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ABSTRACT

To develop a finescale dataset for the purpose of analyzing historical climatic change over the Tibet Plateau

(TP), a high-resolution regional climate simulation for 1979–2011 was conducted using theWeather Research

and Forecasting (WRF)Model driven by the ERA-Interim (ERA-Int). This work evaluates the high-resolution

(30 km) WRF simulation in terms of annual variation, spatial structure, and 33-yr temporal trends of surface

air temperature (Tair) and precipitation (Prec) over the TP, with reference to station observations. Another

focus is on the examination of the height–temperature relationship. Inheriting from its forcing, the WRF

simulation presents an apparent cold bias in the TP. The cold bias is largely reduced by a lapse rate correction

of the simulated surface air temperature with help of the station and model elevations. ERA-Int presents the

same sign of Tair and Prec trends as the observations, but with smaller magnitude, especially in the dry season.

Compared to its forcing, the WRF simulation improves the simulation of the annual cycles and temporal

trends of Tair and Prec in the wet season. In the dry season, however, there is hardly any improvement. The

observed Tair presents a downward linear trend in the lapse rate. This feature is examined in the WRF

simulation in comparison to ERA-Int. TheWRF simulation captures the observed lapse rate and its temporal

trend better than ERA-Int. The decreasing lapse rate over time confirms that Tair change in the TP is

elevation dependent.

1. Introduction

The Tibetan Plateau (TP) stands over 4000m above

sea level, and is the highest and most extensive highland

in the world (Fig. 1). The landscape is characterized by

extremely varied topographywith a highland complex of

mountains. The mountainous terrain over the TP results

in a host of finescale weather systems and varied re-

gional and local climate. Climatology and climate

changes over the TP have been widely analyzed using

observations. One of the most important findings is that

the TP has undergone faster warming rate than global

average in the past three decades (Liu and Chen 2000;

Wu et al. 2007; Solomon et al. 2007; Krause et al. 2010;

Moore 2012). The TP has gained growing attention re-

cently (e.g., Jacob et al. 2012) because of its significant

role in global and regional atmospheric circulation and

its sensitivity to human induced climate change. How-

ever, because of the harsh environment conditions, ob-

servation sites are sparely scattered over the TP where

humans have relatively easy access. Moreover, most

observation sites are located in the eastern TP (e.g., Su

et al. 2013). Over a large portion of the vast north-

western TP, there is not a single observation site.

Therefore, there is an unavoidable uncertainty in cli-

mate change analysis with in situ observations due to the

poorly gauged observation network over the TP. There

are a number of global and regional gridded datasets

covering the whole TP (e.g., Mitchell and Jones 2005;

Adler et al. 2003; Xu et al. 2009; Chen et al. 2010; Wu

and Gao 2013). However, since all of them only rely on

station data, which are sparse over the TP, the usefulness

of these gridded products for the TP is limited.
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Global climate models (GCMs) can resolve large-

scale weather systems (Meehl et al. 2007; Randall et al.

2007). Thus they have been widely used to explore and

project the large-scale climate change. However, for-

mulation of adaptation measures in response to climate

change requires information at finer spatial scales (Gao

et al. 2011a; Y. Gao et al. 2012). More importantly, there

are important processes operating at scales smaller than

those that are resolved by GCMs. This is particularly

true for heterogeneous regions such as the TP.

Accurate estimates of regional-scale climate are re-

quired to better understand regional climate change

(Betts et al. 1996; Entekhabi et al. 1996). There are ba-

sically two ways to downscale the coarse-resolution

GCM results to finer scale. One is statistical downscal-

ing (Benestad et al. 2008; Wilks 1995) and another is

dynamic downscaling (Y. Gao et al. 2012; X. Gao et al.

2012). The dynamic downscaling method uses a regional

climate model (RCM), in which GCM outputs are used

as initial and lateral boundary conditions for more spa-

tially detailed climatological simulations over a region

of interest.

Dynamic downscaling has been widely applied for

downscaling reanalysis data and global climate simula-

tions to study regional climate and climate change in

North America, Europe, Africa, and Asia (Mearns

et al. 2009;Déqué et al. 2005; Duffy et al. 2006; Ghan et al.

2006; Giorgi et al. 1992; Kim et al. 2002; Leung et al.

2003a,b; Plummer et al. 2006; Zhang et al. 2009; Laprise

et al. 1998; Gao et al. 2006; Zhang et al. 2005). The Co-

ordinated Regional Climate Downscaling Experiment

(CORDEX; http://www.meteo.unican.es/en/projects/

CORDEX; Giorgi et al. 2009) is a World Climate

Research Programme (WCRP)-sponsored program to

organize an international coordinated framework to

produce an improved generation of regional climate

change projections worldwide for input into impact and

adaptation studies within the IPCC Fifth Assessment

Report (AR5) timeline and beyond. There are quite

several multi-RCM intercomparison projects over dif-

ferent continents. For instance, over the North America,

the North American Regional Climate Change Assess-

ment Program (NARCCAP; Mearns et al. 2009; Leung

et al. 2006) aims to produce high-resolution climate

change simulations and generate climate change scenar-

ios for impacts research. The African Monsoon Multi-

disciplinary Analysis (AMMA) climate system model

intercomparison over West Africa is another example.

Over Asia, numerous regional simulations have been

conducted. Impacts of various parameterizations on the

regional climate simulation were explored and combi-

nations for better reproducing regional climate were

suggested (Gao et al. 2008; Gao et al. 2011b; Xu andGao

2014). Advantages of the high-resolution regional climate

and climate change simulation in the surface air tem-

perature and precipitation over eastern China were

documented (Gao et al. 2006; Yu et al. 2010; Li et al. 2005;

Zhang et al. 2008). Some researchers have investigated

climate changes in recent decades (Hirakuchi and Giorgi

1995; Gao et al. 2001), as well as paleoclimate (Ju et al.

2007) overEastAsia. Because of the scarcity observations

over the TP, there is little literature focusing on the

analysis of the regional simulation over the TP. Zhang

et al. (2005) performed a simulation using RegCM3 over

the Qinghai–Xizang Plateau. However, their results suf-

fer from systematic errors from the single model used. To

avoid the uncertainty from a specific RCM in the TP,

more simulations utilizing other RCMs are necessary,

along the lines of most continental regional model in-

tercomparison experiments. Furthermore, the elevation-

dependent warming (EDW) has been documented in

the literature using observations. However, to our

FIG. 1. (a) Simulation domain and topography (m) and (b) locations of the meteorological stations with topography used in this study.
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knowledge, no RCM runs have been involved in the

EDW studies so far.

This study focuses on a long-term (1979–2011) WRF

simulation, downscaling the ERA-Interim (Dee and

Uppala 2009; Dee et al. 2011). The most important

issue in downscaling is under what conditions it is re-

ally capable of improving/adding more climate in-

formation at smaller scales compared to the driving

GCM or reanalysis, especially when an RCM is run for

a long time. In this paper, we evaluate the WRF sim-

ulations of the surface air temperature (Tair) and

precipitation (Prec) over the TP compared to in situ

observations. The EDW issue will also be discussed

using the WRF simulation with respective to the obser-

vation and its coarse-resolution forcing. The objectives of

this study are 1) to evaluate the performance of WRF

over the TP at a fine scale and over a long term and

2) to examine the added value of the WRF simulations

in comparison to the driving reanalysis, which has a

coarser spatial resolution. We will proceed in the fol-

lowing manner. Section 2 briefly describes the model,

simulations, data used, and methodology. Section 3

compares model simulations with the observations.

Major conclusions and discussion are presented in

section 4.

2. Model, simulations, data, and methodology

a. Model and simulations

TheWeather Research and Forecasting (WRF)Model

(http://www.wrf-model.org/index.php; Skamarock et al.

2005) is a mesoscale numerical weather prediction system

designed to serve both operational forecasting and at-

mospheric research needs. It is a nonhydrostatic model,

with several available dynamic cores as well as many

different choices for physical parameterizations suitable

for a broad spectrum of application across scales from

meters to thousands of kilometers. It has been widely

used around the world. The dynamic cores in WRF in-

clude a fully mass- and scalar-conserving flux from mass

coordinate version. The physics packages includes mi-

crophysics, cumulus parameterization, planetary bound-

ary layer, shortwave and longwave radiation, and land

surface models. In this simulation, the shortwave and

longwave radiations were computed by the NCAR

Community Atmospheric Model (CAM) shortwave

scheme and longwave scheme (Collins et al. 2004) fol-

lowing Leung et al. (2003a,b) with WRF configuration in

NARCCAP (Mearns et al. 2009), which has been suc-

cessfully used in long-term simulation over North

America. Considering the importance of themicrophysics

processes over the TP, we did a series of tests on the

impact of the microphysics parameterizations in Tair

and Prec simulation among six schemes over the TP.

There is not much difference in Tair and Prec simula-

tions among these microphysics parameterizations

over the TP (not shown). To save computing resources,

the WRF Single-Moment 3-class scheme (WSM3) was

used in the simulation as in Leung et al. (2003a,b). The

convective parameterization used is the Grell–Devenyi

ensemble scheme (Grell 1993) following NARCCAP.

The Yonsei University (YSU) scheme (Hong and Pan

1996) was used for the PBL parameterization. The

land surface model (LSM) used here is the Noah LSM

four-layer soil temperature and moisture model with

frozen soil and snow cover prediction (Chen and

Dudhia 2001).

WRF was set up with 30-km horizontal grid spacing

with 1593 196 grid cells, which covers nearly the whole

Asian continent (Fig. 1a) following Exp. 6 in Gao et al.

(2011b). The vertical levels were set to 27 with themodel

top at 50 hPa. Simulation was initialized at 0000 UTC

1 January 1979 and ended at 2300 UTC 31 December

2011. Following NARCCAP, the lateral boundary con-

ditions and SST were updated every 6h and the simu-

lation was outputted in 3-h intervals.

b. Data

The initial lateral boundary conditions and SST were

interpolated from ERA-Interim (1979–present; Dee

and Uppala 2009; Dee et al. 2011). ERA-Interim (here-

after ERA-Int) is an improved version of ERA-40. An

updated ECMWF forecasting model version cycle 31r1

is used with a horizontal resolution of approximately

80 km for ERA-Int. Aside from the improved resolution

over ERA-40, ERA-Int utilizes four-dimensional vari-

ational data assimilation (4DVar) and bias correction of

satellite radiance data (Dee and Uppala 2009), better

formulation of background error constraint, new hu-

midity analysis, and improved model physics. ERA-Int

also uses mostly the sets of observations acquired for

ERA-40, supplemented by data for later years from

ECMWF’s operational archive. In addition, ERA-Int

makes extensive use of radiances such as altimeter wave

heights and radio occultation measurements. As with

ERA-40, the land surface analysis for ERA-Int in-

corporates 2-m air temperature and relative humidity

observation to improve the land surface model tem-

perature and soil moisture fields. ERA-Int has been

proven to be the best among reanalysis products avail-

able in describing temperature and water cycle over the

TP (Wang and Zeng 2012; Gao et al. 2014).

Surface air temperature and precipitation observations

are provided by the National Climate Center, China
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TABLE 1. Geographical information [longitude (8E), latitude (8N), and station elevation (HGT, mMSL)] of the 83 stations over the TP

andMSL elevations (m) at the stations in ERA-Int (ERA;mMSL) andWRF (mMSL) and their differences withHGT. The elevations in

ERA-Int and WRF are interpolated to station locations using bilinear interpolation.

No. Name Lon Lat HGT ERA-Int ERA-Int 2 HGT WRF WRF 2 HGT

1 Amang 90.9 38.3 2944.8 3342.6 397.8 3076.2 131.4

2 Yutian 81.7 36.9 1422.0 1854.9 432.9 1407.2 214.8

3 Lenghu 93.3 38.8 2770.0 2917.4 147.4 2855.7 85.7

4 Tuole 98.4 38.8 3367.0 3796 429.0 3850.0 483.0

5 Yeniugou 99.6 38.4 3320.0 3510.7 190.7 3906.1 586.1

6 Qilian 100.3 38.2 2787.4 3383.5 596.1 3342.7 555.3

7 Xiaozaohuo 93.7 36.8 2767.0 3089.3 322.3 2750.6 216.4

8 Dachaidan 95.4 37.9 3173.2 3520.6 347.4 3702.4 529.2

9 Delingha 97.4 37.4 2981.5 3612.2 630.7 3234.5 253

10 Gangcha 100.1 37.3 3301.5 3607 305.5 3463.9 162.4

11 Mengyuan 101.6 37.4 2850.0 3197.3 347.3 3490.1 640.1

12 Geermu 94.9 36.4 2807.6 3350.1 542.5 2977.2 169.6

13 Nuomuhong 96.4 36.4 2790.4 3326.9 536.5 2829.8 39.4

14 Dulan 98.1 36.3 3189.0 3595.3 406.3 3331.9 142.9

15 Qiabuqia 100.6 36.3 2835.0 3241.3 406.3 3032.9 197.9

16 Xining 101.8 36.7 2295.2 3032.6 737.4 2751.4 456.2

17 Guide 101.4 36.0 2237.1 3105.7 868.6 3207.3 970.2

18 Wudaoliang 93.1 35.2 4612.2 4685.7 73.5 4622.4 10.2

19 Xinghai 100.0 35.6 3323.2 3709.2 386.0 3511.3 188.1

20 Guinan 100.7 35.6 3120.0 3480.9 360.9 3401.1 281.1

21 Tongren 102.0 35.5 2491.4 3293.9 802.5 3339.9 848.5

22 Shiquanhe 80.1 32.5 4278.6 4926.5 647.9 4887.0 608.4

23 Gaize 84.4 32.2 4414.9 4859.9 445.0 4660.1 245.2

24 Bange 90.0 31.4 4700.0 4815.2 115.2 4960.6 260.6

25 Amduo 91.1 32.4 4800.0 4892.6 92.6 4846.7 46.7

26 Naqu 92.1 31.5 4507.0 4841.6 334.6 4609.4 102.4

27 Pulan 81.3 30.3 3900.0 4351.5 451.5 4814.6 914.6

28 Shenzha 88.6 31.0 4672.0 4997.9 325.9 4912.2 240.2

29 Dangxiong 91.1 30.5 4200.0 4901.1 701.1 4897.0 697.0

30 Lazi 87.6 29.1 4000.0 4854.5 854.5 4450.0 450.0

31 Rikeze 88.9 29.3 3836.0 4710.2 874.2 4279.5 443.5

32 Nimu 90.2 29.4 3809.4 4857.9 1048.5 4677.7 868.3

33 Lasa 91.1 29.7 3648.9 4694.3 1045.4 4604.4 955.5

34 Nielari 86.0 28.2 3810.0 3844.5 34.5 4587.2 777.2

35 Dingri 87.1 28.6 4300.0 4912.9 612.9 4893.1 593.1

36 Jiangzi 89.6 28.9 4040.0 4779.7 739.7 4310.1 270.1

37 Cuona 92.0 28.0 4280.0 4012.1 2267.9 4584.6 304.6

38 Longzi 92.5 28.4 3860.0 4466.8 606.8 4818.8 958.8

39 Pali 89.1 27.7 4300.0 3978.6 2321.4 4834.3 534.3

40 Tuotuohe 92.4 34.2 4533.1 4747.3 214.2 4599.9 66.8

41 Zaduo 95.3 32.9 4066.4 4715.3 648.9 4609.3 542.9

42 Qumalai 95.8 34.1 4175.0 4657.8 482.8 4625.0 450.0

43 Yushu 97.0 33.0 3716.9 4437.5 720.6 4430.1 713.2

44 Maduo 98.2 34.9 4272.3 4391.1 118.8 4293.5 21.2

45 Qingshuihe 97.1 33.8 4415.4 4498.2 82.8 4465.2 49.8

46 Shiqu 98.1 33.0 4200.0 4426.6 226.6 4320.0 120.0

47 Guoluo 100.2 34.5 3719.0 4117.0 398 4033.7 314.7

48 Dari 99.7 33.8 3967.5 4356.9 389.4 4190.9 223.4

49 Henan 101.6 34.7 3500.0 3732.5 232.5 3714.9 214.9

50 Jiuzhi 101.5 33.4 3628.5 3931.1 302.6 3920 291.5

51 Maqu 102.1 34.0 3471.4 3698.2 226.8 3556.9 85.5

52 Ruoergai 103.0 33.6 3441.4 3506.5 65.1 3513.5 72.1

53 Hezuo 102.9 35.0 2910.0 3125.0 215.0 3200.9 290.9

54 Suoxian 93.8 31.9 4022.8 4803 780.2 4529.6 506.8

55 Dingqing 95.6 31.4 3873.1 4617.2 744.1 4733.3 860.2

56 Nangqian 96.5 32.2 3643.7 4428.1 784.4 4361.9 718.2
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Meteorological Administration (CMA). Figure 1b shows

the locations of the 83 stations covering the period

1979–2011.

c. Methodology

Model simulations from WRF and ERA-Int are

compared to observations at 83 CMA stations. The de-

tails of these stations are indicated in Table 1. We

choose to use the station observations directly for the

comparison because the majority of the existing gridded

dataset used a smaller number of stations than we have

in this study, and there are large areas over the TP

without observation.

Comparison is conducted on monthly-mean Tair and

Prec in places where we have observational stations.

First, Tair values at the nearest grid cells of the model

were compared to the observations. Second, the ERA-

Int and the WRF simulations were interpolated to sta-

tion locations using bilinear interpolation. Since the in

situ observation sites are mostly located in the valley

where humans have easy access and the model topog-

raphies may differ from the reality and differ from each

other, there are elevation differences between the

model grid cells and in situ observation sites (Table 1).

The differences in topography have great influence on

temperature over mountainous regions. To account for

the elevation difference between grid cell and observa-

tion sites and the impact on Tair, a step called lapse

rate correctionwas conducted for the simulated Tair after

the bilinear interpolation. The monthly-mean lapse rates

at stations were estimated using surface air temperatures

from 81 neighboring grid cells in theWRF simulation and

25 in the ERA-Int. Here, the different grid numbers are

used to ensure that the lapse rate calculated covers the

same domain. When compared to the lapse rate esti-

mated using in situ observations, there are often not

enough neighbors due to the scarcity of the stations. The

lapse rate is calculated using the surface air temperature

and station elevations at a given region to meet the sta-

tions required in the lapse rate calculation (Fang and

Yoda 1988; Li et al. 2013).

No lapse rate correction was applied to precipitation

since the lapse rate for precipitation is not as well de-

fined as that for temperature due to complicated nature

of relevant processes for precipitation in mountain

areas, although some studies (e.g., Achberger et al.

2003) do show an elevation dependence in a small area.

Seasonal and annual climatology and climate change of

the WRF simulations are evaluated by comparing with

observations at the 83 stations and those from ERA-Int,

TABLE 1. (Continued)

No. Name Lon Lat HGT ERA-Int ERA-Int 2 HGT WRF WRF 2 HGT

57 Changdu 97.2 31.2 3315.0 4409.2 1094.2 4130.1 815.1

58 Deluo 98.6 31.8 3184.0 4479.5 1295.5 4859.2 1675.2

59 Ganzi 100.0 31.6 3393.5 4268.6 875.1 4064.6 671.1

60 Banma 100.8 32.9 3530.0 4141.2 611.2 4077.7 547.7

61 Seda 100.3 32.3 3893.9 4201.1 307.2 4239.4 345.5

62 Daofu 101.1 31.0 2957.2 4077.6 1120.4 3871.2 914

63 Maerkang 102.2 31.9 2664.4 3881.2 1216.8 4000.9 1336.5

64 Hongyuan 102.6 32.8 3491.6 3749.8 258.2 3828.8 337.2

65 Xiaojin 102.4 31.0 2438.0 3516.1 1078.1 3364.6 926.6

66 Songpan 103.6 32.7 2850.7 3331.2 480.5 3589.4 738.7

67 Jiali 93.3 30.7 4488.8 4934.6 445.8 5079.8 591.0

68 Luolong 95.8 30.8 3640.0 4569.9 929.9 4583.5 943.5

69 Bomi 95.8 29.9 2736.0 4121.0 1385.0 3886.1 1150.1

70 Batang 99.1 30.0 2589.2 4283.6 1694.4 3920.6 1331.4

71 Xinlong 100.3 30.9 3000.0 4264.8 1264.8 4272.2 1272.2

72 Litang 100.3 30.0 3948.9 4311.5 362.6 4459.2 510.3

73 Linzhi 94.3 29.7 2991.8 4056.5 1064.7 4476.7 1484.9

74 Zuogong 97.8 29.7 3780.0 4261.0 481.0 4371.7 591.7

75 Daocheng 100.3 29.1 3727.7 4120.6 392.9 4361.5 633.8

76 Kangding 102.0 30.1 2615.7 3485.7 870.0 3762.9 1147.2

77 Chayu 97.5 28.7 2327.6 3744.1 1416.5 3716.5 1388.9

78 Deqin 98.9 28.5 3319.0 3756.5 437.5 3703.3 384.3

79 Muli 101.3 27.9 2426.5 3039.4 612.9 3039.5 613.0

80 Jiulong 101.5 29.0 2925.0 3662.3 737.3 4077.7 1152.7

81 Gongshan 98.7 27.8 1583.3 2911.5 1328.2 3064.1 1480.8

82 Zhongdian 99.7 27.8 3276.7 3371.6 94.9 3443.8 167.1

83 Weixi 99.3 27.2 2326.1 2884.5 558.4 2901.0 574.9

Mean 3442.4 4004.5 562.1 3987.4 545.0
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which has a larger spatial resolution than that of the

WRF simulation.

Climatology in the TP is split into a dry season

(October–April) and wet season (May–September) ac-

cording to typical seasonal variation of the precipitation

in the region (Yao et al. 2013; Gao et al. 2014). Seasonal

climatology and changes in Tair and Prec for the dry and

wet seasons are analyzed in the following.

3. Results

a. Tair

Figure 2 shows the seasonal variation of Tair and its

monthly temporal trend during 1979 and 2011 from the

ERA-Int and the WRF simulations averaged over all

grids in which there is a at least one station. ERA-Int

and the WRF simulation both have a seasonal un-

derestimation in Tair of 28–58C compared to observa-

tions. It is obvious that the differences between those

taken from the nearest grid cells and those from the

bilinear interpolation are negligible because of the lack

of information at the station scale from the models, but

the lapse rate correction significantly reduces the un-

derestimation (Fig. 2a). This demonstrates the impor-

tance of elevation to temperature and indicates that the

elevations of theWRF and the model used by the ERA-

Int deviate fairly significantly from those at the stations.

This is not surprising given the complex terrain in the

TP, which is not resolved at the station scale in the

models used, and the usual positioning of the stations.

The underestimation without lapse rate correction im-

plies that the models’ grids have higher elevation than

those of the stations. This is confirmed by Table 1, which

displays the elevations at the stations, as well as those

used in ERA-Int andWRF. The majority of the stations

have a lower elevation than themodel grid cells, which is

consistent with the cold biases in both ERA-Int and the

WRF simulation. In fact, CMA stations over the TP are

mostly situated at valleys. Therefore, the elevations of

the stations are usually lower than the average eleva-

tions of the corresponding grid cells in the models. Ap-

parently, the underestimations are to a large extent

removed by the lapse rate correction (Fig. 2a, Table 3).

Indeed, the seasonal cycles of surface air temperatures

in ERA-Int and the WRF simulations match the ob-

servation very well after the lapse rate correction.

Figure 2a shows that the averaged biases in ERA-Int

and the WRF simulations are all less than 0.58C for the

dry and wet seasons and the annual mean (Table 2). A

closer examination of Fig. 2a shows that ERA-Int pos-

sesses a smaller bias than the WRF simulation in the

cold season, especially in the southern TP (Figs. 3a,d).

This means that theWRF simulations in the cold season

did not add value to the reanalysis with regard to the

bias. Su et al. (2013) demonstrate that GCMs tend to

have poorer performance for temperature in the cold

season than in the warming season. Snow cover dy-

namics was proposed as a possible process that was not

properly described in the models. This is why special

attention was given to the snow parameterization over

the TP in one of the CMIP models (Wu et al. 2010). The

same might hold here too. While ERA-Int has in-

corporated other observed information in addition to

the surface air temperature in the assimilation system,

the WRF simulation has to rely on its own simulation of

relevant processes for snow. Thus, the snow cover in the

WRF may have not been realistically simulated. Since

the simulated Tair is significantly improved after the

lapse rate correction in both the WRF simulation and

ERA-Int, wewill only analyze results after the lapse rate

correction for Tair in the following.

Figure 2b shows the seasonal temporal trends during

1979 and 2011 estimated from the stations as well as

from ERA-Int and the WRF simulations. While the

seasonal pattern is generally well simulated byWRF and

ERA-Int, the WRF and ERA-Int estimates have

a smaller magnitude than the observations, with an ex-

ception for WRF estimate in June. Unlike the obser-

vations of Tair, temperatures at the surface height in the

models represent a mean value over a height range,

which may partly explain the difference in the trends.

Table 3 reveals that the observed monthly-mean Tair

averaged over all the stations has a higher warming rate

in the dry season than that in the wet season. This comes

from a larger warming rate at stations in the central TP

in the dry season than in the wet season (Figs. 4a,b).

ERA-Int shows smaller warming rates than the obser-

vation for both seasons (Table 3) in the central and

southern TP (Figs. 4d,e). The WRF simulation mostly

inherits the ERA-Int estimate of the Tair trends except

for May–July, when the WRF simulates the trends re-

alistically in the wet season (Figs. 2b and 4h, Table 3).

This improvement originates from closer mean trend,

smaller RMSE, and higher significant pattern correla-

tion between WRF and observations than ERA-Int in

the wet season (Table 3), especially in the central TP

where the relative large warming rate is not captured by

ERA-Int (Figs. 4e,h). In the cold season, the improve-

ment of Tair trend magnitude in the WRF simulation in

the central TP is somewhat balanced by the de-

terioration in the northeastern TP, which results in the

same warming rate as ERA-Int in the dry season

(Fig. 4d). Interestingly, the WRF simulation shows

larger spatial correlation with observations than ERA-

Int (Table 3). The correlation for the WRF simulations

passes the statistical two-tailed t test at the 99.9%
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confident level, which proves the added skill of WRF in

simulating the regional warming pattern over the TP.

b. Lapse rate

Estimating the lapse rate requires temperature profile

measurement, which hardly exists for a large region.

Thus, in practice, near-surface air temperature mea-

surements at a number of stations with different eleva-

tion in a region are regressed against the station

elevations to provide an estimate of the lapse rate for the

region (Fang and Yoda 1988; Li et al. 2013). Some

previous studies claim an elevation dependency of Tair

change over the TP (e.g., Qin et al. 2009), whereas others

claim an absence of any elevation dependency in Tair

trend over the TP (You et al. 2010). Recently, an in-

creasing trend in the lapse rate over the western and

a decreasing trend over the eastern TP in the lapse rate

to the south of 358N during the period of 1962 and 2011

have been found (Fig. 8 in Li et al. 2013). To find out if

such an opposite change during our study period (1979–

2011) also exists, we calculate the monthly lapse rates

based on observed and simulated Tair to the south of

358N in the TP. The temporal linear trends of Tair lapse

rate was calculated using a slightly different approach

from that of Li et al. (2013), which only considers ele-

vation as the dependent variable and has a different

period of time.

Figure 5a shows the observed interannual variability

of the lapse rate in 1979–2011 for regions 18 (eastern TP)

and 19 (western TP) as in Fig. 8 in Li et al. (2013), in

which the lapse rate exhibits an opposite sign of change,

with a decreasing trend for region 18 and an increasing

trend for region 19. In Fig. 5a, however, the lapse rate

estimated from the observations shows a downward

trend for both regions, although only the trend for re-

gion 18 passes a significant t test at the 95% confidence

level. The reason for the disagreement between lapse

rate trends revealed in this paper and in Li et al. (2013)

FIG. 2. Monthly-mean (a) Tair variation and (b) Tair trend in 1979–2011 averaged over all the stations for the observation (obs), ERA-Int

(era), and WRF simulation (wrf). (1 5 results at the nearest grid cells; 2 5 after the interpolation; and 3 5 after lapse rate correction.)

TABLE 2. Biases, root-mean-square error (RMSE), and spatial correlation coefficients (SCC) of the climatology in surface air tem-

perature (Tair, 8C) of ERA-Int and the WRF simulations compared to the observations averaged over the 83 stations. Statistically

significant SCCs at the 99.9% confidence level based on the two-tailed t test are denoted with asterisks.

Bias RMSE SCC

Dry Wet Annual Dry Wet Annual Dry Wet Annual

ERA-Int 0.07 20.34 20.18 1.96 1.42 1.70 0.95* 0.95* 0.95*

WRF 20.30 20.20 20.32 2.51 1.81 2.17 0.92* 0.93* 0.93*
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for the western TP may be due to the different stations

and periods used. The difference in the estimating

method may also have played a role. As there are many

more stations in the eastern TP than in the western TP,

the estimated lapse rate for the eastern region is con-

sidered more reliable. Both the results of Li et al. (2013)

and our results indicate that Tair at higher altitude has

experienced more warming (Fig. 6a). As presented in

Figs. 6a and 7a, only a small number of stations are lo-

cated in the western TP and most of these are over

3800m, which is much higher than the stations in the

eastern TP. From Fig. 6a we can see that the Tair change

is elevation dependent over the whole TP in the obser-

vation, which is in consistent with the findings of Qin et al.

(2009). The same elevation dependency of Tair changes

was also revealed in studies over North America (Leung

et al. 2003a; Kim et al. 2002; Gao et al. 2011b).

Figure 5c shows that theWRF simulation significantly

improves the estimate of the lapse rate over the western

TP, compared with that from ERA-Int (Fig. 5b). For the

eastern TP, the ERA-Int estimate is close to that esti-

mated from the observations, and the WRF simulation

shows slightly lower values than those based on the

observations. Theoretically, a dry lapse rate should be

larger than a wet lapse rate. Since the western TP has

a drier climate than the eastern TP, the lapse rate there

is expected to be higher than that in the eastern TP as

shown by both the observations and WRF simulation.

However, the ERA-Int estimates illustrated in Fig. 7b

shows the opposite due to the underestimation in sta-

tions with elevations from 3500 to 4500m.

Opposite to the observation, ERA-Int displays an

upward trend in the western TP (Fig. 5b) due to smaller

warming in the central TP (Fig. 4f). At the same time,

the WRF simulation displays a downward trend, as in

the observations, although the decreasing rate is larger

than the observed one. The lapse rate changes at the 83

stations over the TP using the neighboring grid cells are

shown in our Fig. 8. The larger decreases in the lapse

rate at higher elevations also indicate the elevation

FIG. 3. Distribution of biases inmonthly-meanTair (8C) in (a)–(c) ERA-Int and (d)–(f) theWRF simulation compared to the observations

for the (left) dry and (center) wet seasons, and (right) annual mean in 1979–2011.

TABLE 3. Observed trends in surface air temperature [Tair, 8C (decade)21] averaged over the 83 stations (obs) in comparison with

those from ERA-Int and the WRF simulations. The mean values, biases, root-mean-square errors, and spatial correlation co-

efficients (SCC) of the results of ERA-Int and the WRF simulations are calculated with the observations as reference. Asterisks are

as in Table 2.

Mean Bias RMSE SCC

Dry Wet Annual Dry Wet Annual Dry Wet Annual Dry Wet Annual

Obs 0.54 0.40 0.46

ERA-Int 0.36 0.29 0.33 20.18 20.11 20.13 0.33 0.23 0.25 0.11 0.43* 0.10

WRF 0.33 0.36 0.34 20.21 20.04 20.12 0.32 0.20 0.23 0.32* 0.50* 0.28
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dependency in the warming over the TP. Unfortunately,

ERA-Int shows opposite changes.

The WRF simulation successfully reproduces the

same trend sign as the observation in both western and

eastern TP with significantly (p 5 0.05) downward

trends with the similar magnitude as the observation in

the eastern TP (Fig. 5c). An exaggerated lapse rate trend

in the western TP in the WRF simulation is shown in

Fig. 5c, which is to a large extent caused by the large cold

anomaly at high elevation in the dry season in 1982.

This anomaly is a result of an unusual low temperature

anomaly at 500 hPa in 1982 compared to climatology,

which comes from the forcing. This deviation is ampli-

fied by the contrasted elevations of ups and downs in the

finescale compared to the coarse-scale forcing. The

magnitude and variability of the lapse rate in the WRF

simulation matches the observation much better than

ERA-Int, with higher spatial correlation coefficients in

both the dry and wet seasons and smaller RMSE in the

wet season (Table 3). Further, the elevation dependency

in the observed Tair in the western and eastern TP is

better reproduced by WRF than ERA-Int as shown in

Figs. 6 and 7.

c. Precipitation

To examine the added value of the WRF simulation

over ERA-Int for precipitation, Fig. 9 compares the

observed annual cycle of the average precipitation and

its temporal trend across the 83 stations, together with

those from ERA-Int and theWRF simulation. It is clear

that the Prec from the WRF simulation follows the ob-

servation in annual variation much better than those

fromERA-Int (Fig. 9a). Prec is heavily overestimated in

ERA-Int over the TP (Table 4; Figs. 9a and 10b). The

WRF simulation approximately reduces 35% of the wet

bias from the driving ERA-Int in the wet season al-

though practically no improvement is noticed in the dry

season (Fig. 9a; Table 4). As reflected in Fig. 10, which

shows the bias distribution over the TP for ERA-Int and

the WRF simulation, ERA-Int suffers from a large

FIG. 4. Distribution ofmonthly-mean Tair trend [8C (decade)21] in (a)–(c) observations, (d)–(f) ERA-Int, and (g)–(i) theWRF simulation

for the (left) dry and (center) wet seasons, and (right) annual mean in 1979–2011.
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amount of wet biases over the TP except the Chaidam

basin in the wet season (Fig. 10b). In the dry season,

wet biases mainly exist in the southern TP in ERA-Int

(Fig. 10a), which was passed to the WRF simulation,

showing a similar bias pattern (Fig. 10d; Table 4). In

the wet season, not only are magnitudes of wet biases

in the driving ERA-Int reduced in the WRF simula-

tion, but also a higher spatial correlation with obser-

vations in the WRF simulation is gained compared

with ERA-Int (Table 4). This is especially true in the

central TP as several stations even show proximal zero

bias (Fig. 10e). Annually, Figs. 10c and 10f show that

larger wet biases exit in the southern TP than those in

the central and northern TP in both ERA-Int and the

WRF simulation.

Based on the observations, there are positive Prec

trends for both the dry and wet seasons (Table 5). The

largest increasing trend occurs in May followed by

August (Fig. 9b), which accounts for a large portion of

the increasing trend in the wet season [0.024mmday21

(decade)21; Table 5)]At the same time, slightly negative

trends are found in July and September (Fig. 9b). Ob-

served Prec in January–April has practically no trend,

whereas it shows a slightly positive trend in the dry

season due to an increase in October and November,

despite a small decreasing trend in December. The ob-

servation presents no trend at most stations scattered

with few stations with positive trend in the dry season

(Fig. 11). In the wet season, there is a positive trend in

the central and northern TP, which leads to the averaged

positive trend although negative or no trends exist at

several stations in the eastern TP. Annually, Prec pres-

ents positive trends in vast northwestern TP and no or

negative trends in southeastern TP. The pattern simi-

larity of the Prec trend between ERA-Int, the WRF

simulation, and the observations is quite weak (Table 5),

in line with the weak and scattered Prec trend in the

observations.

FIG. 8. Lapse rate changes [8C (100m)21 (decade)21] at the 83 stations over the TP from (a) ERA-Int and (b) the

WRF simulation.

FIG. 9. Station averaged annual cycle of (a) Prec, (b) Prec trend, and (c) Prec relative trend in 1979–2011 for the observation (obs, black

dots), ERA-Int (era, black crosses), and the WRF simulation (wrf, open circles).
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ERA-Int presents much larger positive trend than the

observation for the both seasons (Table 5), especially

from May to August (Fig. 9b). Spatially, larger trends

appear at stations on the east margin of the TP in the dry

season and most stations in the wet season (Figs. 10d,e).

Annually, ERA-Int presents the same trend pattern,

which has much larger magnitude than the observations

(Fig. 11f; Table 5).

Consistent with the observation and ERA-Int, the

Prec trend in the WRF simulation shows the largest

positive value in May and is closer to the observation

than ERA-Int in July and August (Fig. 9b). The WRF

simulation exhibits a scattered Prec trend pattern but

with smaller magnitude than ERA-Int at most stations

(Figs. 10g–i). It presents a large negative trend in De-

cember and February at Naqu, resulting in a negative

trend in the dry season (Fig. 9b; Table 5).

Given the overestimation in Prec in the wet season in

ERA-Int and the WRF simulation, monthly trends of

relative changes are plotted in Fig. 9c. The WRF simu-

lated trends are closer to the observations than those in

ERA-Int in the wet season. This further confirms the

added value of the WRF simulation.

4. Conclusions

A 33-yr WRF simulation driven by the ERA-Int over

East Asia was conducted. The WRF simulated Tair and

Prec over the TP are compared to observations at the 83

stations and to those from ERA-Int. The following

conclusions are obtained.

1) For Tair, large cold biases exist in the WRF simula-

tion and in ERA-Int. The cold bias in the WRF

simulation primarily is inherited from ERA-Int. A

comparison among the station heights and the ele-

vation data used for the corresponding model cells in

WRF and ERA-Int shows that the model elevations

at grid scale are systematically higher than the station

heights, which can explain a large part of the cold

biases. Indeed, the cold biases are greatly reduced by

the lapse rate correction in both ERA-Int and the

WRF simulation. Compared to ERA-Int and with

the station observations as the reference, WRF is

generally capable of more realistically reproducing

the seasonal mean and long-term trend of Tair in the

wet season, whereas no pronounced improvement is

found in the dry season. Seasonal and annual mean

Tair in observations shows a warming trend at all of

the stations and the warming rate in the dry season is

larger than that in the wet season. ERA-Int and the

WRF simulation both show the same sign of Tair

trend but with smaller magnitudes. In the wet season,

the WRF simulation of Tair change is closer to the

observations than ERA-Int.

2) The lapse rates estimated from the observations

exhibit a decreasing temporal trend in both the

eastern and western TP as a result of a larger

warming rate at higher elevations. ERA-Int shows

a larger lapse rate in the dry western TP than in moist

eastern TP, which is not in accordance with the

observations and the common understanding that

lapse rate in a dry climate is larger than that in a wet

one. Further, ERA-Int presents an inconsistent

spatial pattern in the lapse rate trend with the

observation, although the difference is small. The

WRF simulation successfully reproduces consistent

downward changes in the lapse rate in the western

and eastern TP, just as the estimations from the

observations show. The downward trend in the lapse

rate in the whole TP confirms that the warming over

the TP indeed increases with elevation in a warmer

climate.

3) Annual variation of Prec in the WRF simulation

matches the observation much better than that from

ERA-Int. Prec is greatly overestimated in ERA-Int

not only in the wet season but also in the dry season.

However, the WRF simulation reduces the wet

biases of ERA-Int by around 35%.

4) Observed precipitation over the TP shows an upward

trend in 1979–2011, which is mainly contributed by

the precipitation change in the wet season. While the

Prec trends for both the wet and dry seasons in ERA-

Int deviate significantly from those observed, the

Prec trend for the wet season in the WRF simulation

is much more realistic. The Prec trends for the dry

season in both theWRF simulation and ERA-Int are

close to each other and that of the observation.

This study has demonstrated the added value of the

WRF simulation over the TP in terms of bias reduction,

as well as a more realistic seasonal cycle, long-term

trend, and spatial distribution for Tair and Prec. The

improvements of the WRF simulations over those from

ERA-Int come from the wet season dynamics, which

TABLE 4. Biases, root-mean-square errors, and spatial correla-

tion coefficients (SCC) of the precipitation climatology (Prec,

mmday21) of ERA-Int and the WRF simulations as compared to

the observations averaged over the 83 stations. Asterisks are as in

Table 2.

Bias RMSE SCC

Dry Wet Annual Dry Wet Annual Dry Wet Annual

ERA-

Int

0.50 2.32 1.40 1.06 3.65 2.60 0.52* 0.57* 0.63*

WRF 0.48 1.50 0.99 1.17 2.66 2.01 0.64* 0.74* 0.75*
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emphasizes the importance of processes linked to pre-

cipitation. The summermonsoon circulation seems to be

the major contributor to the fact that improvement ap-

pears in the wet season, not in the dry season. Maintain

ranges over the TP lie mainly in the west–east direction.

In the wet season, the circulation over the TP flowsmore

in poleward direction than meridional direction under

control of the summer monsoon. The west–east orien-

tation of the ranges functions as a protective screen

facing the monsoon circulation. The strong uplifting by

the windward slopemay have caused the overestimation

of Prec in ERA-Int. The ups and downs between ranges,

which are smoothed in ERA-Int, are depicted vividly

inWRF. The downs between ranges reduce the uplifting

in the windward slope, which most likely leads to the

improvements in WRF simulation in the wet season.

However, in the dry season the westerly prevails.

Not much difference in the uplifting occurs due to

FIG. 11. As in Fig. 4, but for precipitation [mmday21 (decade)21].

TABLE 5. Observed trends in precipitation [OBS, mm day21 (decade)21] averaged over the 83 stations in comparison with those

from ERA-Int and the WRF simulations. The mean values, biases, root-mean-square errors, and spatial correlation coefficients

(SCC) of the results from ERA-Int and the WRF simulations are calculated with the observations as reference. Asterisk is as

in Table 2.

Mean Bias RMSE SCC

Dry Wet Annual Dry Wet Annual Dry Wet Annual Dry Wet Annual

Obs 0.003 0.024 0.013 — — — — — — — — —

ERA-Int 0.015 0.109 0.053 0.012 0.085 0.039 0.06 0.29 0.16 0.03 0.50* 0.24

WRF 20.018 0.067 0.027 20.021 0.043 0.013 0.13 0.18 0.12 0.02 0.13 20.20
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the west–east direction ranges. Hence, the monsoon

circulation plays a major role in contributing to the

improvement.

The fact that the important temperature–elevation

relationship expressed by the lapse rate is more re-

alistically reproduced in theWRF simulations compared

to that inERA-Int leads to the conclusion that the finescale

WRF simulation better resolves important processes over

the TP and can in general deliver more realistic tem-

perature and precipitation information than the large-

scale driving climate for the region.

Finally, it should be noted that the 30-km horizontal

resolution is still not fine enough to resolve many com-

plex local-scale processes over the TP. There is also

a practical need to have finer-scale information for im-

pact studies. These call for more reliable and finescale

observation combining in situ and remotely sensed data

and finer-scale modeling.
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