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Evaluation of water quality based 
on a machine learning algorithm 
and water quality index for the 
Ebinur Lake Watershed, China
Xiaoping Wang1,2, Fei Zhang1,2,3 & Jianli Ding1,2,3

The water quality index (WQI) has been used to identify threats to water quality and to support better 

water resource management. This study combines a machine learning algorithm, WQI, and remote 

sensing spectral indices (difference index, DI; ratio index, RI; and normalized difference index, NDI) 
through fractional derivatives methods and in turn establishes a model for estimating and assessing 

the WQI. The results show that the calculated WQI values range between 56.61 and 2,886.51. We also 
explore the relationship between reflectance data and the WQI. The number of bands with correlation 
coefficients passing a significance test at 0.01 first increases and then decreases with a peak appearing 
after 1.6 orders. WQI and DI as well as RI and NDI correlation coefficients between optimal band 
combinations of the peak also appear after 1.6 orders with R2 values of 0.92, 0.58 and 0.92. Finally, 
22 WQI estimation models were established by POS-SVR to compare the predictive effects of these 
models. The models based on a spectral index of 1.6 were found to perform much better than the 
others, with an R2 of 0.92, an RMSE of 58.4, and an RPD of 2.81 and a slope of curve fitting of 0.97.

Water shortage problems in semi-arid areas have become more and more serious in recent years1–4. Recent studies 
show that a lack of water resources could a�ect nearly 5.5 billion people in 10 years5. Severe water shortages and 
large volumes of sewage render river and lake water pollution issues serious in arid areas6,7. �e water quality of 
rivers and lakes is becoming central to human and economic development. �erefore, the evaluation and estima-
tion of water quality levels is essential for societal and economic development8.

With advances in space information science and with an increasing use of computer applications in recent 
years, remote sensing has become a useful tool of surface parameter monitoring9,10. It allows one to monitor large 
scale water bodies that su�er from qualitative problems more e�ectively. Via remote sense, an optical re�ectance 
sensor was used in this study. Optical sensor systems use sunlight as a source of light and are equipped with 
light-emitting components that provide radiation in speci�c band regions11,12. �e optical sensors generate hyper-
spectral information on water quality levels in the visible and near-infrared ranges. Some studies have evaluated 
relationships between hyperspectral re�ectance wavebands and water quality parameters.

Studies on surface water spectral features and modi�ed model methods have shown that it is possible to 
perform water quality parameter monitoring by applying remote sensing technologies to more water quality 
variables with higher precision. Single water quality parameters such as chlorophyll-a, total suspended solids, 
turbidity levels, transparency levels, levels of dissolved organic matter, chemical oxygen demand, biological oxy-
gen demand, etc., have been widely estimated through remote sensing technology monitoring10,13–19. Although 
estimated models of water quality parameters are relatively accurate, they generate uncertain results because 
water environments are complex and changeable. �erefore, a water body spectrum is shown for the entire water 
environment and is not a single water quality parameter. Many scholars have developed estimation models of 
a single water quality parameter based on water body spectrum data10,17,18. �us, estimation models of a single 
water parameter introduce a certain level of uncertainty. From such analyses, a water quality index that re�ects 
the entire water environment should be developed to evaluate the entire water environment.
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Several methods for evaluating the water quality levels of rivers and lakes have been introduced20,21. �erefore, 
a good water quality assessment method should not only accurately re�ect spatial variations in water quality, 
but should also conveniently to quickly monitor water quality levels. �e water quality index (WQI)22–26 is used 
for the water quality assessment of drinking water source by the Ministry of Water Resources, Monitoring and 
Evaluation Center of Water Environment. The WQI was initially proposed by Horton27 and Brown et al.28. 
Since then, various methods for the calculation of the water quality index (WQI) have been designed by several 
authors29–31. WQI is a mathematical instrument used to transform large quantities of water characterization data 
into a single value that represents the water quality level and that re�ects overall water quality levels32. However, 
while WQI methods can assess the water quality of a single sample, they are not easily able to identify spatial or 
temporal variations in water quality, which are vital to the comprehensive assessment and management of surface 
water quality. �ese di�culties associated with successive and integrated sampling have become a signi�cant 
obstacle to the monitoring and management of water quality, and remote sensing technologies make up for short-
comings of spatial and temporal variations. �e establishment of a water quality index that can be widely used for 
environmental management and that is easy to calculate, to master and to use to meet remote sensing monitoring 
requirements is explored in this study.

�e main objectives of this study are (i) to create a water quality index (WQI) for surface water quality eval-
uation and classi�cation in arid areas and to create a WQI map via GIS (ii) to extract sensitive wave bands and 
build a spectral index (RI, DI, NDI) that is signi�cantly related to the water quality index, (iii) to establish an 
estimation model of the water quality index (WQI) based on the spectral index (RI, DI, NDI), to develop sensitive 
wave bands and a Support Vector Regression Model (SVR) for dry areas, and (iv) to estimate the accuracy of the 
model relative to WQI values. We not only assess water quality levels using the WQI for a semi-arid area, but we 
also develop a new algorithm that can estimate the WQI via remote sensing techniques.

Results and Analysis
Statistical analysis of the water quality index. A summary of water quality observations for Ebinur 
Lake Watershed surface water of the Boertala River, the Jing River, the Akeqisu-Kuitun River (A-KR) and arti-
�cial reservoirs (RES) for October of 2016 is presented in Table 1. At di�erent water quality levels, (pH) levels 
varied considerably from 7.62–8.46 spanning one order of magnitude with a mean value of 7.97 and Coe�cient 
of Variation of 12.29%. Concentrations of TDS also experienced varied considerably from 81.4 mg/L–9470 mg/L 
with a mean value of 728.88 mg/L and with a Coe�cient of Variation of 19.2%. TDS values of the Ebinur Lake 
Watershed were found to be lower and strongly variable and most likely because upstream reservoirs of the 
Bolatala and Jing Rivers serve as a settling watershed. Ca levels of the four rivers were found to be similar and to 
range from low to moderate (42.8 mg/L–1082.16 mg/L) with an average value of 161.1 mg/L and a Coe�cient of 
Variation of 144.02% and characterized by strong variations in the Ebinur Lake Watershed. (TN), (BOD5) and 
DO values were found to be similar in the Ebinur Lake Watershed with average values of 1.54 mg/L, 2.26 mg/L, 
and 29.12 mg/L respectively with a low Coe�cient of Variation of (<100%) and less variation. Concentrations 
of NH3

+-N were also highly variable at 0.01 mg/L–9.21 mg/ with a mean value of 0.62 mg/L and a Coe�cient of 
Variation of 316.79%. (COD) and TP values exhibit similar trends with Coe�cient of Variation values of between 
100% and 200%. For metal indicators, concentrations of (Iron), (Mg), (Na), (Copper), (Zinc) and (Volatile 

Water quality index Data set Min value Max value Mean value
Standard 
deviation value

Coe�cient of 
Variation/%

pH 48 7.62 8.46 7.97 0.98 12.29

TN 48 0.24 mg/L 7.06 mg/L 1.54 mg/L 1.28 mg/L 82.84

BOD5 48 0.80 mg/L 7.80 mg/L 2.64 mg/L 1.39 mg/L 52.66

TP 48 0.01 mg/L 0.99 mg/L 0.22 mg/L 0.25 mg/L 116.15

NH3
+-N 48 0.01 mg/L 9.21 mg/L 0.62 mg/L 1.95 mg/L 316.76

COD 48 0.70 mg/L 174 mg/L 136.70 mg/L 347.57 mg/L 254.25

Iron 48 0.01 mg/L 1.65 mg/L 0.15 mg/L 0.27 mg/L 179.85

Copper 48 0.01 mg/L 1.98 mg/L 0.33 mg/L 0.51 mg/L 157.09

Zinc 48 0.01 mg/L 3.31 mg/L 0.45 mg/L 0.59 mg/L 133.82

DO 48 1.40 mg/L 10.4 mg/L 6.18 mg/L 1.80 mg/L 29.12

Volatile phenol 48 0.01 mg/L 5.43 mg/L 0.65 mg/L 1.28 mg/L 194.71

TDS 48 89.41 mg/L 9470 mg/L 728.89 mg/L 142.35 mg/L 19.52

Ca 48 42.80 mg/L 1082.16 mg/L 161.15 mg/L 232.11 mg/L 144.02

Mg 48 8.50 mg/L 3766.5 mg/L 210.54 mg/L 670.73 mg/L 318.56

Na 48 2.6 mg/L 6750 mg/L 479.74 mg/L 1353.76 mg/L 282.18

Cl− 48 17.25 mg/L 8838.57 mg/L 555.17 mg/L 1761.13 mg/L 317.22

HCO3
− 48 89.94 mg/L 24324.13 mg/L 1419.31 mg/L 5091.52 mg/L 358.74

SO4
2− 48 4.803 mg/L 8424 mg/L 961.88 mg/L 1657.12 mg/L 172.28

PO4
3− 48 0 mg/L 1.7 mg/L 0.233 mg/L 0.3589 mg/L 153.57

Cr 48 0.01 mg/L 0.16 mg/L 0.028 mg/L 0.029 mg/L 102.47

Table 1. Summary of water quality observations of the Ebinur Lake Watershed for October of 2016.
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phenol) are similar with Coe�cients of Variation varying considerably between 100% and 200%. In addition, the 
Coe�cient of Variation for Mg was measured at 318.56. (HCO3

−) and varies considerably from 89.94–24324.13 
spanning one order of magnitude with a mean value of 1,419.31 mg/L and with a Coe�cient of Variation of 
358.74% that is highly variable. Concentrations of SO4

2− also varied considerably from 4.8 mg/L–8424 mg/L with 
a mean value of 961.88 mg/L and a Coe�cient of Variation of 172.28%. SO4

2− levels in the Ebinur Lake Watershed 
were found to be lower and strongly variable and most likely due to the presence of the Boertala and Jing River 
reservoirs upstream, which serve as a settling watershed. (PO4

3−) was found to vary considerably from 0–1.7, 
spanning one order of magnitude with a mean value of 0.2237 mg/L and highly variable Coe�cient of Variation 
of 153.57%. (Cr) was found to vary considerably from 0.01–0.16, thus spanning one order of magnitude with a 
mean value of 0.0283 mg/L and a highly variable Coe�cient of Variation of 102.47%. In short, the water quality 
index changes considerably in this watershed while pH, DO and TDS values change less. Water quality levels thus 
vary considerably in the watershed.

Assessment of water quality based on the WQI. In this study, the quality of the Ebinur Lake Watershed 
surface water was evaluated. To assess the water quality of the river, the WQI method was used. pH, HCO3

−, TP, 
TN, BOD, NH3

+-N, Iron, Copper, Zinc, Volatile phenol, DO, TDS, Cl−, SO4
2−, Na, Ca, Mg, COD, PO4

3− and 
Cr values were taken into account for the calculation of WQI values for each sampling location in the Ebinur 
Lake Watershed in October of 2016. Analysis results for all 48 sampling points were used for quality evalua-
tions. Furthermore, World Health Organization33 limits were used for the calculations. Distribution maps of the 
water quality parameters (pH, HCO3

−, TP, TN, BOD, NH3
+-N, Iron, Copper, Zinc, Volatile phenol, DO, TDS, 

Cl−, SO4
2−, Na, Ca, Mg, COD, PO4

3− and Cr) and a WQI map for the river were prepared using Geographic 
Information System (GIS) techniques and are presented in Fig. 4 and Table 2.

Spatially, water quality index (WQI) levels are high for most areas of the Boertala River downstream from 
Ebinur Lake and (Fig. 1) and occupy the V category. �is water is unsuitable for drinking. �e highest value of 438 
is observed for the Kuitun River. As this water body is located in the town of Tuotuo, the e�ects of human factors 
are severe, and water quality levels in this river are poor. �erefore, as water quality levels worsen, WQI levels 
increase. �e best levels of water quality for the Ebinur Lake Watershed are found in the upper reaches of the 
Bortala River. Its WQI value is less than 100 (I grade water quality) and is suitable for drinking. Poor water quality 
levels are observed for midstream reaches of Boertala River of Wenquan County where the e�ects of human fac-
tors are severe and where water quality levels have resulted in mutations and in the development of water quality 
index anomalies. From an ecological perspective, the ecological environment of Ebinur Lake is the worst in the 
watershed. Rivers originate from mountains surrounding the watershed where the ecological environment is 
superior to that of Ebinur Lake.

Hyperspectral characteristics of surface water. Figure 2 (a) shows how on the basis of the river areas 
described above, 48 water samples were classi�ed into 5 categories and spectral plots of each category were aver-
aged as a representative spectral curve of this water quality level (Fig. 2a). Five spectral plots of similar shapes 
were identi�ed with two pronounced absorption features located at approximately 700 and 950 nm. Of the �ve 

Parameters WHO standards (2008) Weight (Wi) Relative weight (Wi)

1 pH 6.80–8.50 4.00 0.072

2 TDS 450.00 1.00 0.018

3 COD 15.00 4.00 0.072

4 BOD5 3.00 5.00 0.091

5 TP 0.10 3.00 0.054

6 TN 0.50 3.00 0.054

7 NH3
+-N 0.50 3.00 0.054

8 V.P. 0.02 4.00 0.072

9 Ca 300.00 2.00 0.036

10 Mg 30.00 2.00 0.036

11 Na 200.00 2.00 0.036

12 Fe 0.30 1.00 0.018

13 Cu 1.00 1.00 0.018

14 Zn 1.00 2.00 0.036

15 HCO3
− / 3.00 0.054

16 Cl 250.00 3.00 0.054

17 SO4
2− 250.00 4.00 0.072

18 PO4
3− 50.00 5.00 0.091

19 Gr 0.05 1.00 0.018

20 DO 6 1 0.018

58 1

Table 2. Assessment of water quality using the WQI.
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categories, sample site 31 exhibited lowest re�ectance and a location slightly downstream exhibited the highest 
re�ectance. Sample site 21 presented the highest re�ectance value. �is sample site is located in the downstream 
area of the river (into the lake). For each class, an average spectrum was calculated (Fig. 2a), and the plots show 
re�ectance curves of two deep absorption regions at 750 and 980 nm and several weak absorption regions at 
approximately 452 nm, 703 nm, and 850 nm. It was easy to identify di�erences in water quality at roughly 700–
720 nm and 1,070 nm of the peak. Average and standard values are shown in Fig. 2(b) with no outliers and a 
normal distribution.

Correlations between the water quality index and spectra. Sensitive wave band selection is central 
to constructing a water quality index (WQI) estimation model, and correlation coe�cients for the water quality 
index (WQI) and spectral re�ectance (single wave bands) are usually used to identify water quality index bands 
(sensitive wave bands). All correlation coe�cients between the water quality index (WQI) and raw re�ectance 
data treated based on fractional derivatives (0 order, 0.2 order, 0.4 order, 0.6 order, 0.8 order, 1.0 order, 1.2 order, 
1.4 order, 1.6 order, 1.8 order, and 2.0 order) were tested with a signi�cance level of 0.01 (|r| = 0.24 or above). 
Spectral curves of correlation coe�cients of the raw re�ectance and of raw re�ectance data treated by fractional 
derivatives (0 order, 0.2 order, 0.4 order, 0.6 order, 0.8 order, 1.0 order, 1.2 order, 1.4 order, 1.6 order, 1.8 order, 
and 2.0 order) are plotted in Fig. 3. For the raw re�ectance data, 45 bands passed the signi�cance test at 0.01, but 
as the order of the derivative increases, correlation coe�cients increase beyond the 0.01 level in some wavelength 
ranges. However, band values do not pass the signi�cance test at 0.01. In addition, as the order declines from 1.0 
to 2.0, band values increasingly pass the signi�cance test at the 0.01. As correlation coe�cients increase, when the 
order reaches 1.6, correlation coe�cients reach 0.68 at 1,368 nm. On the whole, the curves �uctuate greatly, and 
thus more information cannot be derived from Fig. 3.

From Fig. 3 it is not clear how many bands of raw re�ectance data treated by fractional derivatives passed the 
signi�cance test at 0.01, and thus raw re�ectance data and raw re�ectance data treated by fractional derivatives are 

Figure 1. Spatial characteristics of the WQI for the Ebinur Lake Watershed (Map by ArcGIS10.2.2 (http://www.
esri.com/so�ware/arcgis)).

Figure 2. Spectral curves of water in di�erent rivers (Map by Origin 9.1 (http://www.originlab.com/so�ware)).

http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
http://www.originlab.com/software
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measured and corresponding trend lines and relationships between raw re�ectance data and raw re�ectance data 
treated by fractional derivatives and the water quality index (WQI) are shown in Fig. 4. For these 11 mathemat-
ical forms of re�ectance, di�erent numbers of bands passed the signi�cance test. With an increase in derivative 
order, values �rst decreased and then increased, and all reached a minimum value at the 1.0 fractional orders and 
a maximum value at the 1.6 fractional orders. However, band numbers do not pass the signi�cance test at 0.01. 
In addition, as the order declines from 1.0 to 2.0, band numbers increasingly pass signi�cance testing at 0.01. As 
correlation coe�cients increase, once the order reaches 1.6, the correlation coe�cient is 0.68.

Figure 3. Correlation coe�cients between the WQI and raw re�ectance data treated by fractional derivatives 
(Map by Origin 9.1 (http://www.originlab.com/so�ware)).

http://www.originlab.com/software
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Relationships between the water quality index (WQI) and the spectral indices. Contour maps 
of r values between the water quality index (WQI) and two-band spectral indices (DI, NDI and RI) are shown in 
Fig. 5. A strong correlation between the DI, NDI and RI and the water quality index (WQI) is largely found in the 
visible and near-infrared ranges (Fig. 5). While the performance of the three spectral indices as predictors of the 
water quality index (WQI) appears to vary by wavelength, constant forms are revealed. Wavelength combinations 
in the 350–1100 nm region for R2 spectra (Fig. 5) show a signi�cant correlation between the RI and the water 
quality index (WQI).

Wave bands of combinations (DI, RI and NDI) for the re�ectivity of the raw spectrum curve and raw re�ec-
tance data treated by fractional derivatives and corresponding strong correlations with the water quality index 
(WQI) were mainly found to be concentrated in two zones (Fig. 5). �e ratio index (RI) sensitivity region and 
normalization index sensitivity region were found to be nearly consistent. However, index sensitivity zones were 
found to di�er. For the RI, good wavelength combinations were observed with R2 values of 0.40 and 0.92, respec-
tively (Table 3). �e correlation r is minimal in raw re�ectivity wave bands of the combinations (R883/R934), and 
the maximum correlation coe�cient value is found in raw re�ectance data treated by 1.6 order derivatives located 
at R600 − R900. For the di�erent index (DI), good wavelength combinations were observed with R2 values of 0.497 
and 0.585, respectively (Table 3). �e lowest correlation r is found in raw re�ectivity wave bands of the combina-
tions (R583 − R844), and the maximum correlation coe�cient is found in raw re�ectance data treated by 1.6 order 
derivatives for R500 to R900. For the normalized index (NDI), good wavelength combinations were found with R2 
values of 0.764 and 0.914, respectively (Table 3). �e weakest correlation r is found in raw re�ectance data treated 
by 0.2 order derivatives of combinations ((R520 − R760)/(R520 + R760)), and the largest correlation coe�cient is 
found in raw re�ectance data treated by 1.6 order derivatives in the R452 and R703 zones. Raw observations show 
several weak absorption regions at close to 452 and 703 nm, and R452 and R703 zones of NDI wave bands of the 
combinations correlation coe�cient are the highest. �erefore, the spectrum absorption valley is central to the 
study of water quality sensitivity levels. In addition, a re�ectivity value of 964 nm is found in the most important 
area of the sensitive band. �is analysis reveals the presence of a strong correlation between DI, RI, NDI and the 
di�erent water quality indices. Strong correlations with water quality are mainly found as r values (Table 3).

Particle swarm optimization (PSO)-support vector regression model. Establishing a WQI estima-
tion model based on a support vector regression model. MATLAB 2014a is applied to design a particle swarm 
optimization (PSO) support vector regression model. Hyperspectral parameters of sensitive wave bands and the 
spectral index and water quality index (WQI) of the Ebinur Lake wetlands are used to develop a particle swarm 
optimization - support vector regression model (POS-SVR). Data were randomly chosen and segregated into 
training and testing components at a 7:3 ration. A�er training the model (POS-SVR), it was tested using 30% 
of the data that di�ered from the training set. �is was conducted to assess the generalization accuracy of the 
trained model and to ascertain its capacity to use the SVR learned pattern to predict target values for previously 
unseen datasets. �is method is referred to as model validation and the performance assessment method used is 
only as good as the criteria set for this reason. Each input factor applies a di�erent measurement unit. To elim-
inate dimension e�ects of these variables and to realize equivalent expression e�ects for each input factor, the 
non-dimensional method is applied for the data analysis to standardize various input factors and to compress 
the scope of change for each input factor to −1 to 1. �e premnmx function is applied in MATLAB 2014a to 
normalize the input factors. When the nerve cell is satisfactorily accurate, the postmnmx function can be applied 
to recover the original magnitude of the normalized data. �e di�erent input parameters of the POS-SVR model 
for parameter comparison is as described in Table 4.

Verifying the estimation model of the water quality index. A�er modeling di�erent water quality indices (WQIs), 
the accuracy of obtained models was examined for an independent dataset consisting of 11 samples. �e cor-
responding validation results are shown in Figs 6, 7 and statistical results are summarized in Table 5. Scatter 

Figure 4. �e number of bands passing the signi�cance test and trend lines (Map by Origin 9.1 (http://www.
originlab.com/so�ware)).

http://www.originlab.com/software
http://www.originlab.com/software
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diagrams are presented for prediction and real values of the inversion model in Figs 6, 7. �e coe�cient of deter-
mination R2 between predicted and measured values for monitoring model accuracy is higher, the measured 
and predicted values are basically linear, and the RMSE is low while the slope of the �tting curve is closer to 1. 
�erefore, the related POS-SVR model exhibits a strong non-linear �tting capacity, denoting excellent e�ects of 
the hyperspectral spectral index on the monitoring water quality index (WQI). Figures 6, 7 and Table 5 show a 
scatter diagram for the measured real and predicted values.

Figures 6, 7 and Table 5 show that the predicted water quality index (WQI) value is very consistent with the 
measured water quality index value. �e 15 water quality index estimation models were validated by the 22 water 
samples. In total, 22 models present acceptable results at RPD > 1.4 and with a slope of close to 1. �e sensitive wave 
band estimation model is more accurate for the 1.6 order derivates. R2 is valued at 0.92; RMSE is valued at 58.40, 
RPD is valued at 2.71, and the slope is valued at 0.85. �e spectral index estimation model is more accurate for the 
1.6 derivates. R2 is valued at 0.92; RMSE is valued at 61.15, RPD is valued at 2.81, and the slope is valued at 0.97.

Figure 5. Contour maps of correlation coe�cients (r) between WQI values and normalized di�erence, 
ratio, and di�erence spectral indices based on raw re�ectance data treated by fractional derivatives using two 
re�ectance spectra at i and j nm (n = 48). (Map by MATLAB 2014a (https://www.mathworks.com/so�ware)).

https://www.mathworks.com/software
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Compare the accuracy of the machine learning algorithm and geographically weighted regression (GWR). R883/
R934, R583 − R844, and (R520 − R760)/(R520 + R760) is the independent variable, the GWR model was used for regres-
sion analysis of WQI, AIC value is 402.69, R2 is 0.86, residual sum of squares value is 879.91. Test the model with 
a validation sample, R2 is 0.75, RMSE is 80.33, and RPD is 1.90. Scatter diagrams are presented for prediction and 
real values of the inversion model Fig. 8.

Compare the accuracy of the machine learning algorithm and geographically weighted regression (GWR), the 
spectral index estimation model is more accurate for the 1.6 derivates based on machine learning algorithm. R2 is 
valued at 0.92; RMSE is valued at 61.15, RPD is valued at 2.81, and the slope is valued at 0.97. �erefore, the water 

Derivative 
order

RI DI NDI

Band R Band R Band R

0 R988/R969 0.4023 R988 − R969 0.4978
(R963 − R989)/
(R963 + R989)

0.5917

0.2 R359/R675 −0.9861 R359 − R1016 −0.5500
(R890 − R1017)/
(R890 + R1017)

0.7210

0.4 R576/R954 −0.6826 R838 − R840 0.4914
(R576 − R954)/
(R576 + R954)

0.7983

0.6 R717/R1034 0.8225 R843 − R844 0.4826
(R556 − R1131)/
(R556 + R1131)

0.8314

0.8 R840/R915 0.7322 R838 − R840 0.4948
(R424 − R828)/
(R424 + R828)

0.9057

1.0 R902/R915 0.7974 R855/ − R844 0.4952
(R354 − R956)/
(R354 + R956)

0.8793

1.2 R652/R926 0.8354 R840 − R846 0.5242
(R652 − R926)/
(R652 + R926)

0.9104

1.4 R359/R854 0.9089 R622 − R844 0.5807
(R359 − R854)/
(R359 + R854)

0.9200

1.6 R883/R934 0.9274 R583 − R844 0.5811
(R520 − R760)/
(R520 + R760)

0.9299

1.8 R463/R964 0.8884 R465 − R844 0.5744
(R452 − R703)/
(R452 + R703)

0.9144

2.0 R463/R933 0.8482 R969 − R988 0.5118
(R956 − R973)/
(R956 + R973)

0.8113

Table 3. Correlation coe�cients between WQI and each order derivative of raw spectral re�ectance of RI, DI, 
NDI.

Input 
Parameter Order

Output 
Parameter

POS-SVR

c g mse R2 RMSE SD RPD

Single bands

0 WQI 1.6957 0.1000 1.7402 0.80 287.94 484.73 1.68

0.2 WQI 48.7120 0.0091 1.3434 0.79 306.46 542.08 1.76

0.4 WQI 32.1190 0.0075 1.3245 0.75 312.75 380.75 1.22

0.6 WQI 33.1999 0.0097 1.4578 0.88 144.58 328.85 2.27

0.8 WQI 1. 9675 0.1000 1.7711 0.85 269.48 414.74 1.54

1.0 WQI 55.712 0.0091 1.8434 0.86 234.65 553.96 2.36

1.2 WQI 42.197 0.0083 1.2781 0.83 252.26 483.27 1.92

1.4 WQI 33.1999 0.0097 1.4578 0.87 219.45 545.52 2.49

1.6 WQI 1. 9675 0.2000 1.7751 0.91 183.91 467.97 2.57

1.8 WQI 55.712 0.0121 1.8734 0.84 253.19 485.61 1.96

2.0 WQI 42.197 0.0083 1.2981 0.79 285.43 506.15 1.77

DI, RI, NDI

0 WQI 1.6957 0.1000 1.7902 0.88 201.14 446.82 2.22

0.2 WQI 48.712 0.0091 1.3434 0.88 214.41 506.22 2.36

0.4 WQI 32.197 0.0083 1.2781 0.77 296.95 306.11 1.03

0.6 WQI 88.1235 0.1008 2.1789 0.87 218.99 366.05 1.67

0.8 WQI 1.6957 0.1090 1.7402 0.72 344.55 386.88 1.12

1.0 WQI 48.7120 0.0091 1.3434 0.86 233.48 518.12 2.22

1.2 WQI 32.1190 0.0075 1.3245 0.89 198.62 505.21 2.53

1.4 WQI 33.1999 0.0097 1.4578 0.89 212.73 441.58 1.08

1.6 WQI 1. 9675 0.1000 1.7711 0.92 165.91 429.78 2.59

1.8 WQI 33.1999 0.0097 1.4578 0.86 213.35 484.15 2.26

2.0 WQI 1. 9675 0.1340 1.2211 0.85 251.15 513.08 2.04

Table 4. Input parameters of the POS-SVR model for parameter comparison.
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quality index (WQI) monitoring model based on machine learning algorithm is highly stable and presents a high 
level of predictive capacity. �e Particle swarm optimization - support vector regression model can thus be used 
to generate water quality index estimations for the semi-arid central Asian zone of Xinjiang, China.

Discussion
Assessment of water quality and of the spatial variability of the water quality index (WQI).

In this study, the water quality of Ebinur Lake watershed surface water was evaluated. Rivers of the Ebinur 
Lake Watershed recharge Ebinur Lake. To evaluate the water quality levels of Ebinur Lake Watershed surface 
water, 48 sampling sites and 20 water quality parameters were selected for monitoring and analysis. Water quality 
parameters pH, HCO3

2−, TP, TN, BOD5, NH3
+-N, Iron, Copper, Zinc, Volatile phenol, DO, TDS, Cl−, SO4

2−, Na, 

Figure 6. Correlations between the measured veri�cation values and the predicted values based on a sensitivity 
bandpass signi�cance test conducted at the 0.01 level (Map by EXCEL (https://www.microso�.com/so�ware)).

https://www.microsoft.com/software
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Ca, Mg, COD, PO4
3− and Cr were used to calculate WQI values to evaluate river water quality levels. WQI values 

were found to range between 56.61 and 2886.52. �e WQI classi�cation shows that the Ebinur Lake Watershed 
presents varying levels of water quality. �e downstream areas of the river present poor water quality levels, 
where the main pollutant sources include wastewater discharged from Wenquan County and the city of Bole, 
leather and marble factories downstream from the Boertala River Valley and agricultural activities in the oasis 
of the Ebinur Lake Watershed; the main pollutant sources include wastewater discharged from Jinghe County, 
the leather industry, saltwork and saline land downstream from the Jinghe River and agricultural and grazing 
activities in the oasis of the Ebinur Lake Watershed. �e Kuitun-Akeqisu River is located in the southwestern area 
of the watershed. A large amount of salt is found on either side of the river, and water quality in the area is highly 
saline. E�ects of water quality parameters on the WQI map were investigated. Consequently, environmental 

Figure 7. Correlations between the measured veri�cation values and predicted values based on the spectral 
index (RI, DI, and NDI) (Map by EXCEL (https://www.microso�.com/so�ware)).

https://www.microsoft.com/software


www.nature.com/scientificreports/

1 1Scientific RepoRts | 7: 12858  | DOI:10.1038/s41598-017-12853-y

pollutants negatively a�ect all water surfaces of the Ebinur Lake Watershed. �erefore, necessary protection 
measures should be taken on the planned usage of river water.

Estimate water quality index (WQI) value based on hyperspectral remote sensing data. In this 
study, an estimated water quality index (WQI) value is established based on sensitive wave bands and a spectral 
index of hyperspectral data. Water quality levels are directly estimated and assessed via remote sensing tech-
niques. Most previous studies18,34,35 have focused on single indices of water quality such as chlorophyll-a, TDS, 
and NTU. While single indices of water quality are monitored using remote sensing technologies, and while single 
water quality parameters of monitoring models are highly accurate, such results are uncertain. As water quality 
conditions are re�ected by all water quality parameters, overall water quality conditions are monitored by remote 
sensing; spectral re�ectance values re�ect overall parameters. �erefore, single indices of water quality monitored 
using remote sensing technologies are uncertain. �e water quality index (WQI) re�ects overall water quality 
conditions. �e evaluation and estimation of surface water quality based on the hyperspectral remote sensing 

X Order Y

GA-SVR

R2 RMSE SD RPD Slope N

Single bands

0 WQIP 0.76 89.22 174.23 1.95 0.72 11

0.2 WQIP 0.74 107.21 163.99 1.53 1.07 11

0.4 WQIP 0.80 85.43 182.83 2.14 0.58 11

0.6 WQIP 0.79 110.08 167.21 1.52 1.23 11

0.8 WQIP 0.78 73.22 148.26 2.02 0.78 11

1.0 WQIP 0.80 104.52 173.07 1.66 1.15 11

1.2 WQIP 0.75 94.04 179.25 1.91 0.85 11

1.4 WQIP 0.74 89.25 167.33 1.87 0.78 11

1.6 WQIP 0.92 61.15 166.22 2.71 0.85 11

1.8 WQIP 0.82 89.98 205.11 2.27 0.82 11

2.0 WQIP 0.77 113.13 224.73 1.98 1.12 11

RI,DI,NDI

0 WQIP 0.75 88.18 194.81 2.21 0.75 11

0.2 WQIP 0.78 105.31 209.37 1.98 0.90 11

0.4 WQIP 0.82 117.31 263.79 2.24 0.93 11

0.6 WQIP 0.83 72.76 169.05 2.32 0.65 11

0.8 WQIP 0.84 91.78 218.52 2.38 0.86 11

1.0 WQIP 0.87 70.25 137.32 1.95 0.68 11

1.2 WQIP 0.80 61.37 112.31 1.83 0.52 11

1.4 WQIP 0.85 60.51 149.89 2.48 0.67 11

1.6 WQIP 0.92 58.40 164.16 2.81 0.97 11

1.8 WQIP 0.80 88.85 174.52 1.96 0.81 11

2.0 WQIP 0.73 72.02 133.63 1.86 0.53 11

Table 5. Summary of parameter correlations between the measured veri�cation values and predicted values.

Figure 8. Scatter plot of measured and predicted WQI in GWR models (Map by EXCEL (https://www.
microso�.com/so�ware)).

https://www.microsoft.com/software
https://www.microsoft.com/software
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is feasible. In this study the accuracy of the estimation model is improved through the use of new hyperspectral 
indices (DI, RI, and NDI) and via particle swarm optimization - support vector regression. Remote sensing tech-
niques make it possible to develop a spatial and temporal understanding of surface water quality indices and to 
more e�ectively and e�ciently monitor water surfaces. Such tools can also be used to estimate water quality dis-
tributions. Future studies must measure the applicability of satellite remote sensing data and of unmanned aerial 
vehicle (UAV) technologies for estimating WQI values. As the number of in situ samples continues to increase, a 
unique regression model that e�ectively measure the water quality parameters of di�erent watersheds should be 
developed for arid regions.

Conclusions
�e Ebinur Lake Watershed of the Xinjiang Autonomous Region, China, was used as a study area. We used opti-
mal bands based on di�erence index, ratio index, and normalized di�erence index algorithms to assess the WQI 
using spectral eleven orders (interval 0.2) of fractional derivatives for remote sensing data, and we measured the 
performance of the proposed models using GA-SVR and the band di�erence algorithm. �e results are as follows:

 (1) Water quality levels for drinking purposes were evaluated via the water quality index (WQI) method. �e 
computed WQI values were found to range between 56.6133 and 2,886.5198. �e prepared WQI map 
shows that the arid area generally presents low levels of water quality.

 (2) As the order increased, the number of bands with correlation coe�cients passing a signi�cance test at 
0.01 �rst increased and then decreased with a peak appearing with the 1.6 order and with an R2 of 0.525. 
�e WQI and derivative spectral data of DI, RI and NDI correlation coe�cients among the optimal band 
combinations also show a peak with the 1.6 order and R2 values of 0.818, 0.8624 and 0.8297.

 (3) In total, 22 WQI estimation models were generated from a principal component single band and from RI, 
DI, and DNI values based on the 1.6 order derivative, the lowest RMSE, the highest R2 (0.92) and the RPD 
(2.59).

 (4) Comparisons of the predictive e�ects of the 22 water quality index estimation models calibrated by POS-
SVR show that the model based on RI, DI, and NDI values of the 1.6 order is much better than the others 
while better predicting the water quality index of the study area (R2 (0.92), RMSE = 58.4, RPD (2.81) and a 
slope of curve �tting of 0.97).

�is study not only estimates a water quality index using di�erent techniques for the semi-arid area of central 
Asia but also develops a new algorithm that can be applied to this area and to other areas.

Materials and Methods
Study area. �e Ebinur Lake Watershed (44°05′−45°08′N, 82°35′−83°16′E) (Fig. 9) is located on the north-
ern slope of the Tien Shan Mountains southwest of the Junggar Basin. �e watershed covers an area of 50,621 
km2. It is surrounded by a mountainous region (24,317 km2; Alatau Mountains, Maliyi Mountains and Biezhentao 
Mountains) and by plains (Jinghe Oasis) (26,304 km2) to the north, west and south36. Arti�cial reservoirs (RES) 
are found southwest of the watershed. �e area is characterized by a typical temperate arid continental climate 
with the mountain-oasis-desert system presenting typical temperate arid ecological characteristics. �e study 
region is located inland (2,000 km from the Paci�c and Indian Ocean and 3,000 km from the Arctic Ocean); mois-
ture in the study area is derived from the Atlantic Ocean (7,000 km), but water vapor transport from maritime 
areas is limited36.

Figure 9. (a) Map of the study area with an inset map showing the location of the Xinjiang Autonomous Region 
within China; (b) satellite map of the study area; (c) Kuitui River, (e) Boertala River, (e) Jing River; photographs 
of the three selected sampling locations (photographed by Xiaoping Wang, Map by ArcGIS10.2.2 (http://www.
esri.com/so�ware/arcgis)).

http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
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�e lake is a terminal lake fed by the Kuitun Mountains, Akeqisu River, Jing River, Tuotuo River, Sikeshu 
River, Boertala River, Akaer River and Daheyanzi River. Surface water levels of Ebinur Lake and the Tuotuo River 
are currently low and thus water ecological safety levels are threatened. Severe water shortage problems and the 
presence of large volumes of sewage have rendered river and lake water pollution levels high in the Ebinur Lake 
Watershed, a typical arid area of central Asia37.

Materials
Sample collection. Water samples were collected on October 5, 2016 from 48 locations within the Ebinur 
Lake Watershed (Fig. 9). Collected water quality samples were stored at low temperatures (under 2 °C) during 
transport before water quality measurements were carried out in a laboratory. Samples were transported in pol-
yethylene plastic bottles previously rinsed with 10% HCI and cleaned with deionized water to minimize changes 
in water chemical characteristics. We used a handheld global positioning system (GPS) indicator to determine 
the central coordinates of each sample and used a digital camera to photograph the sampling area (see Fig. 9). 
Temperature and pH levels were recorded at the time of sampling along the shore. All other measurements were 
taken within a day following sample collection in the lab. Biochemical oxygen demand (BOD5), total nitrogen 
(TN), total phosphorus (TP), iron, copper, chemical oxygen demand (COD), zinc, volatile phenol (V.P.) ammo-
nia nitrogen (NH3

+-N), Henderson-Hassebalch (HCO3
−), dissolved oxygen (DO), total dissolved solids (TDS), 

chloride (Cl−), sulphate ion (SO4
2−

), natriumion (Na), calcium (Ca), magnesium (Mg), phosphate (PO4
3−) and 

(Chromium VI) Cr concentrations collected over �ve days were determined according to corresponding methods 
as is shown in Table 6.

Hyperspectral data collection. �e FieldSpec③3 ASD Spectroradiometer device is an optical sensor that 
uses detectors other than photographic �lm to measure the distribution of radiation in a particular wavelength 
region to measure the radiant energy level (radiance and irradiance). It was used to visualize spectral re�ectance 
patterns of lake water corresponding to water content levels. Observation methods applied to water surfaces can 
be found in Supplementary Fig. S1.

To observe the water surfaces (Fig. S1), the spectral range of the spectrometer was set to 350–1050 nm with a 
1 nm sampling interval. To avoid environment changes in illumination conditions, measurements between water 
the target, sky, and whiteboard were collected at each station. Sky conditions were also recorded at each station 
during spectral measurement.

All �eld spectrometer measurements were processed to remove sky and sun glare using a constant water 
body re�ection coe�cient38. �erefore, hyperspectral re�ectance values, Rrs, were calculated using the following 
equation:

ρ
=

−
R

L L

E (1)
rs

u s

d

where Lu is the total upwelling radiance, Ls is the sky radiance, ρ is the water surface re�ection e�ciency level of 
0.028, and Ed is the measured down welling solar irradiance.

Methods
Fractional Derivative Method. Fractional derivative methods have been widely used in certain �elds 
because models described by the fractional derivative are more accurate and e�cient than methods based on inte-
ger derivatives39,40. �e most frequently used de�nitions are the following: Grunwald - Letnikov (G-L), Riemann - 
Liouville (R-L), and Caputo41. As it is less complex than the others, the G-L de�nition was employed in this study. 
Grunwald - Liouville is de�ned as follows42:
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where a is the step length, where h is the order number, and where t and a are the respective upper and lower 
limits of the derivative. �e Gamma formula is written as follows:
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Based on our use of ASD spectrometer data, when the sampling interval is 1 nm, h = 1. f (X) is the fractional order 
derivative, which is de�ned as follows:
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�erefore, (5) can be regarded as the numerical algorithm used to calculate the fractional derivative of hyperspec-
tral data, and a zero order denotes that hyperspectral data are not treated by the derivative algorithm.

Determination of the best indices. In obtaining the most sensitive bands from water environment data, 
previous studies show that the combination of various bands can improve the sensitivity of hyperspectral re�ec-
tance data to water quality values43. �erefore, this method explores the relationships between water quality and 
the spectrum re�ectance and then applies a 2D correlation diagram to study relationships between the di�er-
ence index (DI), ratio index (RI), normalization index (NDI), and water quality index44. Optimal combination 
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bands for the water quality index value are selected from 350 nm-1,050 nm and are entered into MATLAB 2014a 
(MathWorks, 2014).

= −RDI(R , R ) R (5)i j i j

= − +R RNDI(R , R ) ( R )/( R ) (6)i j i j i j

=RI(R , R ) R /R (7)i j i j

Ri and Rj are random bands selected at 350 nm –1,050 nm while Ri and Rj denote the original re�ectivity values of 
any two bands selected at 350 nm–1,050 nm.

Calculation of the Water Quality Index (WQI). �e Water Quality Index (WQI) is an extracted and 
estimated index that re�ects the composite e�ects of all water quality parameters45. First, each water quality 
parameter was assigned a weight (Wi) from a scale of 1 (lowest e�ect on water quality parameters) to 5 (strongest 
e�ect on water quality parameters) based on perceived e�ects on primary health and according to its relative 
importance to the surface water environment46,47. PO4

3−, SO2 and Cr values were assigned the highest weight (8) 
due to their primary role in water quality assessments; a minimum weight of 1 was assigned to parameters Ca, 
Mg and Na due to their limited importance for water quality assessments48. �e relative weight (Wi) is computed 
from the following equation:

=
∑ =

Wi
Wi

Wi (8)n
n

1

where Wi is the relative weight, Wi is the weight of each parameter, and n is the number of parameters. �en, a 
quality rating (Qi) for each parameter is assigned by dividing its concentration in each water sample by its limit 
given in the WHO33 quality standards for surface water quality for the People’s Republic of China. �is result is 
multiplied by 100;

= ×Q
C

S
100

(9)
i

i

i

where Qi is the quality rating, Ci is the concentration of each water quality parameter for each water sample, and Si 
is the surface water standard for each water quality parameter according to WHO guidelines33 (2008). To measure 
the WQI, the SIi value should be calculated �rst using the following equations;

Water quality indices Experimental methods

1 DO
According to the iodine quantity method (GB/7489–7489), we used a visible light spectrophotometer 722 N 
test instrument to measure DO levels.

2 COD
According to the dichromate method (GB 11914–1989), we used a standard COD digestion apparatus (K-
100) to determine COD levels.

3 BOD5
We used the dilution and inoculation method (HJ 505–2009) and a constant temperature incubator (HWS-
150 type) to measure BOD5 content levels.

4 TP
Using the ammonium molybdate spectrophotometric method (HJ 636–2012), we employed a visible light 
spectrophotometer 722 N to determine TP content levels.

5 TN
Via ultraviolet spectrophotometry (HJ 535–2009), we used an ultraviolet visible light spectrophotometer and 
UV-6100 to determine TN content levels.

6 NH3
+-N

Using Nessler’s reagent spectrophotometer and a visible light spectrophotometer 722 N for the determination 
of NH3

+-N levels.

7 pH pH-40A portable pH acidity meter.

8 Iron According to atomic absorption Spectrophotometer methods

9 Copper According to atomic absorption Spectrophotometer methods

10 Zinc According to atomic absorption Spectrophotometer methods

11 Volatile phenol �e direct photometric amino antipyrine method was used to measure volatile phenol

12 TDS
�e WTW inoLab@ Multi 3420 Set B multi-parameter measurement instrument (Wissenscha�lich-
Technische Werkstätten GmbH, Germany) was used.

13 Ca Atomic absorption spectrometry methods were used.

14 Mg According to atomic absorption Spectrophotometer methods

15 Na Sodium ion electrode methods were used.

16 Cl− Silver nitrate titration methods (GB T5750.5–2006) were used.

17 HCO3
− Drop-counting microtitrimetry methods (SL83–94) were used.

18 SO4
2− Methylene blue methods (GB T5750.5–2006) were used.

19 PO4
3− Phosphorus molybdenum blue colorimetric methods (GB T5750.5–2006) were used.

20 Cr Diphenylcarbazide photometry methods (GB T5750.5–2006) were used.

Table 6. Water indices and experimental methods.
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SI W q (10)i i i
= ×

∑= =WQI SI (11)i

n
i1

where SIi is the water quality index of the ith parameter and Qi is the water quality level based on the ith water 
quality parameter49.

Estimate the WQI using a machine learning algorithm. Machine learning algorithms have become 
very popular in the era of big data. Machine learning is an arti�cial science. �e �eld’s main objects of study are 
artifacts and speci�cally algorithms that improve performance with experience. �e Support Vector Regression 
(SVR) Model is the main algorithm used for machine learning. We used the Support Vector Regression Model to 
estimate the WQI for the arid area50–52.

Given sample data (xi, yi), i = 1, 2, …, l where xi denotes the input vector, =y f x( )
i i  is the estimated output 

measure. Estimated methods can be written as: f x x b( ) ( )ωφ= +  where φ x( ) is a nonlinear model drawn from 
the input space to a high dimensional space; ω is a weight vector; and b is the o�set.

�e regression target identi�es parameters ω and b, which minimize the regression error function. �e regres-
sion error function can be de�ned as:

∑Γ ω= − +
=

R f C f x y( ) ( ( ) )
1

2 (12)
reg

i

l

i i
1

2

where Γ .( ) is a loss function and where Constant C > 0 is a �xed penalty parameter. �e most commonly used loss 
function is the ε-insensitive loss function:

ε= − = − −L x y f y f x y f x( , , ) ( ) max(0, ( ) ) (13)
6

6

�is shows that the loss is 0 when the di�erence between the measured and predicted value is less than a small 
positive number of ε. To smooth the regression function, a minimum ω must be found, and based on the �tting 
error, the regression function can be solved as a constrained optimization problem:
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where ξ
i
 i and ξ

j
⁎ are slack variables of upper and lower constraints on outputs of the system. �e dual optimiza-

tion problem illustrated in Equation (14) leads to a quadratic programming (QP) solution involving the Lagrange 
optimization method that can be expressed as:
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where ai, a
i* are Lagrange multipliers. A�er solving the optimization problem, denote the optimal solution as 

a a a a a a b( , , , , ) ,l l
T

1 2 3= .....  and obtain the regression result:
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According to the Hilbert-Schmidt theorem, the inner product ϕ ϕ•x x( ) ( )i  can be replaced by a kernel function 
K(x i, x) that satis�es Mercer’s conditions53. �en, the outcome can be rewritten as:

∑= − +
=
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⁎

the most commonly used kernel function is the radial basis kernel function (RBF) σ= − −K x x x x( , ) exp( / )i i
2 2 . 

�ree parameters including the penalty coe�cient C, the parameter of the kernel function σ and the width of the 
insensitive loss function ε constitute the model parameters and have a considerable impact on the performance of 



www.nature.com/scientificreports/

1 6Scientific RepoRts | 7: 12858  | DOI:10.1038/s41598-017-12853-y

the SVR model. �ese parameters are o�en used by trial and error and are di�cult to use to obtain the optimal 
value. �e PSO can extract the optimal value fast in parallel with a complicated search space54, and we adopt it to 
select optimal parameters of the SVR model. �e PSO uses particle populations corresponding to individuals in 
an evolutionary algorithm to explore the solution space of a problem55,56. A �owchart for the proposed PSO-SVR 
algorithm can be found in Supplementary Fig. S2.

Statistical analysis. Test data analyses were constructed using Origin8.0 (Origin Lab Corporation, 
America), and Matlab 2014a (Math Works Corporation, America) was applied to design the program environ-
ment. �e signi�cance of the statistical correlations was evaluated from P values and was compared to predicted 
and measured values from three indices, i.e., the estimate corresponds to high values of R2, to the root mean 
standard error (RMSE) and to the average standard error (SD)57 as follows:
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In formulas (4), (5), (6), and (7), *(xi) is the predicted value; (yi) is the measured value; N is the total number 
of samples; 

−
x  is the average value of the sampled value, and y

−
 is the average sample forecast value. SD is the stand-

ard deviation of the dataset, RMSE is the root mean square error, and when the RMSE is smaller the model’s 
predictive capacity is stable. As the R2 of the decision coe�cient approaches a value of 1, the accuracy of the 
model improves. For a high RPD of the relative analysis error (RPD < 1.4), the model is not reliable. As 
1.4 < RPD < 2, the model is moderately accurate, and RPD > 2, the model presents a high level of predictive 
ability.

Besides R2, RMSE, SD and RPD, in order to acquire the accuracy of the estimate model of WQI based on 
machine learning algorithm, geographically weighted regression (GWR) (http://gwr4.so�ware.informer. com/ 
download/) model is selected in this study. As highlighted in the literature58,59, the main contribution of the GWR 
technique is the ability to explore the spatial variation of explanatory variables in the model, where the coe�cients 
of explanatory variables may vary signi�cantly over geographical space. Compare and analyze the accuracy of the 
machine learning algorithm and geographically weighted regression (GWR) model. Verify the reliability of the 
machine learning algorithm model.

Water quality assessment standards. �e calculated WQI values are classi�ed into �ve categories as 
follows32. When the WQI value > 50, the water quality level is excellent and is suited for drinking, and values of 
50 > and > 100 denote that water quality levels are good. Values of 100 > HIX > 200 denote poor water quality 
levels. When 200 > HIX > 300, water quality levels are very poor. A value of HIX < 300 denotes that water is 
unsuitable for drinking (see Table 7).
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