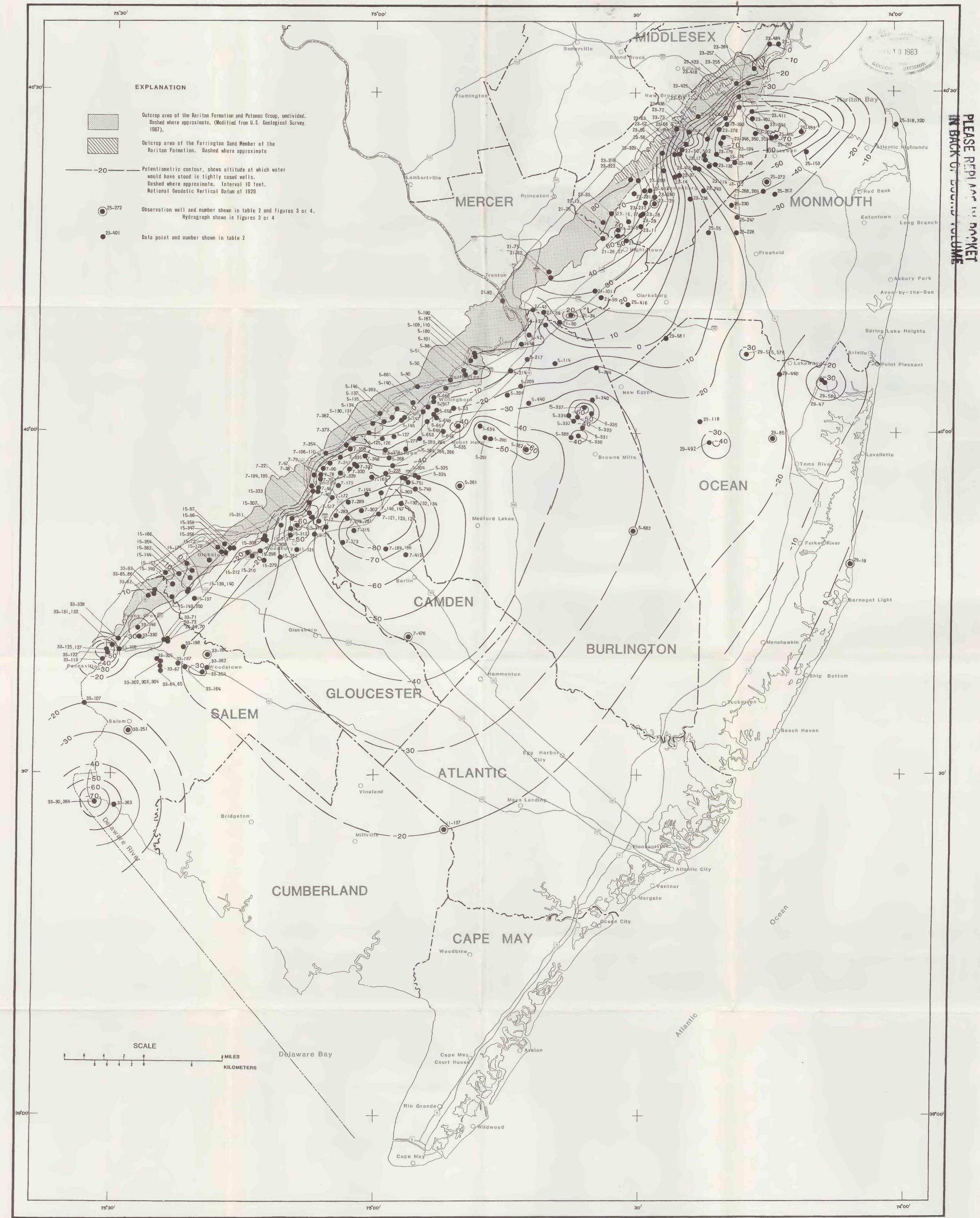
- Meisler, Harold, 1980, Plan of study for the northern Atlantic Coastal Plain Regional Aquifer System Analysis: U.S. Geological Survey Water-Resources Investigations 80-16, 27 p.
- Nemickas, Bronius, 1976, Digital-simulation model of the Wenonah-Mount Laurel aquifer in the Coastal Plain of New Jersey: U.S. Geological Survey Open-File Report 75-672, 42 p.
- Nemickas, Bronius, and Carswell, L. D., 1976, Stratigraphic and Hydrologic Relationship of the Piney Point aquifer and the Alloway Clay Member of the Kirkwood Formation: U.S. Geological Survey Journal of Research, v. 4, no. 1, p. 7.
- Nichols, W. D., 1976, Geohydrology of the Englishtown Formation in the northern Coastal Plain of New Jersey: U.S. Geological Survey Water-Resources Investigations 76-123, 62 p.
- 1977, Digital computer simulation model of the Englishtown aquifer in the northern Coastal Plain of New Jersey: U.S. Geological Survey Open-File Report 77-73, 101 p.
- Owens, J. P., and Minard, J. P., 1979, Upper Cenozoic sediments of the lower Delaware Valley and the northern Delmarva Peninsula, New Jersey, Pennsylvania, Delaware, and Maryland: U.S. Geological Survey Professional Paper 1067-D, 47 p.
- Parker, G. G., Hely, A. G., Keighton, W. B., and Olmsted, F. H., 1964, Water resources of the Delaware River basin: U.S. Geological Survey Professional Paper 381, 200 p.
- Perry, W. J., Jr., Minard, J. P., Weed, E. G. A., Robbins, E. I., and Rhodehamel, E. C., 1975, Stratigraphy of Atlantic Coastal Margin of United States north of Cape Hatterasbrief survey: American Association of Petroleum Geologists Bulletin, v. 59, p. 1529-1548.
- Rhodehamel, E. C., 1973, Geology and water resources of the Wharton Tract and Mullica River basin in southern New Jersey: New Jersey Department of Environmental Protection, Division of Water Resources Special Report 36, 58 p.
- Rosenau, J. C., Lang, S. M., Hilton, G. S., and Rooney, J. G., 1969, Geology and ground-water resources of Salem County, New Jersey: New Jersey Department of Conservation and Economic Development Special Report 33, 142 p.

SELECTED REFERENCES--Continued

- Rush, F. E., 1968, Geology and ground-water resources of Burlington County, New Jersey: New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply Special Report 26, 65 p.
- Schaefer, F. L., and Walker, R. L., 1981, Saltwater intrusion into the Old Bridge aquifer in the Keyport-Union Beach area of Monmouth County, New Jersey: U.S. Geological Survey Water-Supply Paper 2184, 21 p.
- Seaber, P. R., 1965, Variations in chemical character of water in the Englishtown Formation, New Jersey: U.S. Geological Survey Professional Paper 498-B, 35 p.
- Thompson, D. G., 1928, Ground water supplies of the Atlantic City region: New Jersey Department of Conservation and Development Bulletin 30, 138 p.
- U.S. Geological Survey, 1967, Engineering geology of the Northeast Corridor, Washington, D.C., to Boston, Mass. Coastal Plain and surficial geology: U.S. Geological Survey Miscellaneous Geologic Investigations Map I-514-B.
- Vowinkel, E. F., and Foster, W. K., 1981, Hydrogeologic conditions in the Coastal Plain of New Jersey: U.S. Geological Survey Open-File Report 81-405, 39 p.

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

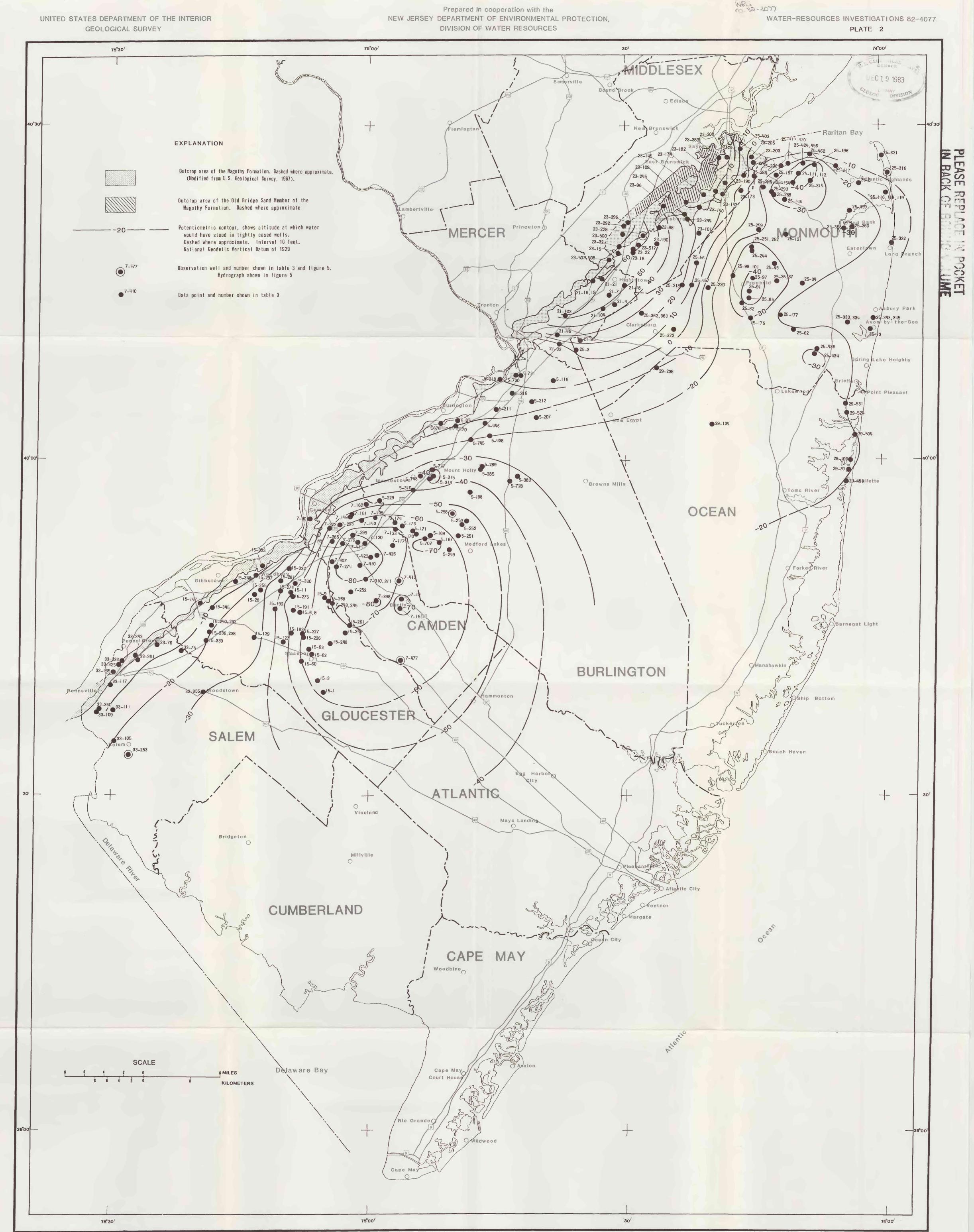
Prepared in cooperation with the NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION, DIVISION OF WATER RESOURCES


WRi 10. 82-4077

1

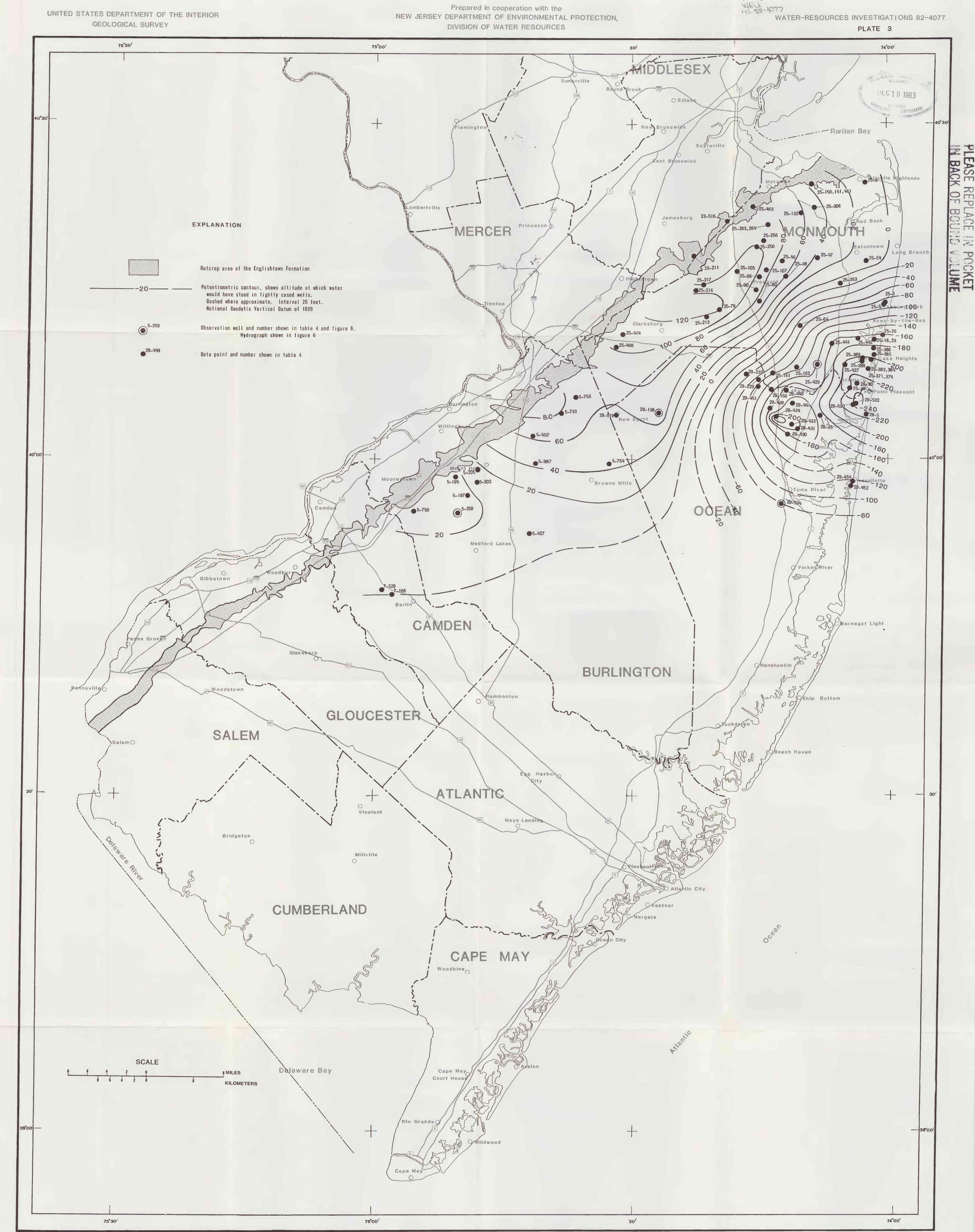
10007

WATER-RESOURCES INVESTIGATIONS 82-4077

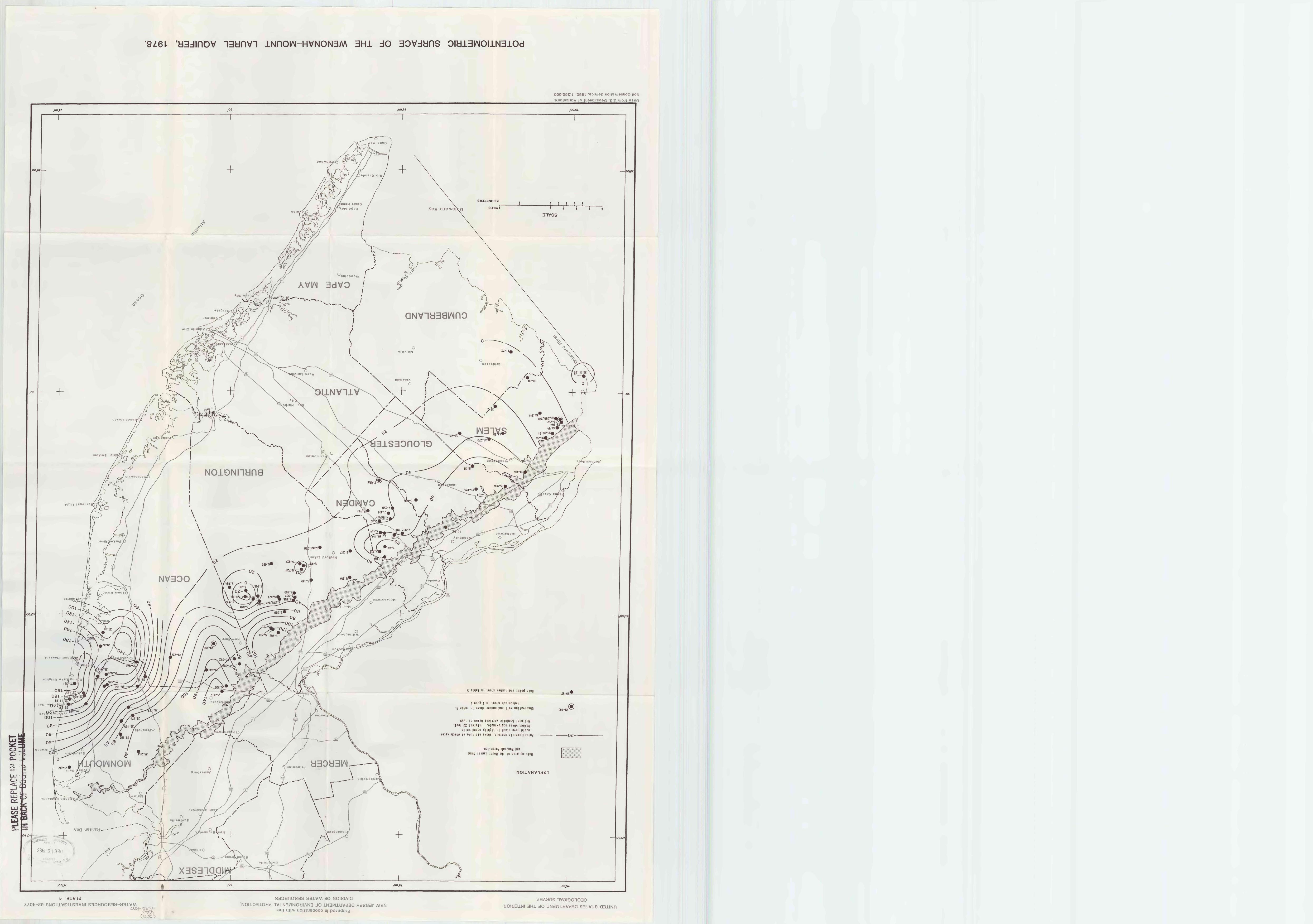

PLATE 1

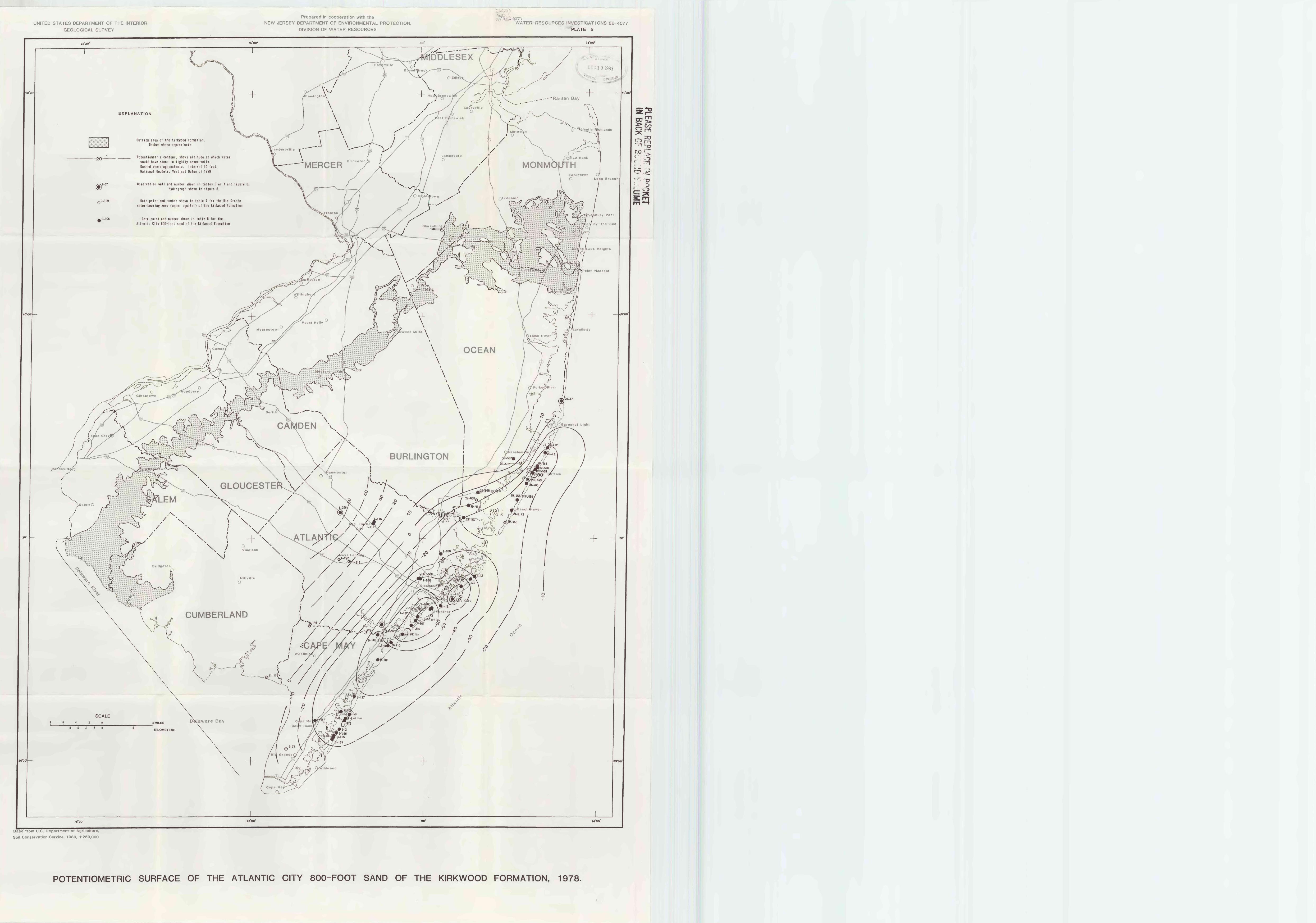
Base from U.S. Department of Agriculture,

Soil Conservation Service, 1980, 1:250,000


POTENTIOMETRIC SURFACE OF THE LOWER AQUIFER OF THE POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM, 1978.

(200)


POTENTIOMETRIC SURFACE OF THE UPPER AQUIFER OF THE POTOMAC-RARITAN-MAGOTHY AQUIFER SYSTEM, 1978.



(300)

Base from U.S. Department of Agriculture, Soil Conservation Service, 1980, 1:250,000

POTENTIOMETRIC SURFACE OF THE ENGLISHTOWN AQUIFER, 1978.

