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ABSTRACT 

Web applications have become an integral part of everyday life, but many of these applications 

are deployed with critical vulnerabilities that can be fatally exploited.  Web Vulnerability 

scanners have been widely adopted for the detection of vulnerabilities in web applications by 

checking through the applications with the attackers’ perspectives.  However, studies have 

shown that vulnerability scanners perform differently on detection of vulnerabilities.  

Furthermore, the effectiveness of some of these scanners has become questionable due to the 

ever-growing cyber-attacks that have been exploiting undetected vulnerabilities in some web 

applications.  

To evaluate the effectiveness of these scanners, people often run these scanners against 

a benchmark web application with known vulnerabilities. This thesis first presents our results 

on the effectiveness of two popular web vulnerability scanners based on the OWASP 

benchmark, which is a benchmark developed by OWASP (Open Web Application Security 

Project), a prestigious non-profit web security organization. The two scanners chosen in this 

thesis are OWASP Zed Attack Proxy (OWASP ZAP) and Arachni. As there are many 

categories of web vulnerabilities and we cannot evaluate the scanner performance on all of 

them due to time limitation, we pick the following four major vulnerability categories in our 

thesis:  Command Injection, Cross-Site Scripting (XSS), Light Weight Access Protocol (LDAP) 

Injection, and SQL Injection. Moreover, we compare our results on scanner effectiveness from 

the OWASP benchmark with the existing results from Web Application Vulnerability Security 

Evaluation Project (WAVSEP) benchmark, another popular benchmark used to evaluate 

scanner effectiveness. We are the first to make this comparison between these two benchmarks 

in literature. 

 The results mainly show that:  

- Scanners perform differently in different vulnerability categories. That is, no scanner 

can serve as the all-rounder in scanning web vulnerabilities. 

- The benchmarks also demonstrate different capabilities in reflecting the effectiveness 

of scanners in different vulnerability categories. It is recommended to combine the 

results from different benchmarks to determine the effectiveness of a scanner. 

- Regarding scanner effectiveness, OWASP ZAP performs the best in CMDI, SQLI, and 

XSS; Arachni performs the best in LDAP. 
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- Regarding benchmark capability, OWASP benchmark outperforms WAVSEP 

benchmark in all the examined categories. 
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CHAPTER 1:  INTRODUCTION 

While this project covers different aspects that determine the effectiveness of two web 

vulnerability scanners, this chapter will present a general introduction to the project including 

project motivation and the project background. Furthermore, it will give an outline of the thesis 

structure. 

Web vulnerability scanners are applications that investigate the presence of exploitable 

flaws in web applications with the objective of preventing or minimizing attacks [1]. Today, 

web application vulnerability scanners are widely available on both free open source and 

commercial basis. While there is easy access to these scanners on the market today, there is 

need to determine their effectiveness in unveiling vulnerabilities in web applications.  

The primary aim of this study is to examine the effectiveness of two open source web 

vulnerability scanners using OWASP benchmark based on True Positive, True Negative, False 

Positive, and False Negative metrics. These metrics are used by OWASP benchmark to draw 

the performance results of a scanner and will allow us to give a detailed analysis of the results 

and draw a conclusion for each scanner. 

1.1   Research Background  

The security evaluation of Information Technology infrastructures by lawfully trying to exploit 

vulnerabilities is known as Penetration Testing or Ethical Hacking[2].  Penetration Testing was 

first used in the 1970’s by the USA Department of Defence with the aim of unveiling security 

issues in computer systems to defend against unauthorized access and others security breaches 

in the systems so that these flaws can be fixed before their possible unauthorized exploitation.  

As computers gained popularity and their ability to share and exchange information 

across communication lines rose, so was the challenge to protect the transferred data against 

attacks. To that end, in early 1965 computer security experts issued a warning about the 

inevitable attempt to compromise data transported across communication lines. Around 15000 

governments, business analysts and computers security experts, therefore, discussed these 

concerns to come up with the term “Penetration Testing” and the identification of what we can 

qualify as one of the significant challenges of web applications today[3]. A task force of experts 

from NASA, CIA, computer security and academia was formed. This team effort demonstrated 

the usefulness of Penetration Testing as one of the tools to evaluate system’s security[3].  
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Today, hackers’ techniques have become more sophisticated; moreover, there is an 

increase in the complexity of technology used to develop web applications, penetration testing 

has become therefore an essential technique used to assess the security of computer systems 

using vulnerability scanners. However, the need to assess the effectiveness of these scanners is 

essential for their improvement, better scanner choice and ultimately assuring a better web 

application security. 

1.2  Basic Concepts 

Most applications vulnerability scanners comprise three main components. These 

include crawling, attacking element known as fuzzing (Fuzzing-consists of injecting semi 

malformed and malformed data in an automated way to find bugs in an application) [4] and 

analysis component (scraping- which is the process of collecting accessible and or processed 

data from an application)[5]. Developers and application testers have at their disposal some 

technologies that can be utilized to detect application flaws before or after an application is 

released. These include Static Application Security Testing (SAST), Dynamic Application 

Security Testing (DAST), and Interactive Application Security Testing (IAST). 

 

Static Application Security Testing (SAST): is a code-based web application testing which 

can be done manually, or with the use of code analysis tool to find bugs in the application’s 

source code, this can also be referred to as ‘White Box Testing’ [6]. However, it is difficult to 

find all the security flaws with source code analysis method, especially with complex 

application codes. Additionally, knowing the internal structure, design, and implementation of 

the application by the tester may become a hindrance in finding flaws in the application. 

 

Dynamic Application Security Testing (DAST): DAST is a process of finding application 

vulnerabilities without prior knowledge of the structure, design, and implementation of the 

application. This method is also known as ‘Black-box Testing’ and ‘Penetration Testing’. 

Fuzzing, scraping and crawling over web requests are some of the techniques used in this 

method to find vulnerabilities in the target applications [7].  

Considering their features, Static Application Security Testing and Dynamic Application 

Security Testing methods have both some weaknesses and strengths.  While it is evident that 

SAST uses a different approach as compared to DAST, both techniques complement each other. 
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Studies have shown that DAST method may perform well in detecting Cross Site 

Scripting(XSS) vulnerabilities because of its client-side execution (scanning) ability instead of 

a simple reflection in the SAST method. Nevertheless, it has been argued that DAST method 

has not been very successful in detecting vulnerabilities related to the password entered in the 

form of clear text into back-end log file [8], whereas this kind of vulnerability can be well 

managed by SAST method [9]. Despite its fallibilities, SAST is preferred by developers as it 

enables the development team to make needed changes to the code as flaws are detected at the 

conceptual level while reducing the cost that may incur if the defect is detected at the end of 

the project [10]. 

Interactive Application Security Testing (IAST) – IAST is a combination of DAST and 

SAST. Designed to complement the two methods (SAST and DAST), IAST exploits the 

strengths of both approaches and therefore helps in the minimization of the fundamental 

weaknesses of each of the process. It lessens false positive detection rates in both methods 

(SAST and DAST) by confirming each other. IAST does this by placing an agent within the 

target application for real-time monitoring and analysis [10].  

In this study, we examine OWASP ZAP and Arachni as some of the scanners used for 

Dynamic Application Security Testing (DAST). 

1.3 Vulnerabilities  

It is crucial to get a basic understanding of application vulnerabilities before exploring different 

application vulnerability scanners. Vulnerability in a web application security is known as an 

unintended weakness or a flaw that can be exploited by an intruder for malicious purposes. 

Application vulnerability has mostly three aspects: the application flaw or susceptibility, 

unauthorized access by hackers to the application defect, and hacker being capable of 

exploiting the weakness [11]. 

In this study, we consider OWASP benchmark 2017 release which implements the most 

critical web application vulnerability test cases. These include different type of injections, 

session management and broken authentication, cross-site scripting, sensitive data exposure, 

broken access control, cross-site request forgery, security misconfiguration, under-protected 

APIs, insufficient attack protection and using components with known vulnerabilities [12]. We 

highlight some of the significant vulnerabilities below:  
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- Cross-Site Scripting (XSS):  

XSS is an injection attack in which a malicious script is injected into an application. This type 

of attacks occurs when a hacker in the form of browser-side script sends a malicious script to 

several users [13]. If successful, the attacker will get the access privileges of the victim who 

has executed the script. Consequently, if the victim has the privilege to get access to sensitive 

data in the application, then this constitutes a severe vulnerability. Unfortunately, 

vulnerabilities that allow this kind of attacks to succeed are said to be widespread. Although 

vulnerability scanners can automatically detect some cross-site scripting issues, different web 

applications’ build their output differently and make use of diverse interpreters such as Flash, 

JavaScript, Silverlight and ActiveX making the automatic detection hard [14]. Cross-Site 

Scripting attack can be performed in three different ways including Reflected or Non-

Persistent XSS-  which occurs when an exploit is supplied to a web application and then 

reflected back to the target browser to be executed.  Including malicious content as a parameter 

in the URL is one of the most common mechanisms of delivering this attack.  

Persistent or Stored XSS- in this attack, on the other hand, the application store the malicious 

data into its logs, database, message forum or other data store and the malicious data is then 

read back and included into the applications active content. DOM Based XSS- while in the 

other type of this attack the injection is performed by the server, in DOM-based XSS the 

injection is performed by the client.  

- SQL Injection:  

This is an attack method that is used to inject an SQL query as an input from the client side 

into the application. If successful, it allows the attacker to disrupt the predefined or standard 

execution of the applications SQL commands. This vulnerability occurs when data is kept in a 

database in an unsafe manner, and often, an organization that falls victim to this attack are 

unaware of the attack[15]. Although it is argued that programmatic interfaces such as ASP.NET 

and J2EE applications are resistant to this kind of attack, in general, SQL Injection attacks have 

high severity impact if successful [16]. SQL Injection issues have become common in database 

driven web applications as they can be easily detected and exploited.  

 

- XPath (XML Path) injection: 

 XPath is a query language that describes how different elements can be located in an XML 

document without access control restrictions, XPath injection attack may give the attacker 
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unauthorized access to XML documents. Applications that insert supplied data in an insecure 

way may succumb to blind XPath injection attack that can be used to get unauthorized access 

to the application data [14].  

 

- File Inclusion:  

This is an attack that exploits the dynamic file inclusion mechanism of a web application. When 

a user input data into the application and passes them into file include commands, this attack 

tricks the application by incorporating a file with malicious code. This, therefore, gives the 

attacker unauthorized access to sensitive data on the file server and web server [17].  

 

- Lightweight Directory Access Protocol (LDAP):  

Directory information services are maintained and accessed using Lightweight Directory 

Access protocol. Single Sign-On (SSO) service is one of the most uses of LDAP which allow 

users access to the application with the assumption that the credentials have been verified and 

accepted by the LDAP provider. LDAP Injection happens when untrusted or malicious data is 

used by hackers to query the LDAP directory without prior authentication[18].  

 

- Command Injection:  

This is an attack executed via a web interface with the objective of running Operating System 

command. Attackers might use for example the command nslookup for the user to supply their 

hostname which may then be used as an argument by placing a command separator from the 

hostname and make it possible to execute a malicious program after the nslookup command. If 

successful, this attack allows the intruder to upload the malicious program into the system and 

even get illegal access to passwords.  

 

- Cross-Site Request Forgery(CSRF): 

Most web applications today require users to submit forms which can perform sensitive 

operations. These forms are also used by application administration to for example grant new 

users access to the application. CSRF attack occurs when an application administrator is tricked 

to click on a malicious link to log into the application and submit the login form without 

additional interaction. The following things are required for CSRF to occur: 

• The target form must be used to perform a sensitive action, i.e., Admin login form  

• The target session must be active 
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• The parameters must be guessable or known, i.e., Username, Password, and Role 

1.4 Web Vulnerability Scanners 

 Web applications often contain vulnerabilities; therefore, vulnerability scanners are used to 

unveil exploitable flaws in the applications for their minimization or elimination. However, 

scanners accuracy and effectiveness are not always perfect, and not all scanners are easy to 

use[19]. Some of the vulnerability scanners include: 

- Burp Suite: created by PortSwigger, Burp suite is a Java-based web security framework used 

by information security professionals and penetration testers to discover vulnerabilities and 

attack vectors in web applications[20]. As an intercepting proxy, this scanner can capture and 

analyze requests and responses from the target application. It allows manual setting of specific 

injection points. The main vulnerabilities targeted by burp suite are: Cross-site Scripting, SQL 

injection, OS Command Injection, and File path traversal[15]. 

- Web Application Attack and Audit Framework(W3af): is a free open source scanner that 

help discover vulnerabilities in web applications. Based on Python, this scanner offers 

command line interface as well as Graphical user interface. W3af architecture is divided into 

two parts which include plugins and core. The core provides features used by plugins to detect 

vulnerabilities in them using a knowledge base to share information. These plugins are 

categorised into Audit, Grep, Discovery, attack Mangle, Brute force and Output[21, 22]. 

- Wapiti: is a command line free open source web application vulnerability scanner that perform 

black-box scans of the target application. It crawls the web pages looking for forms and scripts 

for payloads injection to check whether the script is vulnerable[23]. Wapiti general features 

include an easy way to add a payload to a scanning process as a simple line to a text file, color 

coding to distinguish the severity of detected vulnerabilities and multiformat report generation. 

- Watabo is a semi-automated open source scanner used to audit web applications. Based on 

ruby, this scanner has session management capabilities, smart filter functions and can act as a 

transparent proxy.  

The evaluation of the effectiveness of various web vulnerability scanners has been done 

before. Nevertheless, the review and examination in contrast of OWASP Zed Attack Proxy 

(ZAP) and Arachni based on OWSP Benchmark have never been done before.  
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This study evaluates the effectiveness of these two open- source and cross-platform 

scanners using OWASP benchmark. This is particularly important because these scanners 

appeal to all type of testers and developers no matter their level of knowledge as they are easy 

to use. Hence, enabling better choice of scanners and development of more secure web 

applications. 

1.5 . Research Motivation  

Web applications have become an indispensable part of our lives today for the crucial roles 

that they play in our social, financial and other regular daily activities. Meanwhile, hackers’ 

exploitation of web application vulnerabilities is increasing and the damages caused are 

devastating. The ever-changing and more sophisticated techniques used by hackers to exploit 

web applications is making it difficult to develop an utterly secure web application.   However, 

ensuring the security of information is an essential aspect of any organization that deals with 

sensitive information. Therefore, web application security testing is performed to check for 

vulnerabilities. Nevertheless, manual testing of application vulnerabilities has proven to be 

demanding, costly, time consuming and error-prone. While automated application vulnerability 

scanners have been considered to remediate this situation, there is need to consider the 

efficiency of the chosen application vulnerability scanner.  Some functions can determine a 

scanner's efficiency. These functions include Fuzzing, Web Crawling, Web Scraping and 

should be able to test application vulnerabilities such as Command Injection, Cross-Site 

Scripting, Insecure cookie, Light Weight Access Protocol (LDAP) Injection, Path Traversal, 

SQL Injection, Weak Encryption and Hash Algorithm just to name a few. 

Fuzzing is an automated application testing technique that involves inputting invalid, random 

or unexpected data to an application to detect vulnerabilities [24].   

Crawling is a phase during which the application automatically searches the world wide web 

for indexing of all web pages. Crawling coverage is essential in web application security testing 

because a high crawling coverage means that the scanner can thoroughly audit all resources 

without missing any.  

Web scraping is a process used to extract information from web applications using a piece of 

code called scraper[25]. The code (scraper) sends “GET” requests to the target application then 

parses a document in HTML format on the received results, searches for needed data in the 



8 

 

record and presents it in a specified form. It should be noted, however, that Crawling is the 

main component of web scraping. 

1.6  Benchmarking and Metrics 

It is difficult to understand and compare the weaknesses and strengths of application 

vulnerability scanners if we are not able to measure them. Benchmarking is one of the 

techniques used to do so. Benchmarking is a process of running a few standard tests against a 

set of applications to evaluate their relative performance [26]. Different benchmarks are used 

to assess vulnerability scanners including web Input Vector Extractor Teaser (WIVET), Web 

Application Vulnerability Scanner Evaluation Project (WAVSEP), Acunetix, AltoroMutual 

and OWASP Benchmark to name a few. In this study, OWASP benchmark has been chosen to 

evaluate the effectiveness of the selected application security scanners by comparing their 

accuracy and speed. 

A lot can be learned about a web vulnerability scanner using True positive, False 

Positive, True Negative and False negative metrics. It is, however, essential to understanding 

these metrics before they can help us learn how effective a web vulnerability scanner is.  

True Positive (TP): True positive is the number of cases that are positive and are detected as 

positive.   

False Positive (FP): this is the number of cases that are negative but are detected as positive. 

In other words, this is the number of false alarms. 

True Negative (TN): this is the number of cases that are negative and are detected as negative. 

False Negative (FN): this is the number of cases that are positive but are detected as negative. 

True Positive Rate (TPR):  this is the rate at which a scanner correctly identifies and detects 

real vulnerabilities (positive cases) in an application [27, 28]. It is obtained by taking the 

number of true positives divided by a total number of positive tests. 

 

𝑇𝑃𝑅 = 𝑇𝑃(𝑛𝑢𝑚𝑏𝑒 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)𝑃(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡𝑠) 
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False Positive Rate (FPR): This is the rate at which a scanner reports non-existing conditions 

as existing. It fails to ignore and bypass false alarms [27]. In other words, it is the percentage 

at which a scanner wrongly gives positive decisions when checking some conditions given that 

events were not present. 

𝐹𝑃𝑅 = 𝐹𝑃(𝑛𝑢𝑚𝑏𝑒 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)𝑁(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡𝑠) 

 

True Negative Rate(TNR): is the rate at which a scanner correctly ignores false alarms [27, 

28]. Meaning that a scanner report that an event does not exist given the conditions. 

 𝑇𝑁𝑅 = 𝑇𝑁 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)𝑁 (𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑢𝑣𝑒 𝑡𝑒𝑠𝑡𝑠) 

 

False Negative Rate(FNR): It is the rate at which a scanner fails to identify and detect real 

vulnerabilities in an application [27, 28]. False Negative Rate can also be said to be the 

percentage at which a scanner reports that some conditions do not hold when in reality they do.  

 𝐹𝑁𝑅 = 𝐹𝑁(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)𝑃(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑡𝑒𝑠𝑡𝑠) 

 

Let us illustrate these metrics in an example for better understanding: 

Consider a security vulnerability scanner that is subjected to 100 test cases. Seventy (70) of the 

test cases represent no vulnerabilities (Negative conditions), and thirty (30) represent 

vulnerabilities (Positive conditions). 

- When applied to the negative tests, the scanner detects fifty- five (55) as negative and 

fifteen (15) of the negative tests as positive. 

- As for the positive tests, the scanner detects twenty (20) of them as positive and ten (10) 

as negative 



10 

 

 

Figure 1: Benchmarking Metrics summary 

 

As per the above illustration, the following data can be collected: 

P - Total number of positive cases = 30 

N - Total number of negative cases = 70 

True positive (TP) = 20 - this is the number of correctly reported positive tests.  

True negative (TN) = 55 - this is the number of correctly reported negative tests.  

False Negative (FN) = 10 - is the number of positive tests that are incorrectly reported 

False Positive(FP) =15 - this is the number of positive tests that are incorrectly reported. 𝑻𝒓𝒖𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝑻𝑷𝑹)  =   2030 = 0.7 

𝑭𝒂𝒍𝒔𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝑭𝑷𝑹) = 15 30  = 0.3 

𝑻𝒓𝒖𝒆 𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝑻𝑵𝑹) = 5570 = 0.79 

𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒂𝒕𝒆 (𝑭𝑵𝑹) = 15 70  = 0.21 

Another metric that needs to be understood is “Accuracy.” Accuracy is the ability of a scanner 

to correctly detected both positive and negative cases[28, 29]. Accuracy is calculated as follows: 

 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝑇𝑃 + 𝑇𝑁𝑃 + 𝑁  
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OWASP Benchmark scoring logic is based on the above-discussed metrics (Tue Positive, True 

Negative, False Positive and False Negative). To compute the individual score, OWASP 

Benchmark uses the Youden Index in order to avoid misclassifications by putting equal weights 

on the scanners’ performance on both negative case and positive cases. Youden Index is 

calculated by subtracting one from the total number of test’s specificity and Sensitivity. 

Sensitivity equals True Positive Rate(TPR) and Specificity equal to one minus False Positive 

Rate(FPR) [28, 30].  𝒀𝒐𝒖𝒅𝒆𝒏′𝒔 𝑰𝒏𝒅𝒆𝒙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 − (1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 

 

A higher Youden Index value indicates a good performance of the scanner.  

These metrics have historically been used in the evaluation of technology in the medical and 

military sectors and the calculation of accuracy.  

1.7 Significance and Scope 

First, the selection, which application vulnerability scanners should be analyzed and the 

benchmark to utilize to examine the selected vulnerability scanners was made by reviewing the 

popularity, benchmarking history and how often the programs are updated. Arachni and 

OWASP ZAP are opensource scanners that have become some of the most used application 

security scanners. OWASP Benchmark, on the other hand, has been getting regular updates 

and had enough contributors. However, it has not yet been used to benchmark these scanners 

against each other before. Therefore, these application vulnerability scanners and benchmarks 

were taken into consideration in the evaluation of the effectiveness of vulnerability scanners in 

this thesis.  

The scope of the benchmarking process was set for the evaluation of the effectiveness 

of two vulnerability scanners using OWASP benchmark; hence, use of numerous benchmarks 

and other vulnerability scanners were skipped but not ignored by considering previous studies 

in this area. Firstly, as one of the aims of this study, we acquired a sound understanding of 

OWASP ZAP, Arachni and OWASP Benchmark functionalities and techniques. Then 

proceeded to identify the differences between these scanners by subjecting them to different 

test cases available in OWASP Benchmark that produced the overall performance as per 

OWASP Benchmark metrics. These metrics include True Positive (TP), False Negative (FN), 

True Negative (TN), False Positive (FP) and their corresponding Rates. These metrics are 
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calculated on each vulnerability type, such as SQL-Injection, Cross-Site Scripting, command 

Injection, among others. 

1.8 Thesis outline 

This thesis is structured as follows:  Chapter 1 briefly introduces the background 

information and discusses the basic concepts of web application vulnerabilities and web 

vulnerability scanners and objectives. Chapter 2 gives a brief survey of some previous studies 

that aimed to evaluate the effectiveness of web vulnerability scanners and point out the research 

gap. Chapter 3 describes how the experimental environment suitable for this study was 

developed and explains the significant steps involved. Furthermore, it highlights the properties 

and features of scanners and benchmark chosen for the evaluation. Chapter 4 presents a detailed 

summary of each scanner results in the selected categories, a comparison of the scanners 

benchmark results, followed by a comparison of our OWASP benchmark results with 

WAVSEP benchmark results from a previous study. Finally, Chapter 5 gives conclusions 

drawn from the experiments, possible recommendations, and future research direction. 

CHAPTER 2 LITERATURE SURVEY 

2.1 Web Vulnerability Scanning  

The importance of using vulnerability scanners to unveil flaws in web applications 

before they are deployed has been realized by many organizations today. This has been 

highlighted in Daud, Abu Bakar, and Hassan’s study[31]. Due to the ever-growing cybercrime, 

this study has examined some scanners that can be used to detect vulnerabilities that can be 

easily be missed by manual testing. This study has claimed that although it is essential to use 

web vulnerability scanners for web testing, these scanners perform differently and give 

different results depending on the configuration setting and how often the scanner’s plugins 

are updated. It has added that the efficiency of a scanner can be evaluated by the number of 

vulnerabilities that it can detect and that this depends on the number of plugins that exist in the 

scanners knowledge base. However, the following questions can be raised regarding scanners 

effectiveness:  
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Can a scanner’s effectiveness be determined by only the number of plugins in its knowledge 

base? Are there other ways and methods that can be used to determine the effectiveness of a 

web vulnerability scanner?  

In regards to scanners selection, the study has suggested that for better results, 

commercial canners are preferable because of their regular updates as compared to open source 

canners. However, Shay Chen study has vigorously argued that some open source scanners 

such as Arachni are becoming as effective as commercial scanners[32].  On the other hand, the 

study has suggested that to get better scanning results, perform scanning with different scanners, 

use different policy settings and perform the scanning at a different time to take advantage of 

the scanners updates.  Additionally, it has suggested that organizations need to identify the 

appropriate scanner for them based on cost, scanner’s support, easy to use,  and purpose of the 

scanning. The study has, however, recognized that more research is needed in the evaluation 

of scanning scanners effectiveness for better and easy choice.  

 

Acknowledging difficulties that are faced by companies in the choice of vulnerability 

scanners, a study by Alzahrani, Alquazzaz, Fu, Almashfi and Zhu entitled “ Web Application 

Security Tools Analysis[33]” has explored the ways that can be used to address this issue. This 

study proceeded by first identifying factors that cause insecurity in web applications and some 

reasons why it is hard to eliminate vulnerabilities in web applications as well as the most 

widespread vulnerabilities. For each discussed vulnerability, the study has suggested the best 

vulnerability scanner that can be used to identify its related loopholes.  

For information disclosure vulnerabilities such as XSS and SQL-Injection, the study has 

suggested: 

1. Netcraft as a scanner that can be used to unveil this as this scanner is said to be able to 

gather useful footprinting information related to a target domain. 

2. Cross-Site Scripter(XSSer), an open source framework that can be used to detect 

Cascading Style Sheet related vulnerabilities in a web application. 

3. OWASP Xenotic XSS supports both manual and automated mode for CrossSite 

Scripting and exploitation detection. 

4. Scanners for SQL injection vulnerabilities include: SQL Inject Me, SQLninja, and 

Havij. 
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Although this study has attempted a different way of addressing problem-related to 

vulnerability scanning by suggesting the use of different scanners for different vulnerabilities 

as opposed to using one scanner, it has concluded that determining the effectiveness of a 

scanner for a better choice remains a challenge. 

Therefore, there is a compelling need to address the research gap identified in the examined 

studies[31, 33] above, i.e., finding a method that can determine the effectiveness of web 

vulnerability scanners. Several other studies[19, 25, 32, 34], however, have highlighted the 

importance of benchmarking in determining the effectiveness of web vulnerability scanners. 

2.2 Benchmarking   

 Benchmarking has been used in earlier studies as one of the approaches to evaluating 

the effectiveness of different vulnerability scanners. Such is the case of EL Malaka study 

entitled “Benchmarking Vulnerability Scanners: An Experiment on SCADA Devices and 

Scientific Instruments[19].” Focusing on Burp and Nessus accuracy in finding vulnerabilities 

in Scientific instruments and SCADA devices, the study used WAVSEP to obtain the 

benchmarking results based on vulnerabilities described in table 1 below:   

 

Vulnerabilities Test Cases Description 
Local File Inclusion 

(LFI)  

816 Includes files on a server through a web browser, capable of 

allowing for directory traversal characters to be injected. 

SQL Injection  130 Used to attack data-driven applications by inserting SQL 

statements into an entry field for execution 

Remote File Inclusion 

(RFI) 

108 Enables attacker to run malicious code on the server 

Cross Site Scripting 

(XSS) 

64 Enables attackers to inject client-side scripts into web pages 

Open Redirection 60 A security flaw that enables a web page to fail correctly 

authenticating URL’s 

Unreferenced Files 22 Grant intruder access to inner workings, backdoors, 

administrative interfaces by accessing these files to gain 

knowledge about the infrastructure or credentials 
 

Table 1: Description of Vulnerability categories used to benchmark SCADA devices 

 

The study outlined attributes that are to be satisfied by benchmarks to produce accurate results, 

as follow: 
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- Benchmarks Applicability or relevance – benchmarks suitability of providing 

meaningful performance measure of the target scanners. 

- Metrics – are known as proper measuring standards (benchmark test cases based on 

good metrics) 

- Scalability – relevance of the benchmark to different scanners based on cost and 

performance. 

- Acceptability - produce results that comply with the industry standards  

The study results have shown that Burp outperformed Nessus in its accuracy to find 

vulnerabilities and false-positive detection. It has indicated that Burp found 78% of the 

vulnerabilities while Nessus found around 33.3% of the vulnerabilities. Burp took 12 hours to 

scan 1,182 SCADA IPS and Nessus 8 hours. On the other hand, to examine 184 scientific 

devices, the scanners spent 3 and 6 hours respectively as indicated in the study [29]. 

Considering the time taken by each scanner and the results produced, it may be argued that the 

time that a scanner takes to scan the target system may also be considered as one of the factors 

that may influence the results of a scanner’s effectiveness in vulnerability detection. Although 

the study does not outline the above argument, it indicates that the scanner that performed 

better(Burp) took twice the time of the scanner that underperformed(Nessus).  

The importance of benchmarking web application vulnerability scanners and the use of 

different benchmarks can also be verified in a recent study by AL Saleh M., Alomar N., 

Alshreef A. and Al-Salman A. entitled “Performance-Based Comparative Assessment of Open 

Source Web Vulnerability Scanners” [35]. This study has evaluated different vulnerability 

scanners including Skipfish, Arachni, Wapiti, Iron WASP, Vega and W3af and compared the 

performance results of these scanners based on different benchmarks. The study has confirmed 

that there are variations in results from various benchmarks. It has shown that all the evaluated 

vulnerability scanners have detected 77% SQL test cases of WAVSEP benchmark whereas 

most of the scanners were only able to identify 38% SQL test cases of Altoro-Mutual. In 

consideration of variations in the benchmarks results, the study has recommended the use of 

different benchmarks to evaluate the effectiveness of web vulnerability scanners. While this 

study examined a few scanners and different benchmarks were used to obtain the results, it is 

clear that OWASP ZAP and OWASP Benchmark were not included in the study.  

However, the above arguments do not entail that OWASP ZAP has never been 

evaluated and compared with other scanners. Mariko Y. and Klyuev V.’s study has evaluated 
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OWASP ZAP effectiveness against Skipfish by scanning Damn Vulnerability Web Application 

(DVWA), a web application with known vulnerabilities against the two scanners and used 

WAVSEP benchmark to evaluate the effectiveness of the scanners [25]. The results of the study 

found that OWASP ZAP performed better than skipfish as it has detected around 107 

vulnerabilities as compared to 13 detected by skipfish. Their benchmarking precision results 

are shown in table2 below: 

 OWASP ZAP skipfish 
RXXS 100% 8.2% 

SQLI 100% 9.5% 

LFI 43.2% 1.0% 

RFI 0.0% 0.0% 
 

Table 2: Benchmarking Results of ZAP vs. Skipfish based on WAVSEP 
 

Though the results found have shown that a scanner performance can be determined by 

comparing their scanning results, according to El Malaka study, different benchmarks need to 

be used to measure scanners effectiveness [19]. However, most earlier studies that have 

evaluated the effectiveness of web application vulnerability scanners have used WAVSEP 

benchmark only as the benchmark platform [35].  

It is also the case in Shay Chen’s study in which more than sixty open source and 

commercial web vulnerability scanners are evaluated however using one benchmark. While it 

may be argued that commercial scanners might be considered better than open source scanners, 

Chen’s study results have indicated that open source scanners are becoming very popular and 

their performance is becoming as good as some of the commercial scanners [32]. His comments 

that “Arachni features such as load sharing and Crystal Report (RPT) interface have the 

potential of making it a must-have scanner in Software as a Service(SAAS) multi-product 

environment. Additionally, regardless of the size of the application scanned, number of threads 

and even against an easy target, Arachni appears to produce consistent results” [32]. Chen’s 

claims strongly argue for the usefulness of open source scanners. Nevertheless, his claims are 

based on results gotten from one benchmark, WAVSEP benchmark only [35].  

2.3 Current research summary and challenges  

In this section, significant research efforts in the evaluation of web vulnerability scanners and 

the importance of benchmarking have been highlighted. Researchers have been devoted in 

finding best scanners and justify the importance of benchmarking, in the effort to find the best 
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security solution to the ever-growing web security bridges, however, hacking activities are still 

on the rise.  

Although the examined studies have demonstrated that it is necessary to benchmark 

scanners against each other in term or their scalability, accuracy and their overall performance, 

not all studies included a great variety of scanners and the results were obtained using one 

benchmark, WAVSEP benchmark [35]. Therefore, considerable research challenges and 

research gaps still exist. First, web vulnerability scanners are memory thirsty and require much 

time. Additionally, not all scanners can be accessed for free, and not all benchmarks have 

scripts for testing the available web vulnerability scanners. 

Considering the rapid changes in ways and techniques used by hackers to get illegal 

access to web applications, it is necessary to consider the evaluation of a wider variety of 

commercial and popular open source vulnerability scanners such as OWASP ZAP and Arachni 

and different benchmarks. In the choice of benchmarks, it worth considering how often the 

benchmark and the scanner are updated and the number of contributors.  

Therefore, this study has considered benchmarking two scanners, OWASP ZAP and Arachni 

with the latest version of OWASP Benchmark. This is particularly important because OWASP 

Benchmark is regularly updated and has a large number of contributors [23] and OWASP ZAP 

and Arachni have never been benchmarked against each other using OWASP Benchmark.   
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CHAPTER 3 EXPERIMENTAL ENVIRONMENT, SCANNERS 

AND METHODS 

3.1 Methodology  

An appropriate method was required to evaluate the chosen web vulnerability scanners for this 

study.  The preferred method process is shown in figure 2 below:  

 

The study was divided into different steps: 

A. Benchmark selection: 

 To evaluate and test web application vulnerability scanners, an application that has the needed 

list of vulnerable test cases was needed so that true positive, true negatives, false positives, and 

false negatives. A better decision in this selection required us to examine previous studies with 

the objective of getting an understanding of application benchmarking process as well as the 

existing benchmarks. Moreover, use the knowledge acquired from the examined studies for a 

better selection of scanners to be tested as well as the benchmark to be used for the testing. 

There are several benchmarks such as OWASP Benchmark and Web Application Vulnerability 

Scanner Evaluation Project (WAVSEP). For our experiment, we are using OWASP 

Benchmark.   

 

B. Scanners Selection  

While many previous studies have evaluated both commercial and free open source scanners, 

this study focuses on two free open source scanners including Arachni and OWASP ZAP. 

A testing environment was created consisting of a local area network of two computers with 

one acting as a target and the other as the attacking computer. All useful applications necessary 

Figure 2: Methodology process 
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to perform the benchmarking which include OWASP Benchmark, OWASP ZAP, and Arachni, 

were installed. These programs were explored, and their different functionalities understood. 

 

C. Benchmarking Results 

 The benchmarking results are obtained by first executing the scanners against OWASP 

Benchmark test suite. The scanners results are then used to generate an XML file that is then 

fed back into OWASP benchmark to create scorecards that are then examined to draw 

conclusions on the performance of the scanners. 

D. Analysis of Results   

The benchmarking results of each scanner are discussed and compared to each other. Then, 

both scanners results are compared to results from the previous study by Shay Chen that have 

used WAVSEP benchmark to evaluate the scanners. 

3.2  Scanners Overview  

3.2.1 OWASP Zed Attack Proxy (ZAP) 

OWASP ZAP is an easy to use scanner for finding vulnerabilities in web applications. It is one 

of the OWASP flagship projects that is recommended by OWASP for web applications 

vulnerability testing. ZAP is widely used by people ranging from security professionals, 

developers, and functional testers for automated security tests that can be incorporated into the 

continuous development environment. Additionally, ZAP is a free Open Source cross-platform 

scanner that is becoming a framework for advanced web application vulnerability testing[36]. 

Some of the ZAP features include: 

Intercepting proxy, meaning that the browser can be configured to proxy through ZAP so that 

it can see all the request and responses which can also be changed. 

ZAP provides both Passive and Active scanners. The passive scanner does not perform any 

attacks thus is safe to use on any web application. It runs all the time and examines the requests 

and responses but can still detect certain types of problems on that basis. The Active scanner, 

on the other hand, performs a wide range of attacks therefore formal permission is required for 

this to be used[36]. 
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Spider, this is a ZAP feature that can be used to crawl the target application for missed and 

hidden pages and links.  

Brute Force, Brute force is a trial and error method used to obtain information such as 

passwords and personal identification. By using OWASP DirBuster code, ZAP can find files 

that do not have links to them using the brute force component which is based on the dirbuster 

tool. 

Fuzzing, ZAP can fuzz parameters and includes fuzzing libraries from the jbrofuzz and fuzz 

DB tools. This feature can be used to find more subtle vulnerabilities that the automated 

scanners might not detect. 

Auto-tagging, this feature tags messages in ZAP to show which pages have hidden fields for 

example. This feature can be changed to tag anything of interest to the tester. 

Dynamic SSL Certificate, this is a feature that allows users to generate unique root certificate 

authority that can tell the browser to trust it, therefore allowing ZAP to intercept secure 

hypertext transfer protocol (https) traffic seamlessly[36]. 

Report Generation, ZAP can generate reports on the detected issues including information 

about the problems and suggestions on how to solve them. 

3.2.2 Arachni  

Arachni is a high-performance free Open Source ruby based framework that is aimed to help 

administrators and penetration testers evaluate the security of web applications. Arachni 

supports multiple platforms including Windows, Linux, and Mac OS X and can be instantly 

deployed using its portable packages[37]. Arachni deployment options include: Command Line 

Interface(CLI) for quick scans, Web User Interface(WebUI) for multi-user, multi-scan and 

multi-dispatcher management and distributed system with remote agents[37]. Some of the most 

important features of Arachni include: 

Intelligence, a feature that enables Arachni to adapt to each web application on the fly, 

individual analysis of application resources which allows Arachni to customize requests to the 

used technologies.  

To be able to handle complicated workflows and identify new input points, Arachni 

continuously self-trains by learning from the HTTP request throughout the scanning 

process[37].  
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3.2.3 OWASP Benchmark 

OWASP (Open Web Application Security Project) Benchmark was launched in the 

year 2015 with the aim of evaluating the accuracy, coverage, and speed of web-application 

vulnerability scanners. As an open source program, organizations and researchers may use this 

framework to evaluate web vulnerability scanners using thousands of test cases provided by 

OWASP Benchmark across eleven distinct categories of vulnerabilities. These categories 

include Command Injection (CMDI), Cross Site Scripting (XSS), Insecure Cookie, 

Lightweight Directory Access Protocol (LDAP) Injection, Path Traversal, Structured Query 

Language (SQL) Injection, Trust Boundary Violation, Weak Encryption Algorithm, Weak 

Hash Algorithm, Weak Random Number and XPath Injection. Implemented by Java, OWASP 

Benchmark can be used to evaluate different types of Static Application Security Tools(SAST), 

Dynamic Application Security Tools (DAST) such as Arachni and Zed Attack Proxy (ZAP) 

and Interactive Application Security Tools(IAST). It also uses codes that seem vulnerable but 

are not, for false alarms detection. Although OWASP Benchmark is a free open source program, 

it remains state-of-the-art as it has a significant number of contributors and it is regularly 

updated. Therefore, OWASP Benchmark may be considered one of the benchmark choices for 

measuring the effectiveness of vulnerability scanners[38]. It gives the score of a tested scanner 

based on true positive rate, false positive rate, true negative rate and false negative rate.  This 

is particularly important because time and ability needed to discover true and false metrics of 

a scanner make them incredibly important and a clear understanding of these is required for 

the choice of vulnerability scanner. 

The score produced by OWASP Benchmark is a Youden index which is a standard 

method that summarises test set accuracy[29]. OWASP Benchmark computes individual scores 

for each test case category called Benchmark Accuracy Score ranging between 0 and 100[29].  

The following example gives an overview of how OWASP Benchmark calculates a scanner’s 

accuracy score.  

Assume that a scanner has returned a True Positive Rate (TPR) of 88%    and False Positive 

Rate (FPR) of 15%; This means that, its Sensitivity = TPR (0.88) and its Specificity = 1-FPR 

(0.85). Therefore, the Youden Index is (0.88+0.85) - 1 = 0.73 and OWASP Benchmark Score 

is 73 since it normalizes the results to the range of 0 to 100.  

The visual representation of a scanner performance for both True Positive and False positive 

results is shown in figure 3 below: 
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Figure 3: OWASP Benchmark Results Interpretation Guide 

As it can be seen in figure 3 above, OWASP Benchmark produces positive and negative scores. 

The points above the diagonal line are positive scores, meaning that the True Positive Rate is 

higher than the False Positive Rate, and the points under the diagonal line are negative scores 

indicating that the results of False Positive Rate are higher than True Positive Rate. 

The version of OWASP Benchmark used in this study has 2740 test cases (positive and 

negative cases) that have been created based on these metrics.   

The Vulnerability areas, number of cases and the expected results for each are shown in table 

3 below: 

VULNERABILITY AREA NUMBER OF TEST 
CASES 

 POSITIVE CASES NEGATIVE 
CASES 

Command Injection 251 126 125 

Weak Cryptography 246 130 116 

Weak Hash 236 129 107 

LDAP Injection 59 27 32 

Path Traversal 268 133 135 

Secure Cookie Flag 67 36 31 

SQL Injection 504 272 232 

Trust Boundary Violation 126 83 43 

Weak randomness 493 218 275 

XPATH Injection 35 15 20 

XSS (Cross-Site Scripting) 455 246 209 

Total number of Cases 2740  
 
Table 3: Number of OWASP Benchmark Test Cases per Category 
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These test cases derive from real applications coding pattern but are not to be considered as 

real applications[29]. 

3.3 Experimental Environment   

For the evaluation of the effectiveness of web application vulnerability scanners, there is a need 

for vulnerable test applications. To obtain the true positives, true negatives, false positives and 

false negatives, the application must have the exact tests.  

While there are several benchmarks, Open Web Application Security Project Benchmark 

(OWASP Benchmark) is the chosen evaluation platform for this study. 

As we aim to evaluate the effectiveness of OWASP ZAP and Arachni based on 

OWASP benchmark, our testbed has two significant components. The first component 

comprises of the web Application vulnerability scanners (Arachni and OWASP ZAP) and the 

second part of our testbed contains the benchmark (OWASP Benchmark). 

Figure 4 below demonstrates the lab environment set up for benchmarking tests for ZAP and 

Arachni using OWASP Benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The benchmarking process comprised of three significant steps: 

Step1. Setting the chosen scanner (Arachni and ZAP) to attack OWASP Benchmark. This is 

an essential step as it subjects the scanner to the existing Vulnerability tests within benchmark 
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Figure 4: Lab Environment and Experimental Steps 



24 

 

and generates a report that will be used to measure the scanners’ performance using true 

positive and false positive, true negative and false negative metrics. 

For ZAP, first, we run a spider on the target (OWASP Benchmark) to discover all the resources 

(URLs) that are available in the target before launching the attack, then launch the attack using 

the ‘Active Scan.’  

For Arachni, using the command line interface, we navigate to the bin folder into the Arachni 

then execute run Arachni while specifying the target URL, the checks to be executed and 

specify the report name as follow: https://192.168.77.2:8443/benchmark/ --checks=*,-

code_injection_timing,-os_cmd_injection_timing,-sql_injection_timing--http-request-

queue-size 300--report-save-path=C:\Tools\Arachni\arachni-2.0dev-1.0dev-windows--

86_64\bin\benchmark_Notiming_Report.afr  

 

Step 2. For Arachni, the command line interface generates a dot Afr (Arachni Framework 

Report) report. This report is then used to produce other reports in different formats including 

HTML and XML. For the purpose of this study,  the XML report was the most needed to 

generate benchmark scorecards. On the other hand, if Arachni or ZAP Web interface is used, 

at the end of a successful scan, the scanners automatically generate reports in different formats 

that can be downloaded from provided links. 

Step 3. The XML report is then copied back into results folder in OWASP Benchmark, then 

the command createScoreCards.bat (for Windows) or createscorecards.sh (for Linux) is 

executed to generate benchmark results known as  Scorecards. 

It should be noted that to determine the accuracy of the obtained results during verifications; 

the scan was run multiple time, first as a whole, then, each category. This method has been 

applied more in obtaining the Arachni results.  

 

 

 

 

 

 

https://192.168.77.2:8443/benchmark/%20--checks=*,-code_injection_timing,-os_cmd_injection_timing,-sql_injection_timing--http-request-queue-size%20300--report-save-path=C:/Tools/Arachni/arachni-2.0dev-1.0dev-windows--86_64/bin/benchmark_Notiming_Report.afr
https://192.168.77.2:8443/benchmark/%20--checks=*,-code_injection_timing,-os_cmd_injection_timing,-sql_injection_timing--http-request-queue-size%20300--report-save-path=C:/Tools/Arachni/arachni-2.0dev-1.0dev-windows--86_64/bin/benchmark_Notiming_Report.afr
https://192.168.77.2:8443/benchmark/%20--checks=*,-code_injection_timing,-os_cmd_injection_timing,-sql_injection_timing--http-request-queue-size%20300--report-save-path=C:/Tools/Arachni/arachni-2.0dev-1.0dev-windows--86_64/bin/benchmark_Notiming_Report.afr
https://192.168.77.2:8443/benchmark/%20--checks=*,-code_injection_timing,-os_cmd_injection_timing,-sql_injection_timing--http-request-queue-size%20300--report-save-path=C:/Tools/Arachni/arachni-2.0dev-1.0dev-windows--86_64/bin/benchmark_Notiming_Report.afr
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CHAPTER 4 RESULTS  

Our results are organized into four sections. The first section will examine the results of 

Arachni and OWASP ZAP individually with OWASP Benchmark as the target. The second 

section will compare the OWASP Benchmark results for each scanner in each vulnerability 

category. And the third section will give a summarised comparison our benchmarking results 

for both scanners with previous benchmarking study results based on WAVSEP benchmark.  

1.1  Results of Individual Scanners 

This section discusses each experimental scanner results using OWASP Benchmark as a target. 

A brief description of the findings will be given as well as a suggestion of how the detected 

flaw may be fixed.  

Although OWASP Benchmark has eleven categories of vulnerabilities, four of the 

critical vulnerability categories will be examined. These include Command Injection, LDAP 

Injection, SQL Injection, and XSS. These categories were chosen in consideration of their 

criticality in addition to how favorable they are to both scanners.   

Arachni results will be examined first followed by OWASP ZAP results. 

1.1.1 Arachni Results 

To achieve successful scan, for each category we pointed Arachni to attack the OWASP 

benchmark corresponding URLs and specifying the security checks that are supposed to be 

done while instructing Arachni to overlook the checks that are not relevant to that specific 

target category. This decision was reached at based on our realization that OWASP benchmark 

does not have test cases that correspond to some Arachni checks. Our decision was approved 

by Dave Wrenchers, the project leader of OWASP benchmark who confirmed that some timing 

checks should be overlooked as OWASP benchmark does not provide their corresponding test 

cases. The overlooked checks include Blind SQL injection Timing and Code Injection Timing.  

After a successful scan, Arachni categorized its returned results by their severity with 

the red color standing for ‘High Severity,’ the bright orange color standing for ‘Medium 

Severity,’ the faded orange standing for ‘Low Severity’ and Blue standing for ‘Informational.’ 

The same color code was used to highlight the severity rate of vulnerable HTML elements 
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detected in the scanning of each category. Green color has been used to report HTML elements 

without any significant or reportable issues.  

The average time taken by Arachni to scan most of the categories was 10 hours and 30 minutes, 

but Command Injection category took exceptionally longer time than other categories.    

 

a. Command Injection(cmdi)   

To test for Command Injection vulnerabilities, we pointed Arachni to attack the OWASP 

Benchmark Command Injection URLs while instructing it to overlook other URLs. It took 

Arachni 3 days, 5hours and 40 minutes to examine this category. Arachni scanned through all 

the benchmark test cases in this category, discovered 483 command injection-related URLs 

with 39 of this returned as positive cases of Command Injection attack as shown in figure 5 

below.   

 

 

Figure 5: Arachni Command Injection URLs Discovery summary  

 

The discovered positive cases have been classified as 100% high severity command injection 

attack cases. The charts below show Arachni classification of the detected cases as per severity 

level and HTML elements with issues by type. 

 

Figure 6: Arachni results of OWASP Benchmark Command Injection Tests Category: on the left - the severity of 
detected cases and the right - HTML elements with issues by type 

As it can be seen in the charts, all positive cases detected were of high severity. The HTML 

header element representing 35.9 % of all elements in this category had the medium severity 

issues. On the other hand, Form element which represents 64.1% of all detected HTML 
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elements were reported as having informational issues. However, although the results show a 

high rate of high severity issues (100%), it is important to note that this represents 39 

successfully detected cases out of 126 Command Injection positive test cases. Meaning that 

only 31% command injection cases were detected with 100% of them being positive and 

classified as high severity cases.  

To achieve the above results, Arachni used a ping command to map the network in the 

attempt to get full control of the server. Figure7 below show how Arachni performed this attack 

by injecting control operators such as (&, &&, |, ||, \, #) into the supplied command.  

 

Figure 7: Arachni use of ping command to attack bench test case number 02429 

As shown in figure 7 above,  it is recommended that all control operators such as (&, &&, |, ||, 

$, \, #) should be explicitly denied and never accepted as valid input by the server. However, 

Arachni successfully supplied these operators to a ping command and got a positive server 

response, therefore, returning this case as a positive command injection case.  

 

b. Lightweight Directory Access Protocol (LDAP) Injection 

To test for LDAP Vulnerabilities, we applied a filter for Arachni to only scan the OWSP 

Benchmark LDAP test URLs and overlook the rest. The observation of the scanning process 

revealed that positive cases in this category detected between Cross-Site Request Forgery, 

LDAP, Backup file and Strict Transport Security header. Their severity, however, moved from 

high to low between LDAP injection and Backup file and moved further down from Medium 

to informational between Strict transport Security header and Insecure cookie.  

To detect LDAP Injection issues, Arachni supplied a series of characters such as #^ ($! 

@$) (())) ****** to perform the attack. This is because it is recommended that untrusted 

character or data should not be used to form an LDAP query. Therefore, correct validation 

should be applied to the supplied data to ensure that only required actions are to be performed 

by the supplied character values. The figure 8 and nine below is an example of how Arachni 

has successfully performed the attack to detect LDAP Injection issues. 
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Figure 8: Arachni LDAP Injection Method and Proof 

 

Figure 9: Arachni Successful LDAP Injection in OWASP Benchmark Test case number 02472 

Injected seed in the above figure 6 represent the characters or seed used by Arachni to uncover 

the vulnerable vector during the audit; the signature is the signature used to detect the issue 

and proof is the string used to verify the existence of the issue. Figure 7, on the other hand, 

shows how the injected seed in figure 6 was successfully applied in the OWASP benchmark 

test case number 2472. The above-shown test method was then applied to all the relevant 

OWASP Benchmark Test cases.  The returned results were found under two different 

categories. Including Cross-Site Request Forgery - which is an attack that forces users to 

perform unsolicited actions on a web application in which they are currently authenticated with 

the intent to change the state of the HTTP request and LDAP injection – which is an attack 

that targets web applications that construct LDAP statements based on user inputs.  

The figure 10 below represents the overall results for LDAP Injection cases by severity and the 

vulnerability category: 

 

 

Figure 10: Arachni LDAP number of test cases detected, severity and category 
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As it can be seen in figure 10 above, a total number of 596 cases were detected in this category 

among which 257 cases were reported as having issues or positive cases. Out of the  236 high 

severity cases, 196 were cross-site request forgery, and 40 were LDAP Injection. Medium 

severity, low severity and information cases were 2,1 and 28 categorized insecure cookies, 

backup file and missing strict transport header respectively. Although it is noticeable that there 

are fewer LDAP issues detected under this category as compared to CSRF, it should be noted 

that these issues have been rated higher than most of the other issues in other examined 

vulnerability categories as we will discuss in later parts in this document.  

Figure 11 below give a summary rate of the detected cases per their severity levels and the type 

of elements identified as having issues. 

 

Figure 11: Arachni results of OWASP Benchmark LDAP Injection Tests Category: On the left- severity rate and on 
the right - infected elements  

 

 In figure 11 above, 88.4% of all cases were reported as high severity among which 10.9% 

were server related issues. 0.7% of all reported issues had medium severity level, 0.4 % low 

severity and 10.5% reported as informational.  Most of the detected issues were forms related 

based on either known or predictable parameters and known error messages. Therefore, these 

test cases were reported as vulnerable to CSRF and LDAP Injection. 

 

c. SQL Injection 

Just like in previous tests, SQL Injection test was accomplished by pointing Arachni to 

OWASP benchmark corresponding URLs while preventing it from scanning other non-SQL 

Injection-related URLs. As discussed in chapter one, an SQL injection attack occurs when a 

value from the client request is used within an SQL query without prior verification. This could 

allow cyber-criminals to execute random SQL code and potentially get unauthorized access to 
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sensitive data or use additional functionality available on the database server to control 

different server components.  

In this category, Arachni was able to detect the issues by deceiving the server to respond to its 

requests with database related errors as shown in figure 12 below. 

 

  

  

Figure 12: Arachni SQL Injection Method  

 

As a result of the above attacking method, Arachni was able to successfully detect some tests 

cases under three different SQL Injection categories including SQL Injection, Blind NoSQL 

Injection, and Blind SQL Injection. SQL Injection attack is consists of inserting an SQL query 

through the input data from the client or user side into the application. Blind SQL injection, on 

the other hand, is an attack designed to send true and false queries to the application database 

and determine the answer based on the receive database responses. The difference however of 

Blind SQL injection and Blind NoSQL injection is that the NoSQL does not involve any 

Structured Query Language.  

Figure 13 below shows the returned number of URLs, issues, and their respective categories  

 

 

Figure 13: Arachni SQL Injection, number of Test cases detected, their severity and category 

 

In figure 13 above, it can be seen that Arachni was able to discover 952 URLs while examining 
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this category and successfully detected 170 positive cases among which 141 were classified as 

high severity. The highest number of these cases were SQL injection category with 136 cases, 

followed by Blind NoSQL injection with 4 cases and Blind SQL injection with just 1 case. 

Other positive reported cases include Missing Strict Transport Security header and Missing X-

Frame Option header. The categorization of the cases severity rate as well as the HTML 

elements with issues was also done.  

The charts below show the detected SQL Injection cases by severity on the left and HTML 

infected elements on the right: 

 

  

Figure 14: Arachni results of OWASP Benchmark SQL Injection Tests Category: on the left – severity rates and on 
the right – affected elements 

In figure 14 above, 84.1% of cases have been classified as high severity with 99% of it reported 

as SQL injection issues. Medium, low and informational issues were 1.2%, 0.6%, and 14.8% 

respectively.  81.8% of all issues were detected in the HTML form elements, 1.2% from HTML 

links and 17.1% were application Server related issues.  

 

d. Cross Site Scripting(XSS) 

Many modern web applications use client-side scripts that can perform simple functions as well 

as complex ones that can interact with the operating system. When an application tolerates the 

use of client-side injected scripts without validation, then there is the possibility of an attacker 

to deceive the user to execute a custom script that can successfully return some results from 

the user’s computer. Arachni has used the same method to discover Cross Site Scripting issues 

in the OWASP Benchmark test cases. It has therefore reported that it is possible to trick the 

browser to execute tailored JavaScript code.  Figure 15 below shows how Arachni has 

attempted to execute this attack on OWASP Benchmark. 
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Figure 15: Arachni XSS attack on OWASP Benchmark 

 

The execution of the above attack produced the results seen in figure 16 below. 

 

 

Figure 16: Arachni XSS tests detection and grouping by severity and category 

Figure 16 shows that the number of issues or positive XSS cases were 350 out of a total of 378 

high severity cases detected in this category. The high severity cases were subdivided into two 

distinct categories comprising 213 Cross Site Scripting and 137 Cross Site Scripting in Script 

contest. This is particularly important because XSS attack can be executed in different ways 

including forcing the page to execute a custom JavaScript code or inserting a tailored script 

content directly into an HTML element content. 

The charts in figure 17 below show the rating of the detected cases by their severity and HTML 

elements affected by Cross-Site Scripting issues: 
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Figure 17: Arachni results of OWASP Benchmark Cross Site Scripting Tests Category: On the left Severity rate and 
the right – affected HTML elements 

 

Figure 17 above depicts Arachni detection rate in Cross Site Scripting Category. 96.2% of the 

detected positive cases were classified as high severity, 0.3% medium severity and 0.3% low 

severity and 6.9% informational. As it can be seen in the left chart in figure 17, it is clear that 

a higher rate of positive cases was detected in this category as compared to previously discussed 

categories. The interesting part is that all the reported 92.6% high severity cases were Cross-

Site Scripting Cases as it could be seen in figure 16.  Three-quarter of the informational issues 

were HTML form related, and 14.8% of medium severity issues were from HTML links as 

shown in the right chart in figure17 above. 

1.1.2 OWASP Zed Attack Proxy (ZAP) Results 

This section discusses the results from OWASP ZAP on OWASP Benchmark. While we will 

attempt to give a detailed discussion of ZAP scan report, this discussion will not be as detailed 

as Arachni because the produced ZAP report has provided less detailed data as compared to 

Arachni which produced more detailed data including some graphical representations.  

Nevertheless, four critical vulnerability categories will be discussed including LDAP Injection, 

SQL Injection, XSS and Insecure Cookies. For a better comparison, however, Command 

Injection results will also be examined. On the other hand, while with Arachni it is possible to 

scan vulnerability categories separately, ZAP  does not provide this flexibility. Therefore, with 

ZAP, one scan has covered all categories. To ensure that the obtained results are accurate, we 

conducted multiple scans with different operating systems including Kali Linux, Ubuntu, and 

Windows. Then, the best results from these scans have therefore been considered for discussion 

in this study.  
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Similar to Arachni, ZAP uses colored flags, red, orange, yellow and blue to categorize the 

severity of detected cases on the identified vulnerability categories. The Red flag signifies high 

severity issues; orange signifies medium severity cases, yellow signifies low severity cases, 

and blue signifies informational cases. Before going through the details of the results, let us 

have a general look at ZAP returned results in figure 18 below. 

 

Figure 18: OWASP ZAP summary scan results of OWASP Benchmark 
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A close examination of the results in figure 18 shows that ZAP detected 20 high severity cases, 

six medium severity cases, 12 low severity cases and 11 informational cases. The high severity 

cases include SQL Injection, Cross Site Scripting, Anti CSRF Token Scanner and LDAP 

injection. Anti CSRF Token Scanner had a most significant number of high severity cases 

followed by SQL Injection, LDAP Injection Cross Site Scripting and Path Traversal.  Cookie 

related cases were reported as medium and low severity cases (under orange and yellow flags). 

However, the number of severity alerts should not be confused with the number of issues 

detected per category as it can be seen in figure 18 above which shows that a category can have 

multiple issues, but all these issues will be put under one flag. 

Table 4 below gives a summary of  the number of detected issues detected under each category: 

 

Category Number of Alerts per 
Category 

Anti CSRF Token 2524 

SQL Injection 597 

LDAP Injection 203 

Cross Site Scripting  186 

Insecure Cookies 1958 
 

Table 4: Number of OWASP Benchmark Test Cases detected by ZAP in the listed categories 

 

The categorization of all the detected cases as per risk level and the number of alert per level 

is shown in table 5 below: 

 

Risk Level Number of Alerts 
High 20 

Medium 6 

Low  12 

Informational 11 
 

Table 5: Number Alerts per Severity Level 

The data shown in the above table 5 indicates that more alerts were classified as high-risk cases 

as compared to medium and low. Nevertheless, despite SQL Injection having a less number of 

detected cases as compare to Anti CSRF Token and Insecure Cookies as shown in table 4 above, 

more than a quarter (7/20) of the high-risk level cases are SQL Injections cases as it can be 

seen in figure 18. 

Figure 19 below shows the severity percentage rate of ZAP scan results:  
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Figure 19: Percentage rate of the scan results as per their severity 

 

It can be seen that high severity cases were 41% of all detected cases followed by low severity 

case with 25 %, informational cases were 22% and medium severity cases 12%.  

 

a. Lightweight Directory Access Protocol (LDAP) Injection 

LDAP Injection attack usually occurs in situations where an application has a form that requires 

the user to enter some data such as username. Moreover, the underlying code behind that 

executes the request will take the search query information and produce an LDAP query that 

will be acceptable for searching the LDAP database.   

OWASP ZAP has used a similar method to achieve a successful LDAP Injection on OWASP 

benchmark related test cases.  ZAP has used logically equivalent expressions to the target URL 

or test case to achieve the attack. 

For benchmark test 0044 for example, ZAP used the following parameter to bypass any 

possible authentication controls and give the attacker the ability to view and modify arbitrary 

data in the LDAP directory:  

Parameter = [BenchmarkTest00044] on [POST] https://192.168.77.2:8443/benchmark/ldapi-

00/BenchmarkTest00044] 

Equivalent expression: [Ms Bar) (objectClass=*], and FALSE expression [61k98w]. 

Figure 20 below shows how ZAP executed  LDAP Injection on the OWASP Benchmark test 

Cases:   

https://192.168.77.2:8443/benchmark/ldapi-00/BenchmarkTest00044
https://192.168.77.2:8443/benchmark/ldapi-00/BenchmarkTest00044
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Figure 20: ZAP LDAP Injection attack 

 

As it can be seen in figure 20 above, the use of similar expressions by ZAP as its input request 

in the place of the target URL for LDAP database searches returned a positive response. 

Therefore, this indicates that LDAP Injection was possible. This technique was applied to all 

the other test cases and reported that 203 positive LDAP Injection test cases as shown in 

figure21 below: 

 

 

Figure 21: Number of positive LDAP Injection Cases 
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b. Command Injection (CMDI) 

In this category, OWASP ZAP attempted to perform unauthorized execution of operating 

system commands to check whether this attack is possible in the discovered cases. Figure 21 

below shows how ZAP attempted to execute this attack on OWASP Benchmark test number 

2156. 

 

 

Figure 22: ZAP Command Injection attack on OWASP benchmark Test 2156 

 

As it can be seen in figure 22 above, command injection attack has been flagged red signifying 

high severity. The examination of the highlighted details indicates that this attack can only be 

possible when an application accepts some untrusted input in the building of the operating 

system commands in an insecure manner or improper external program calling. Therefore, if 

possible, the use of library calls rather than external processes in the creation of the desired 

functionality is recommended. Avoidance of this attack may be feasible by keeping data that 

may be used to generate an executable command out of external control as much as possible.  

In a web application, for example, this may require storing the command locally in the session’s 

state instead of sending it in a hidden file to the user or client.  

Interestingly, in this category, ZAP was only able to discover one high severity case as shown 

in figure 23 below: 
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Figure 23: Number of Command Injection Cases detected 

c. SQL Injection 

In this category, ZAP discovered that SQL Injection is possible under the detected test cases 

using a payload. A Payload is a malicious piece of code that is run in the attacker’s box, which 

is then translated by the application exploit and generate a GET and POST requests 

combinations to be sent to the remote Web server[39].  

Figure 24 below demonstrates how ZAP successfully used  boolean conditions in a SQL select 

statement to achieve an SQL injection attack in OWASP Benchmark test case number 2187 

 

 

Figure 24: ZAP successful SQL injection on OWASP Benchmark test number 2187 

 

It is evident in figure 24 above, ZAP used the following Boolean conditions: [(select (case 

when (9424=9424) then 9424 else 9424*(select 9424 from information_schema.character_sets) 

end))] and [(select (case when (1556=1024) then 1556 else 1556*(select 1556 from 

information_schema.character_sets) end))]  to successfully manipulate the page results. By 

doing this, ZAP, therefore, restricted the data originally returned by manipulating the parameter. 
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The modified values were stripped from the returned HTML output for comparison purposes. 

Using this method, ZAP was able to detect 597 positive SQL Injection OWASP Benchmark 

test cases. The above results show that in web application security the client-side input is not 

always to be trusted even if client-side validation is in place. Therefore, server-side validation 

of all data is necessary to avoid such attacks.  

 

d. Cross Site Scripting(XSS) 

In this category, ZAP discovered over 186 OWASP Benchmark URLs that were vulnerable to 

Cross Site Scripting attacks. Figure 25 below shows how ZAP executed the attack to discover 

the vulnerable test cases. 

 

 

Figure 25: ZAP Cross Site Scripting attack on OWASP Benchmark Test Case Number 0013 

 

ZAP applied an attack technique that involves echoing a code into the browser instance as 

shown in the highlights in figure 25 above. Similarly, in real life, when an attacker succeeds to 

get the target browser to execute his or her code, the code will run within the security context 

of the hosting website, therefore making the attack possible.  

To avoid this type of attack,  it is essential to get an understanding of the context in 

which the application’s data will be used, and the expected encoding. This is especially vital 

when data is transmitted between different devices, or when outputs that contain multiple 
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encoding is generated simultaneously such as multi-part mail messages or web pages. Figure 

26 below shows the number of positive XSS cases detected: 

 

 

Figure 26: The number of Detected Cross Site Scripting Cases 

 

e. Insecure Cookies 

In this category, ZAP has identified that in the discovered URLs cookies have been set without 

a secure flag, meaning that these cookies can be accessed through unencrypted connections. 

When a cookie is set without an HTTPOnly flag, JavaScript can be used to access it. Meaning 

that a malicious script can be run on the page and the cookie can be accessed and can be 

transmitted to another site which can result in session hijacking if this is a session cookie.  

Figure 27 below shows how ZAP discovered some insecure cookies in some the discovered 

test cases under this category. 

 

 

Figure 27: ZAP detection of insecure cookies in OWASP Benchmark test cases 
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As shown in figure 27, ZAP successfully discovered insecure cookie stored in the variable 

some cookie set without HTTP Only flag. Therefore, the page is susceptible to malicious 

exploitation. Therefore, to avoid this kind of vulnerability, all cookie should be set with HTTP 

only flag. The number of detected insecure cookies by ZAP in the OWASP Benchmark test 

cases are listed in figure 28 below: 

 

 

Figure 28: Number of positive insecure cookies test cases detected by ZAP 

4.2 Comparison of Arachni and ZAP  

The results of the scanners are executed against OWASP Benchmark.  Table 6 below shows 

the benchmark detection results. For each web vulnerability scanner and vulnerability types, 

some metrics including TP, FN, TN, FP, TPR, and FNR were calculated. The table 6 below 

shows a summary of the detected results. The values in bold type with a light green background 

indicate the detection rate of each scanner in each category, the others are the values of the TP, 

FN, TN, and FP found. 

 

 

Table 6: Arachni and ZAP Benchmark detection results in four selected categories 

 

On each category in table 6 above, OWASP Benchmark applied the previously discussed 

metrics to obtain the most appropriate measures to score each scanner to promote a reasonable 

interpretation of results and draw sound conclusions. OWASP Benchmark, therefore, produces 

scorecards that highlight the overall performance of each scanner in every category. OWASP 

Benchmark score is the normalized distance from the random guess line which the difference 

between a scanner’s TPR and FPR (Score = TPR-FPR). 
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4.2.1 Command Injection 

 Figure 29 below shows Arachni and ZAP scores in the Command Injection category. 

 

 

Figure 29: OWASP Benchmark Comparison Scores for Command Injection 

 

As it can be seen in figure 29 above, OWASP ZAP outperformed Arachni with 33% score. 

Nonetheless, the previous version of ZAP(2.5) performed better in this category with 35% as 

compared to the other versions. The performance of the latest version of ZAP in this category 

has not been as expected as it can be seen in figure 29 above. Consequently, we have taken the 

initiative to submit these results to both  Dave Wrenchers the  Project Leader of OWASP 

Benchmark as well as  Simon Bennetts Project Leader of OWASP ZAP for their insight on 

what might be the cause of ZAP underperforming in this category.  
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4.2.2 LDAP Injection 

The figure 30 below shows  OWASP Benchmark LDAP Injection scores for both scanners  

 

 

Figure 30: OWASP Benchmark LDAP Injection Comparison 

 

It is evident that as shown in figure 20 above that Arachni has the highest score of 74% as 

compared to 30 % score of ZAP. However, it is noticeable that there has been a significant 

improvement in ZAP performance in this category considering 0% score of its previous 

versions.   

4.2.3 SQL Injection  

The next figure highlights the OWASP Benchmark scores in the SQL Injection vulnerability 

category for ZAP and Arachni: 
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Figure 31: OWASP Benchmark Comparison Scores of Arachni and ZAP for SQL Injection 

  

As it can be seen in the above figure 31, ZAP has performed better than Arachni in this category 

with 55% and 48% detection score respectively.  

4.2.4 Cross Site Scripting (XSS) 

The performance results of the scanners In Cross Site Scripting category is highlighted in the 

figure below: 

 

Figure 32: OWASP Benchmark Comparison Scores of Arachni and ZAP for Cross-Site Scripting 
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It is evident in figure 32 above that ZAP has performed better than Arachni in Cross-Site 

Scripting category with a detection accuracy score of 76% as compared to 64% detection 

accuracy score of Arachni. Once more, there has been a significant improvement in ZAP 

performance in this category as compared to the results of the previous Version of ZAP with 

the score of 29% detection accuracy rate for both 2.5 and 2.6. 

 

The analysis of the obtained experimental results above has allowed us to get an 

overview of the performances of Arachni and ZAP related to Command Injection, LDAP 

Injection, SQL injection and Cross-Site Scripting.  

Figure 33 below give a close comparison of the two scanners performance in the categories 

mentioned above: 

 

Figure 33:  Side by side Comparison of OWASP Benchmark Scores for Arachni and ZAP in each category 

 

As it can be seen in the above chart, scanners performed differently in each type of 

vulnerability. It has been deduced that Arachni had the highest score in LDAP injection of 

74%. OWASP ZAP, on the other hand, outperformed Arachni in Command Injection, SQL 

Injection and XSS categories with the score of 33%, 55%, and 76% respectively. Although 

each scanner outperformed the other some categories, it is worth considering the percentage 

difference in the scores for a better evaluation of the performance of the scanners in each of 

the categories. To that end, it can be seen that ZAP performance was 2%,7%, and 12% higher 

than Arachni in its winning categories while Arachni scored 44% higher than ZAP in its 

winning category. This shows that although there is a need for both scanners to uplift their 

performance in their losing categories, it is evident that more work is needed in raising ZAP 
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performance in its underperforming category as compared to Arachni. Table 7 below shows a 

summary of the differences in performance of the scanners in each category 

 

 

CATEGORY Scanners Performance Difference 

 ARACHNI OWASP ZAP 

Command Injection - 2% 

LDAP Injection 44% - 

SQL Injection - 7% 

XSS - 12% 

Total 44% 21% 

Table 7: Arachni and ZAP perforce differences 

 

The above table shows that 44% work needs to be done in ZAP as compared to 21% in Arachni 

meaning that 22% more work is needed for ZAP to perform at the same level as Arachni in its 

losing category. 

4.3 Comparison with WAVSEP benchmark Results 

As mentioned in earlier chapters, the evaluation of Arachni and ZAP have been done before. 

However, WAVSEP benchmark has been used as the benchmark in these studies. In contrast, 

this study has evaluated these scanners based on OWASP benchmark. To highlight the 

importance of using a variety of Benchmarks to get an overall conclusion in the evaluation of 

the effectiveness of web application vulnerability scanners, we have compared our  OWASP 

Benchmark results of Arachni and ZAP to a previous study that have evaluated these canners 

based on WAVSEP benchmark. We have therefore chosen the latest study by Shay Chen for 

this purpose. Our choice of Shay Chen’s study was based on the accuracy of his results, and 

his reputation as a widely respected Information Security Researcher and author of WAVSEP 

benchmark. Additionally, his benchmarking results have never been contrasted with results 

based on other benchmarks.  

Although our study has examined four critical categories, only three categories including SQLI, 

XSS, and CMDI will be considered for comparison purpose. This is because LDAP category 

has not been examined in Chen’s study.  

Table 8 below gives an overview of Chen’s results and our results. 
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Table 8: Comparison Summary of Our Results to Previous study results by Shay Chen 

 A close examination of the results in Table 8 above demonstrates that there is some similarity 

in the performance pattern of the scanners in some categories such as XSS. However, there is 

a significant variation in detection rate and dissimilarities of scanners performance in some 

other categories such as SQLI. This variation is verifiable by examining Chen’s results of XSS 

category which shows that ZAP had a 100% accuracy score and Arachni 91% whereas our 

results indicate that ZAP scored 76% and Arachni 64% in the same category. In SQLI on the 

other hand, our results indicate that ZAP has performed better than Arachni 58% and 50% 

respectively whereas Chen’s results show the opposite (ZAP 96% and Arachni 100%). This 

difference in results, however, can be explained by the fact that our results were obtained from 

the latest version of ZAP (2.7) while Chen’s study examined the previous version of ZAP (2.6). 

Moreover, our results have demonstrated that there has been much improvement in the 

performance of the current version of ZAP as compared to its predecessor in some categories. 

Nevertheless, there is still much difference in the score numbers in our results and those of 

Chen which is 100% for Arachni, 96 % for ZAP and 58% for ZAP and 50% for Arachni in our 

results.  

What is interesting, however, is that the differences in the scanners performance scores in our 

results and Chen’s results are both averaging to 3.5%. In other categories, ZAP outperformed 

Arachni by 9 % and 12% in XSS in Chen’s results and our results respectively. Additionally, 

in SQLI there is 8% and 4 % performance difference in our results and Chen’s results 

respectively. The graphical representation of these comparison results for each category is 

shown in the subsections below. 
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4.3.1 SQL Injection Comparison 

 

 

Figure 34: SQLI comparison results 

As it can be seen in figure 30 above, there is a contrast between OWASP benchmark and 

WAVSEP benchmark results. Arachni outperformed ZAP by 4% in WAVSEP benchmark 

results whereas OWASP benchmark results indicate that ZAP outperformed Arachni by 8% in 

this category. Although it can be seen that Arachni has outperformed ZAP in the existing 

WAVSEP benchmark results with a score of 100% and 96% respectively, we consider OWASP 

benchmark results. This is because OWASP benchmark examined the latest version of ZAP 

whereas existing WAVSEP benchmark study examined an older version of ZAP. Furthermore, 

our discussion of OWASP benchmark results in chapter 4 has confirmed that there has been a 

significant improvement in the examined version of ZAP as compared to previous versions.    
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4.3.2 Cross Site Scripting (XSS) Comparison 

 

 

Figure 35: XSS Comparison Results 

 

Figure 35 above clearly show that in this category ZAP performed better than Arachni both in 

Chen’s results and our results. However, there is a difference in the detection rates in both 

results of 91% and 64% for Arachni in Chen result and our results respectively and 100% and 

76% for ZAP. Once again this might be influenced by the use of different benchmarks.  

 

4.3.3 Command Injection (CMDI) 
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Figure 36: XSS Comparison Results 

As it can be seen in this category, Arachni outperformed ZAP in WAVSEP benchmark results 

with 100% and 93% detection rates respectively, whereas the opposite occurred in OWASP 

benchmark results with ZAP scoring 33% and Arachni 31%. Although the scanners 

performance differences are not significant for both WAVSEP and OWASP benchmarks (with 

a difference of 7% and 2% respectively), WAVSEP benchmark detection rate for both scanners 

is three times higher than OWASP benchmark with an average of 96.5%  and 32 % respectively.  

CHAPTER 5 CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this thesis, the evaluation of the effectiveness of OWASP ZAP and Arachni based on 

OWASP benchmark was conducted. The variations in these scanners performance in different 

vulnerability categories were experimentally demonstrated.  While previous studies have 

mainly paid attention to WAVSEP benchmark to evaluate scanners effectiveness, OWASP 

benchmark has never been used to evaluate Arachni and the latest version(V.2.7) of ZAP before. 

Thus, in this thesis, we have investigated the importance of using different benchmarks to 

evaluate the effectiveness of web application vulnerability scanners by comparing our OWASP 

benchmark results with existing WAVSEP benchmark results. This comparison is the first such 

study about these two benchmarks in literature. Our comparison results between these two 

benchmarks strongly support our claim that to obtain the best understanding of scanner 

effectiveness, multiple benchmarks should be used to evaluate scanners.  

Besides concluding that no scanners suit all and multiple benchmarks should be used together 

in general, we also make recommendations on the following: 

• Which scanner is better in a particular vulnerability category 

• Which benchmark is stronger in particular vulnerability category  

• Places to improve for vulnerability scanners and for benchmarks 

 

1. Better Scanner for a Vulnerability Category 

The results obtained in this study has revealed that scanners perform differently in different 

categories. Therefore, no scanner can be considered an all-rounder in scanning web 

vulnerabilities. Moreover, it was found that performances of scanners vary depending on the 
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benchmark used for the evaluation. However, considering scanners performance in different 

categories, we have concluded that ZAP has performed better than Arachni in SQLI, XSS and 

CMDI categories.  

Additionally,  our results confirmed that there had been much improvement in this version of 

ZAP compared with its previous versions in the categories of SQLI, LDAP, and XSS as 

highlighted in Chapter 4. Arachni, on the other hand, performed much better in LDAP category 

with a score of  74%, which is about 2.5 times of the  ZAP score of 30%. However, this 

conclusion is only based on OWASP benchmark results because the existing WAVSEP 

benchmark results did not include this category.   

 

2. Stronger Benchmarks for a Vulnerability Category 

We have mentioned that the performance evaluation results of each scanner vary depending on 

the benchmarks used. These variations are due to the number of test cases in each vulnerability 

category as well as the complexity and difficulty of test cases.  

Specifically, our results of benchmarks comparison revealed that for both scanners and all the 

three vulnerability categories compared, the scores under WAVSEP benchmark are much 

higher than those under OWASP benchmark. Using the criterion that if benchmark A contains 

more cases that fail a scanner than benchmark B, we say benchmark A is stronger than 

benchmark B,  we can conclude that OWASP benchmark is stronger than WAVSEP 

benchmark in all the three vulnerability categories evaluated in this thesis. 

Although it is shown that OWASP benchmark is stronger than WAVSEP benchmark under the 

above criterion, there are still benefits in evaluating vulnerability scanners using both 

benchmarks simultaneously. These benefits include: 

• Encouraging continuous improvement of vulnerability scanners effectiveness as a 

countermeasure to hacking activities that are becoming more sophisticated. As striving 

towards secure web application is a never-ending process that needs effective 

vulnerability scanners, benchmarking is one of the techniques that will encourage this 

by unveiling the scanner effectiveness in various ways.  

• Additionally, Effective benchmarking will give web application testers a clear choice 

of what scanner can be used to find vulnerabilities in a particular category effectively. 
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3. Places to improve for vulnerability scanners and benchmarks 

Based on the evaluation results of this thesis, we noticed the following places for scanners and 

benchmarks to improve. 

For scanners, the places include improving crawling mechanism to guarantee the 

discovery of all URLs of the target applications without any omission and strengthening the 

scanners vulnerability databases to increase the coverage of vulnerabilities. 

For benchmarks, it is necessary to improve the design of tests cases for evaluating the 

scanners with more complicated vulnerabilities in different categories. 

5.2 Future work  

Further studies can be considered from this work.  Firstly, the effectiveness of web 

vulnerability scanners will be evaluated in all the possible vulnerability categories based on 

WAVSEP and OWASP benchmarks, while in this thesis, only four of the categories were 

examined, and only three were examined based on the two benchmarks. Secondly, the coverage 

of scanners vulnerability databases should be improved to increase the detection accuracy.  

Finally,  Artificial Intelligence (especially Machine Learning) will be integrated into scanners 

to boost their capabilities to identify unknown vulnerabilities in web applications.  
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