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ABSTRACT

This study assesses forecasts of the preconvective and near-storm environments from the convection-

allowing models run for the 2008 National Oceanic and Atmospheric Administration (NOAA) Hazardous

Weather Testbed (HWT) spring experiment. Evaluating the performance of convection-allowing models

(CAMs) is important for encouraging their appropriate use anddevelopment for both research andoperations.

Systematic errors in the CAM forecasts included a cold bias in mean 2-m and 850-hPa temperatures over most

of the United States and smaller than observed vertical wind shear and 850-hPa moisture over the high plains.

The placement of airmass boundaries was similar in forecasts from the CAMs and the operational North

American Mesoscale (NAM) model that provided the initial and boundary conditions. This correspondence

contributed to similar characteristics for spatial and temporal mean error patterns.However, substantial errors

were found in the CAM forecasts away from airmass boundaries. The result is that the deterministic CAMs

do not predict the environment as well as the NAM. It is suggested that parameterized processes used at

convection-allowing grid lengths, particularly in the boundary layer, may be contributing to these errors.

It is also shown that mean forecasts from an ensemble of CAMs were substantially more accurate than

forecasts from deterministic CAMs. If the improvement seen in the CAM forecasts when going from a de-

terministic framework to an ensemble framework is comparable to improvements in mesoscale model fore-

casts when going from a deterministic to an ensemble framework, then an ensemble of mesoscale model

forecasts could predict the environment even better than an ensemble of CAMs. Therefore, it is suggested that

the combination of mesoscale (convection parameterizing) and CAM configurations is an appropriate avenue

to explore for optimizing the use of limited computer resources for severe weather forecasting applications.

1. Introduction

The Storm Prediction Center (SPC) and the National

Severe Storms Laboratory (NSSL) conducted the 2008

spring experiment (SE08) over a 7-week period during

the peak severe convective season, from mid-April

through early June, as part of the activities for the Na-

tionalOceanic andAtmosphericAdministration (NOAA)

Hazardous Weather Testbed (HWT). As in past spring

experiments, a vital component to the experiment’s suc-

cess was the active participation by diverse members of

the meteorological community (e.g., forecasters, research

scientists, model developers) who have a passion for op-

erationally relevantmeteorological challenges (Kain et al.

2008). As in recent years, the primary focus in 2008 was

on the examination of convection-allowing configurations
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of theWeather Research and Forecasting (WRF)model

(Skamarock et al. 2005) covering approximately the

eastern three-fourths of the conterminous United States

(CONUS) in a simulated severe weather–forecasting

environment. As in previous experiments, WRF model

forecasts were evaluated based on their ability to pre-

dict the location and timing of thunderstorm initiation

and evolution, and offer operationally relevant and use-

ful information on thunderstorm morphology. In addi-

tion, the experiment continued to evaluate a real-time,

large-domain 10-member convection-allowing ensemble

forecasting system to gauge the potential benefits of

uncertainty information at convection-allowing model

(CAM) resolutions (Kong et al. 2008; Xue et al. 2008).

Several studies have examined the effects of model

horizontal grid length on forecast accuracy. As described

in the review by Mass et al. (2002), increasing resolu-

tion produces better-defined and more realistic struc-

tures in general (evaluated subjectively), but few studies

have demonstrated that forecast accuracy, measured

objectively over an extended period of time, increases as

grid spacing decreases below approximately 10–15 km.

More recently however, several modeling studies using

convection-allowing configurations of the WRF model

with horizontal grid spacings of ;4 km have suggested

that these high-resolution models add value as weather

forecast guidance tools. For example, Done et al. (2004)

demonstrated that convection-allowing 4-km WRF fore-

casts predict the frequencies and structures of convective

systems better than 10-km WRF forecasts that used con-

vective parameterization. Similarly, Kain et al. (2005),

Weisman et al. (2008), and Schwartz et al. (2009) all found

that 4-km WRF forecasts with explicitly resolved convec-

tion yielded better guidance for precipitation forecasts

than did the 12-km North American Mesoscale (NAM)

model that uses convective parameterization. Addition-

ally, these experiments revealed that running the WRF

model at 4 km without convective parameterization does

not result in grossly unrealistic precipitation forecasts,

even though a 4-km grid is too coarse to fully capture

convective scale circulations (Bryan et al. 2003). This is

consistent with the findings ofWeisman et al. (1997) that

4-km grid length is sufficient to capture much of the

mesoscale structure and evolution of convective systems.

Despite the successes of CAM forecasts noted above,

studies on the accuracy of model forecasts of the meso-

scale and larger-scale fieldswithin theCAM forecasts and

how they relate to forecasts of the environment from

models that do not allow convection at the grid scale are

scarce (Weisman et al. 2008). The studies mentioned in

the previous paragraph focus largely on the quantitative

precipitation forecasting (QPF) problem. The lack of

investigation into model–environment forecasts led the

developers of the SE08 to assemble a daily evaluation of

the relationship between model forecasts of convective

storms and model predictions of the preconvective and

near-storm environment. This endeavor was driven by

recent subjective impressions that large errors in 18–30-h

explicit forecasts of convection may be controlled fre-

quently by errors in the fields that are introduced by the

initial conditions (ICs) and lateral boundary conditions

(LBCs) (Kain et al. 2005; Weisman et al. 2008).

SE08 participants were asked to spend;1 h each day

analyzing the 18–30-h forecasts of the mesoscale and

larger-scale environments from convection-allowing

models and identifying differences with the associated

analyses from the Rapid Update Cycle (RUC) model

(Benjamin et al. 2004a). Indeed, on some days, it was

possible to identify errors in phase and amplitude within

the larger-scale fields that clearly had a negative impact

on the CAM forecasts of convective initiation and evo-

lution. The errors were apparently inherited from the

ICs–LBCs provided by the forecasts from the operational

version of the NAM, and on some days it was noted that

NAM forecasts of convective precipitation showed biases

that were very similar to those from the CAMs.

Although the subjective impressions on the quality of

the model forecasts suggested many days in which the

CAM forecasts were driven largely by the NAM ICs and

LBCs, it is not clear if the increased resolution improved

the forecasts of the environment overall compared to

the NAM forecasts. It is important for model developers

to know the performance characteristics of the forecasts

of the larger-scale fields within the convection-allowing

model forecasts, which can determine the location and

timing of the explicit forecasts of convection. In addi-

tion, forecasters continue to rely heavily on relation-

ships between the environment and convective mode

and evolution (Weiss et al. 2008); so, it is important to

maintain quality in the environmental forecasts as res-

olution increases.

The purpose of this paper is to produce a quantitative

comparison of forecasts of the preconvective and near-

storm environments from the convection-allowingmodels

and forecasts of the environments from operational me-

soscale models. Most of the model evaluations are re-

stricted to the regions of the United States that have

the potential for severe weather on a given day, which

provides a potentially more meaningful analysis than if

the evaluations were performed over the entire model

domains, which cover at least the eastern two-thirds of

the CONUS. More specifically, this paper addresses the

following questions:

1) What are the model biases and how quickly do

forecast errors in the preconvective and near-storm
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environmental fields grow in the CAMs and in the

lower-resolution models?

2) How do forecasts of the environment from the CAMs

compare to those from lower-resolution operational

models?

3) Do ensemble mean CAM forecasts of the environ-

ment improve upon those from the deterministic

CAMs composing the ensemble?

Knowledge gained from answers to these questions can

provide specific information tomodel developers that can

guide efforts to improve various components of theWRF

model and aid in continued development of operational

CAM systems. Furthermore, this knowledge may help

forecasters assess how much confidence to have in model

guidance for severe weather–forecasting applications.

2. SE08 models

a. Deterministic WRF models

The model evaluation includes output from various

configurations of the WRF model provided by the

Center for Analysis and Prediction of Storms (CAPS)

at the University of Oklahoma, the National Centers

for Environmental Prediction/Environmental Modeling

Center1 (EMC), the National Center for Atmospheric

Research (NCAR), and NSSL (see Table 1 for a de-

scription of each model). The forecasts were initialized

at 0000 UTC and 1-hourly forecast output was provided

out to at least 30 h for each day of the experiment. Al-

though the size of the domains varied among themodels,

all of the models covered roughly the eastern three-

fourths of the CONUS.

The EMC and NSSL models used the 0000 UTC

analyses of the operational NAM model (Janjić 2003)

for the ICs and the correspondingNAM forecasts for the

LBCs. The EMC model used the 12-km operational

NAMwhile the NSSLmodel used the operational NAM

fields interpolated to a 40-km domain. The NCAR

model used theWRF three-dimensional variational data

assimilation (3DVAR) assimilation system on a 9-km

outer domain, cycling every 3 h from 1200 UTC to

0000 UTC, to provide ICs for the NCAR one-way

nested inner domain with 3-km grid spacing, which was

then initialized at 0000 UTC. Both the 9-km and 3-km

forecasts extended for an additional 36 h, with the LBCs

for the 3-km nest coming from the parallel 9-km run.

ICs and LBCs for the 9-km run were supplied from the

operational EMCGlobal Forecast System (GFS) model

(Environmental Modeling Center 2003). Although the

NCAR model is not the primary focus of this paper,

an evaluation of output from the 3-km domain is pre-

sented because this system provided the first extensive

real-time test of the WRF 3DVAR system used with

a convection-allowing configuration.

b. Advanced Research version of the WRF

(WRF-ARW) 10-member ensemble

The 10-member WRF ensemble was produced by

CAPS (Table 2) and run at the Pittsburgh Super-

computing Center. It used physics and IC–LBC diversity

in 9 out of 10 members, with one control member

(identified as CAPS-CN in Table 1 and CN in Table 2)

and eight perturbed members. The control member uses

a real-time analysis using the Advanced Regional Pre-

diction System (ARPS) 3DVAR system for the ICs

(Gao et al. 2004; Hu et al. 2006), in conjunction with the

12-km NAM 0000 UTC analysis that was used as the

background field. Additional data from the wind profiler

and surface observation networks, as well as radial ve-

locity and reflectivity data from theWeather Surveillance

TABLE 1. Configurations for the four deterministic WRF models examined in this study: MYJ, Mellor–Yamada–Janjić turbulence

parameterization scheme (Janjić 2001); NMM, Nonhydrostatic Mesoscale Model (Janjić et al. 2005); ARW, Advanced Research WRF

(Powers andKlemp 2004); Ferrier, Ferrier et al. (2002);WSM6,WRF single-moment, six-classmicrophysics; Thompson,Hall et al. (2005);

GFDL, Geophysical Fluid Dynamics Laboratory (Tuleya 1994); Dudhia, Dudhia (1989); Goddard, Goddard shortwave radiation (Chou

and Suarez 1994); and RRTM, Rapid Radiative Transfer Model (Mlawer et al. 1997).

WRF name NSSL EMC NCAR CAPS-CN

Horizontalgrid spacing (km) 4.0 4.0 3.0 4.0

Vertical levels 37 43 40 51

Boundary layer/turbulence MYJ MYJ MYJ MYJ

Microphysics WSM6 Ferrier Thompson Thompson

Shortwave (longwave) radiation Dudhia (RRTM) GFDL (GFDL) Dudhia (RRTM) Goddard (RRTM)

ICs 40-km NAM 32-km NAM Parallel 9-km WRF–GFS 3DVAR analysis

using 12-km NAM

analysis background

Dynamic core ARW v2.2 NMM v2.2 ARW v.3 ARW v2.2

1 This run is similar to the operational ‘‘high-resolution window’’

deterministic forecasts run at ;4-km horizontal resolution pro-

duced by the EMC, which are nested within the 12-km NAM do-

main. More details on these forecasts are available online (http://

www.emc.ncep.noaa.gov/mmb/mmbpll/nestpage/).
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Radar-1988 Doppler (WSR-88D) network (Xue et al.

2008), were used in the assimilation. The forecasts from

the 12-km NAM 0000 UTC cycle were used to provide

the LBCs. Mesoscale atmospheric perturbations were

introduced in the ICs–LBCs of these eight members

by extracting four pairs of positive–negative bred per-

turbations from EMC’s operational Short-Range En-

semble Forecast (SREF) system (Du et al. 2006) and

applying them separately to the eight members. Fur-

thermore, radar data (3D reflectivity and radial velocity)

were assimilated into the control and the eight perturbed

members, using the ARPS 3DVAR data assimilation

system. The 10th member was configured identically to

the control member, except that it used the 12-km NAM

0000 UTC analysis directly; that is, no data assimilation

was conducted (identified as C0 in Table 2).

3. Model evaluation method

An objective evaluation of the model output was

performed to supplement the subjective findings of the

SE08 participants. Select model forecast fields and 20-km

RUC analyses were filtered to a common domain using

a Gaussian distance-dependant weighting function. The

common domain covers roughly the eastern two-thirds

of the CONUS (Fig. 1) with a horizontal grid spacing of

roughly 1/38 3 1/38 in latitude and longitude, giving a zonal

grid length of about 24 km at the southern boundary and

about 33 km at the northern boundary. The filtering of

the model fields allows for a more direct comparison of

the mesoscale and larger-scale features from the various

models to the resolvable scales of the associated RUC

analyses than if the native grids were used and reduces

greatly the influence of the convective-scale perturba-

tions on the analysis (see the appendix for more details

on the filtering procedure).

Six fields were selected for the evaluation, including

the 2-m and 850-hPa temperature (TMP2m and TMP850)

and dewpoint (DPT2m and DPT850), the convective

available potential energy of a surface parcel (CAPE2),

and the magnitude of the vector difference of the winds

(wind shear) between 10 m and 500 hPa (WSHR). These

fields from the four daily WRF model forecasts (de-

scribed in Table 1) and the mean of the CAPS ensemble

(CAPS-ENSMEAN) are filtered to the common grid

every 3 h from 0 to 30 h. In addition, the accuracy of the

CAM forecasts of the preconvective and near-storm

environments compared to the lower-resolution models

is examined by filtering the forecasts from the opera-

tional versions of the NAM and GFS3 models to the

common grid using the same method for filtering the

CAM forecasts described above. The associated analy-

ses are obtained by filtering the 20-km RUC analyses

to the common grid using the same method. We refer

the interested reader to Benjamin et al. (2004b, 2007)

for a detailed description of the RUC model and the

data assimilation system and to Benjamin et al. (2004a)

TABLE 2. Variations in the ICs, LBCs,microphysics, shortwave radiation, and planetary boundary layer physics for the 2008CAPS 4-km

WRF-ARWensemble forecasts. NAMa indicates the 12-kmNAManalysis; NAMf indicates the 12-kmNAM forecast. All members used

the RRTM longwave radiation scheme, and the Noah land surface model scheme. YSU refers to the Yonsei University PBL scheme.

Additional details about the initial and boundary conditions and the perturbations can be found online (http://www.emc.ncep.noaa.gov/

mmb/SREF/SREF.html) and in Xue et al. (2008).

Member IC LBC Radar Microphysics Shortwave radiation PBL scheme

CN ARPS 3DVAR Analysis 0000 UTC NAMf Yes Thompson Goddard MYJ

C0 00Z NAMa 0000 UTC NAMf No Thompson Goddard MYJ

N1 CN – arw_pert 2100 UTC SREF arw_n1 Yes Ferrier Goddard YSU

P1 CN 1 arw_pert 2100 UTC SREF arw_p1 Yes WSM6 Dudhia MYJ

N2 CN – nmm_pert 2100 UTC SREF nmm_n1 Yes Thompson Goddard MYJ

P2 CN 1 nmm_pert 2100 UTC SREF nmm_p1 Yes WSM6 Dudhia YSU

N3 CN – etaKF_pert 2100 UTC SREF etaKF_n1 Yes Thompson Dudhia YSU

P3 CN 1 etaKF_pert 2100 UTC SREF etaKF_n1 Yes Ferrier Dudhia MYJ

N3 CN – etaBMJ_pert 2100 UTC SREF etaBMJ_n1 Yes WSM6 Goddard MYJ

P4 CN 1 etaBMJ_pert 2100 UTC SREF etaBMJ_n1 Yes Thompson Goddard YSU

2 It should be noted that the ‘‘surface’’ CAPEused in this study is

not computed identically among themodels. The parcel that is used

to calculate the RUC surface CAPE is an average of the thermo-

dynamic conditions of the lowest seven model levels (;50 hPa

deep), whereas the surface CAPE values from the NAM and the

CAMs use the parcel with the maximum equivalent potential

temperature (ue) in the lowest 70 hPa. Although these differences

limit the ability to interpret any individual model–analysis com-

parisons, the results are presented to illustrate themagnitude of the

typical differences in CAPE between the model outputs and the

analyses that are currently available routinely in operations.
3 The interpolation of the GFS forecast fields required different

parameters in the filtering procedure because the resolution of the

GFS input grids is lower than that of the common grid. This re-

sulted in smoother fields compared to the filtered fields from the

other models.
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for a detailed comparison of the RUC analyses to ob-

servations.

A daily task for the SE08 participants was developing

an experimental severe weather forecast within a re-

gional domain selected by the participants. The size of

the regional domain was held fixed at roughly 1200 km3

900 km, but was moved daily to a region deemed likely

to experience convective weather during the forecast

period (see Fig. 2 for an example of the regional domain

and an experimental forecast). The objective evaluation

of the model output discussed herein focuses on the

area encompassed by these regional domains and to the

31 days on which an experimental forecast was issued

(see Fig. 1 for the center points used for the regional

domains during the SE08). This focuses the quantitative

evaluation to specific regions known to be relatively

favorable for severe convective weather throughout the

period examined. The objective measures for each

forecast field include the mean error (bias) and the root-

mean-square error (RMSE) between the filtered model

fields and the filtered RUC analyses over all grid points

within the regional domain at a given time or over

a specified time period, depending upon the particular

analysis.

4. Mean RMSE and bias time trends

a. Model RMSE averaged over the regional domains

Of interest to model developers and users of 18–

30-h model forecasts for severe weather–forecasting

applications is the growth of the errors starting from the

initial model state (represented here as the difference

between the model forecasts and the associated RUC

analysis). The mean RMSEs for each variable, averaged

over the regional domains for all days of the experi-

ment, are found to have different growth characteristics

(Fig. 3). Nearly all of the TMP850 errors grow steadily

through 12 h, then are steady or decrease in the 12–21-h

period before exhibiting growth again from 18 to 30 h

(Fig. 3c). For the next-day convective forecasts (18–

30 h), the TMP850 errors are 1.4–1.8 times larger com-

pared to the initial errors. Similarly, WSHR errors for

most of the models show initial growth out to 9 h, then

are steady or decrease during the 9–15-h period, before

increasing once again from 15 to 30 h (Fig. 3f). As for

TMP850, the WSHR errors are 1.4–1.8 times larger for

the 21–30-h forecasts compared to the initial errors,

which is slightly smaller than the 1.5–2.5-day doubling

times for errors in model fields dominated by larger-

scale flows found in Simmons et al. (1995).

The TMP2m, DPT2m, and DPT850 errors (Figs. 3a,

3b, and 3d) seem to be affectedmore by the diurnal cycle

over the 30-h period than the TMP850 and WSHR er-

rors. This dependence on the diurnal cycle is clearly

manifest in the CAPE errors, which are 2–3 times larger

in the late afternoon than in the early morning (Fig. 3e).

Although the error growth for CAPE contains a strong

diurnal signal, the removal of this signal still reveals an

increasing trend; the CAPE errors at 24 h (valid at 0000

UTC the following day; the same nominal time of the

initial analysis) are 1.2–1.8 times larger compared to the

initial time, which is smaller than the error growth for

the TMP850 andWSHR (Figs. 3c and 3f). This relatively

slow growth in the model error of fields that are directly

impacted by the planetary boundary layer (PBL) evo-

lution compared to the typical growth of errors in larger-

scale flows in the free atmosphere (Simmons et al. 1995;

Wandishin et al. 2001) is found in Mass et al. (2002),

Eckel and Mass (2005), and Kong et al. (2007). Mass

et al. (2002) suggest that orography, surface forcing for

heat andmoisture fluxes, and the greater influence of the

physical parameterizations of the PBL at the mesoscales

add a more predictable, deterministic component to the

deterioration of the larger-scale forecasts that acts to

constrain the growth of the initial errors.

b. Model bias averaged over the regional domains

Some insight into the contributions to themeanRMSE

values is gained by examining the mean biases (Fig. 4).

The 2-m temperatures tend to be too warm at night

(0300–1200UTC) and too cool during the afternoon and

evening (1800–0000UTC), although a few do not exhibit

FIG. 1. The common domain that contains the filtered RUC

analysis andmodel forecast fields. The three-letter station identifiers

indicate the center points for the regional domains used to make

experimental forecasts during the SE08 and to evaluate the models

in this study (see Fig. 2 for an example of the sizes of the regional

domains). A total of 31 domains were used during the experiment

(domains RSL and HLC were chosen twice).
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this tendency (Fig. 4a). For example, the NCAR run

tended to be too cool at the surface at all hours except

at the 0000 UTC start time and at 1800 UTC, and the

CAPS-CN and NAM models maintain a slight warm

bias throughout the daytime hours.

The diurnal variations seen in the mean RMSEs for

TMP2m, DPT850, and CAPE (Figs. 3a, 3d, and 3e) are

likely a reflection of the diurnal variations in the mean

biases among the various models (Figs. 4a, 4d, and 4e).

Interestingly, the two lower-resolution models (NAM

and GFS) showed very little bias for DPT850 (Fig. 4d)

and their RMSE values were among the smallest of all

the models (Fig. 3d), whereas all of the CAMs show

a distinct dry bias for DPT850 (Fig. 4d), which is dis-

cussed further in section 5. The TMP850 errors tend to

be small, but show a slight warm bias early in the diurnal

cycle (Fig. 4c).

Finally, it is noteworthy that all of the models

underforecast the magnitude of the wind shear during

the day and the negative biases peak in the period when

most severe convection tends to occur (Fig. 4f). The

reasons for this low bias are examined further in section 5.

This lowWSHRbias could partly explain the inability of

the CAMs to maintain strong convective structures in

the early nighttime hours noted by the SE08 participants

and which is shown in Fig. 4 of Schwartz et al. (2010) and

Fig. 3 of Clark et al. (2009) for the convection-allowing

models run for the 2007 spring experiment.

5. Comparison of operational mesoscale models

and CAM forecasts

A primary goal of this study is to compare the fore-

casts of the environment from the deterministic CAMs

to the lower-resolution models that provide the ICs

and LBCs. An assessment of the environment fore-

casts remains an essential part of the severe convective

weather forecast process, and these results can allow

forecasters to gauge the performance of the CAMs

against the NAM and GFS forecasts that are used

widely in operations.

a. Spatial distribution of model bias

The model biases averaged over the regional domains

(Fig. 4) are explored further by calculating the spatial

distribution of the biases over all days and all times for

which model output was available. The technique de-

scribed in Elmore et al. (2006) to determine the statis-

tical significance of biases in the face of naturally

occurring spatial correlation is used for this comparison.

It is found that the CAM forecasts tend to produce

larger biases than the NAM forecasts over much of the

FIG. 2. Example of a regional domain selected by the SE08 participants for the experimental

forecast. The size of this domain remained the same throughout the experiment and only varied

by center point, which was Clinton,OK (CSM), on this day. The contours depict areas expected

to receive severe weather from 2100 UTC 5May to 0500 UTC 6May 2008; the percentages are

the chances of receiving severe weather within 25 mi of any point.
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FIG. 3. RMSEs from the model runs, averaged over the regional domains for all days vs

forecast hour for the six model fields described in the text.
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FIG. 4. As in Fig. 3, but for the mean error (bias).
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CONUS and formany variables, particularly for low-level

temperature. The NSSL model is used in an illustration

of this larger bias (Figs. 5 and 6) because the low-level

thermodynamic error characteristics from similar models

have been examined extensively in previous spring ex-

periments through subjective comparisons of forecasts

and observed soundings (Kain et al. 2008). These com-

parisons made in past spring experiments revealed sys-

tematic biases that are confirmed in this study and

discussed below.

TheNAM24-h forecasts of TMP2m show regions that

tend to be too cool and too warm in regional corridors

(Fig. 5a), but a common systematic bias noticed by the

spring experiment participants is illustrated by theNSSL

24-h forecasts that clearly show a cool bias over most of

the domain (Fig. 5b). This led Kain et al. (2005) to

suggest that the Mellor–Yamada–Janjić (MYJ) scheme

in theWRF-ARW core, working with the NAM ICs and

LBCs, is largely responsible for creating these condi-

tions that are usually too cool near the surface during the

late afternoon and early evening hours. The regions that

show the largest TMP2m cold biases in the NSSL model

(southern Iowa and Missouri and over the Appalachian

states) are regions that show only a slight cool bias in the

NAM (Figs. 5a and 5b). The biases in TMP850 show

similar characteristics (Figs. 5c and 5d). In particular, the

NSSL model has a significant cold bias at 850 hPa along

the high plains, where there is no significant bias in the

NAMmodel. Likewise, the regions that show a small to

insignificant cool bias at 850 hPa in the NSSL forecasts

(central to northern high plains and eastern Texas) are

regions that show a warm bias in the NAM model (Figs.

5c and 5d). This suggests that the physical parameteriza-

tions used by the NSSL model are systematically adding

a cold bias to forecasts that use the NAM ICs and LBCs.

Kain et al. (2005) and Weisman et al. (2008) also

suggested that the MYJ scheme run with convection-

allowing resolutions produces a moist bias in the PBL.

The present results for the NSSL DPT2m forecasts

confirm their findings, particularly over theMidwest and

Great Lakes regions (Fig. 6b). Note that the 2-m moist

bias is even worse for the NAM forecasts over this same

region (Fig. 6a). However, the improvement in the NSSL

2-mdewpoint forecast bias over theNAMmodel over the

Midwest andGreat Lakes region is not evident in the bias

time trends (Fig. 4b) because the regional domains were

usually not located in this area (Fig. 1). Over the regional

domains, which were usually centered in the central and

FIG. 5. A comparison of the spatial distribution of the 24-h forecast mean temperature errors (8C) (biases, or

modelminus analyses) between theNAMandNSSLmodels at 2 m and at 850 hPa. The areas filled in brown for the

850-hPa plots indicate a mask used for data below ground or data outside of the native grid for the NSSL plot and

the light blue areas indicate amask used for grid points over theGulf ofMexico and theAtlanticOcean.All colored

areas outside of the masks indicate significant errors at a 95% confidence level [see Elmore et al. (2006) for details

on how the confidence levels are calculated].
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southern plains (Fig. 1), the DPT2m biases were rela-

tively small for both the NSSL and NAM forecasts

(Figs. 4a and 4b) and there was no substantial difference

between the NSSL and NAM forecasts seen in the mean

spatial bias (Figs. 6a and 6b).

The moist bias at 2 m for the NAM and NSSL fore-

casts is not as widespread at 850 hPa (Figs. 6c and 6d),

but there are differences in the biases between theNAM

and NSSL forecasts. The significant mean errors for

DPT850 tend to be too moist for the NAM forecasts

(except over western Texas), but the sign of the dew-

point bias for the NSSL model forecasts depends on

location (Fig. 6d). The NSSL forecasts tend to be too

moist over the northern high plains andMidwest and too

dry from Texas into the lower Ohio Valley. Thus,

a dominant dry bias exists in the time trend at 850 hPa

for the NSSL forecasts (Fig. 4d) because the regional

domains were usually located over the central and

southern plains (Fig. 1) where the NSSL model tends to

be too dry at 850 hPa (Fig. 6d). Note that the NAM

DPT850 forecasts were nearly unbiased over the re-

gional domains (Fig. 4d), indicating again that the NSSL

model is producing a bias that is not evident in the NAM

over the regional domains.

Output from the NAM model, two deterministic

models (NSSL and NCAR), and the CAPS-ENSMEAN

are used to illustrate an interesting regional bias in

vertical wind shear common tomost of themodels (Fig. 7).

Overall, the WSHR forecasts show little significant bias

over much of the domain at 21 h, but a significant neg-

ative bias of 2–3 m s21 is found over much of the cen-

tral and southern high plains. This creates the negative

WSHR biases seen in the time trends averaged over

the regional domains (Fig. 4f). Southeastern Colorado

is a region with low WSHR forecasts in particular, in

which the mean negative bias exceeds 4 m s21 in the

NAM (Fig. 7a) and CAPS-ENSMEAN (Fig. 7d). In-

cluded in Fig. 7 is the mean vector error in the 10-m

winds at the locations with a statistically significant

meanWSHR bias. The westerly direction of most of the

error vectors illustrates a tendency of the models to veer

the 10-mwinds toomuch over this region, resulting in an

overall decrease in the mean wind shear. Although the

reasons for this tendency of themodels to veer the winds

over this region are not clear, the slight dry bias in low

levels, especially at 850 hPa (Fig. 6d), suggests that the

models tend to push the dryline too far east. Indeed, this

was a tendency noted by SE08 participants on several

occasions.

b. RMSE ranks

The previous section illustrated that the CAMs tend

to produce larger biases over much of the CONUS

compared to the NAM. Likewise, there is no consistent

FIG. 6. As in Fig. 5, but for the mean 24-h forecast dewpoint errors.
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improvement in the forecasts of the CAMs over those of

the NAM and GFS models in terms of the mean RMSE

and bias averaged over the regional domains (Figs. 3 and

4). This is consistent with the results of Mass et al.

(2002), who showed little to no consistent improvement

in the objective verification results for model fields at

4-km grid spacing compared to 12-km grid spacing over

a much more limited region of the Pacific Northwest

(although the fast LBC update in their two-way nesting

procedure ensures a stronger influence by the LBCs in

their case).

The lack of consistent improvement in the CAM

forecasts versus the GFS, and the NAM forecasts es-

pecially, is shown further by viewing the frequency dis-

tribution of the relative RMSE ranks of the models for

each day (Fig. 8). The models are ranked using the

24 days for which the model output was available for all

of the models over the period examined. The 15–21-h

period is examined to allow the next day’s diurnal cycle

to be represented in the statistics, while focusing on the

time period that typically precedes convective initiation

or represents the early evolution of the daily convective

activity (Schwartz et al. 2010; Clark et al. 2009). The

NAM forecasts of DPT850 and CAPE over the 15–21-h

forecast period are ranked in the top three almost 80%

of the time (Figs. 8d and 8e). There does not appear to

be any substantial improvement in the performance of

the CAMs compared to the NAM and GFS, and, in fact,

the CAM forecasts tend to be slightly worse overall

according to the mean RMSE ranks.

c. Similarities in large-scale boundaries and CAM

errors away from the boundaries

Although the use of a mean RMSE over a regional

domain cannot separate objectively the contributions of

the timing, location, and magnitude errors, inspection of

the forecasts by the SE08 participants and by the authors

revealed that the placement of mesoscale and synoptic-

scale features in the NAM forecasts was very similar to

the location of the features in the CAMs, as noted sim-

ilarly in Weisman et al. (2008). This is most apparent by

focusing on the EMC model, which uses the same dy-

namic core [the Nonhydrostatic Mesoscale Model ver-

sion of the WRF model, WRF-NMM; Janjić et al.

(2005)] as the NAM. The EMCmodel used in this study

is essentially a higher-resolution version of the NAM

used without cumulus parameterization (there are other

minor differences, however, which prevent a complete

isolation of the effects of higher resolution).

A comparison of theNAMandEMCTMP2m forecasts

on a day in which the NAM forecast of the preconvective

environment showed one of the largest improvements

FIG. 7. As in Fig. 5, but for a comparison of the mean 21-h forecast 10-m to 500-hPa wind shear errors (m s21) for

the NAM, NSSL, NCAR, and CAPS-ENSMEAN. The vectors indicate the mean 10-m wind vector errors and are

shown only where the wind shear errors are statistically significant.
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in RMSE over the CAMs is shown in Fig. 9. The only

significant large-scale airmass boundary in the region

was a cold front positioned from the Nebraska–Iowa

border into the Oklahoma panhandle (Figs. 9a and 9d).

Both the NAM and EMC forecasted the cold front

too far to the north and west. The difference fields of

both models compared to the associated RUC analysis

(Figs. 9c and 9f) show that the incorrect placement of the

front resulted in positive temperature errors over Kansas

and central Nebraska and negative temperature errors

to the east. Although there are differences in the place-

ment of the cold front between the NAM and EMC

forecasts, which results in different error magnitudes

in this region (Figs. 9c and 9f), the models are clearly

more like each other than the associated RUC analysis.

Based on the author’s experience, operational fore-

casters at the SPC have recognized this similarity the

last few years.

The example in Fig. 9 illustrates the typical similarities

between the NAM and CAM forecasts. Although not

FIG. 8. The relative ranks of the RMSE, ranked from lowest to highest, averaged over the 15–21-h forecast period

and averaged over the regional domains for each model and for the six model fields described in the text. For

example, the top-left panel shows that the CAPS ensemble mean forecasts of 2-m temperature had the lowest RMSE

on 35% of the days and the second lowest RMSE on 25% of the days. Only those days for which model output was

available for all the models were used to calculate the rankings for each variable. Note that the TMP850 andDPT850

were not available for the EMC model and the CAPE was not available for the GFS model.
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FIG. 9. A comparison of (a),(d) the TMP2mRUCanalysis at 2100UTC 1May 2008 and (b) the NAMand (e) EMC

21-h forecasts valid at the same time within the regional domains. The frontal positions are determined subjectively

through inspection of the filtered temperature and wind fields. (c) The difference in TMP2m between the NAM

forecast and the RUC analysis and (f) the difference between the EMC forecast and the RUC analysis.
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always the case, the errors in the placement of airmass

boundaries in the CAMs often appear to be driven

largely by the LBCs, resulting in similar error patterns in

the placement of mesoscale and synoptic-scale features.

However, an important point to make is that significant

differences in the errors between the NAM and CAMs

also are present away from the airmass boundaries.

For example, the negative temperature errors found in

the NAM forecast in eastern Oklahoma and Missouri

(Fig. 9c) are exacerbated in the EMC forecast (Fig. 9f).

An inspection of model soundings by the SE08 partici-

pants revealed the most noticeable difference between

the observations and the model forecasts from eastern

Oklahoma to central and northern Missouri is the pres-

ence of widespread low-level clouds in both the NAM

and EMC forecasts. Morning surface observations and

subsequent visible satellite observations show that much

of this region was indeed covered by low-level clouds

during the morning hours, but this cloud cover had

thinned and become much more isolated by the after-

noon hours (not shown). This analysis suggests that the

large negative temperature errors in this region are

likely due to the inability of the model physical param-

eterizations to properly predict the evolution of the low-

level clouds and their effects on the temperature and

moisture profiles in the PBL during the day, which was

a common analysis made by the SE08 participants.

It is recognized that a comparison of the RMSE time

trends cannot separate the contributions of timing, lo-

cation, and spatial structure errors. Although the use of

a verification technique that could separate these sources

of error (e.g., Davis et al. 2006) is beyond the scope of

this paper, the influence of location errors can be re-

moved through an inspection of the distributions of the

forecast and observed variables over the regional do-

mains. An example is shown in Fig. 10, which reveals

that the EMC forecasts also have a cold bias overall, as

found was for the NSSL (Figs. 4a and 5b) and NCAR

models (Fig. 4a). Furthermore, Fig. 10 adds that the EMC

forecasts are too cold more frequently than the NAM

forecasts. This is revealed by the fact that the distribu-

tion of EMC temperatures is shifted to the left, toward

colder values compared to both the NAM forecasts and

the RUC analyses (Fig. 10). This conclusion that the

forecast values tend to have a distribution displaced

farther away from the RUC analyses than the NAM

forecasts is valid for many of the CAMs and the other

variables (not shown). This is further evidence that the

larger errors noted in the EMC forecasts overall and

in the other CAMs (Fig. 3) have a significant contribu-

tion from errors present over much of the domain and

are not simply due to location errors of the airmass

boundaries.

The modulating effects of errors that occur away from

the airmass boundaries are also suggested for many var-

iables in Fig. 3 (not just TMP2m), in which the changes in

the mean RMSE for the NAM forecasts with time (black

dashed line) follow the changes in the forecasts from the

deterministic CAM models that use the NAM for the

ICs and LBCs. Again, this comparison is best made

between the EMC andNAMmodels, since thesemodels

share the same WRF dynamic core and model physics,

aside from the lack of cumulus parameterization in the

EMCmodel (cf. the purple line to the black dashed lines

in Fig. 3).

To summarize this last point, the placement of air-

mass boundaries is often similar between the CAM

forecasts and the NAM forecasts that provide the ICs

and LBCs. Significant location errors can be the result,

as exemplified in Figs. 9c and 9f. However, as is also

exemplified in Fig. 9, a portion of the errors in the pre-

convective and near-storm environments in the CAMs

appears to emanate from inaccuracies in the forecasts

away from these boundaries. The NAM–EMC com-

parisons (Figs. 9 and 10) and the trends and rankings of

the RMSEs (Figs. 3 and 8) suggest that these errors

away from the airmass boundaries tend to be worse in

the CAMs as compared to theNAM forecasts. Although

the specific reasons for this result are not clear, this

suggests that the configuration of the physics used at

coarser resolutions (and the attendant simplifications/

assumptions) are not sufficient at higher resolutions.

This insufficiency may be leading to degradation of the

CAM forecasts of the environment, which is discussed

further in section 6.

FIG. 10. The distribution of 21-h forecasts and RUC analyses of

TMP2m over the regional domains on 10 ‘‘clean slate’’ convective

days, in which there was little to no deep convection in the model

forecasts or in the real atmosphere within the regional domains in

the period leading up to the forecasts (see section 5b). The lines

connect the frequency values for each bin for theNAM(thick black

line) and theEMC (thick gray line) forecasts and theRUCanalyses

(thin black line).
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d. Comparison of CAPS-ENSMEAN to other

models

The final goal of this study is to examine forecasts of

the environment provided by the CAPS ensemble com-

pared to the other model forecasts. As found with meso-

scale ensembles (Wandishin et al. 2001;Homar et al. 2006;

Jones et al. 2007), the present results show substantial

improvement in the model forecasts of the environment

with the convection-allowing ensemble compared to the

deterministic convection-allowing model forecasts. It is

clear from Fig. 3 that the CAPS-ENSMEAN forecasts

almost always improved upon the CAPS-CN forecast

(examination of daily error comparisons, not shown,

confirms this result), and from Fig. 8 that the CAPS-

ENSMEAN forecasts tend to be ranked higher than the

other models for all of the variables, except for CAPE.4

It is intriguing that for most of the variables, the CAPS-

ENSMEAN forecasts are ranked in the top three on at

least 70%of the days. In fact, the forecasts ofWSHR are

ranked first almost 80% of the time and are ranked in

the top three on all 24 of the days (Fig. 8f).

To ensure that these improvements were not simply

the result of the smoothing inherent in producing the

mean fields, the relative ranks shown in Fig. 8 are cal-

culated again, but only for the 15- and 18-h forecasts

(valid at 1500 and 1800 UTC) over the 16 days with

a ‘‘clean slate’’ preconvective environment, which are

defined to be days with little to no deep convection

within the regional domain from 0900 through 1900UTC.

This prevents any convective feedback from unfairly

handicapping the deterministic CAMs in a comparison

to the ensemble mean fields. It is seen that the CAPS-

ENSMEAN forecasts still improve upon the CAPS-CN

forecasts for all variables except CAPE when only

the undisturbed preconvective environments are ex-

amined (Fig. 11). For the WSHR forecasts, although

the percentage of number one rankings for the CAPS-

ENSMEAN declines (Figs. 8f and 11f), it still ranks first

on almost 60% of the days (10 out of 16) and the per-

centage of rankings in the top two remains nearly the

same for all days.

The above analysis gives further support that the filter

produces an equitable quantitative comparison of the

environments and damps the convective-scale features,

since the long-term error statistics on all days and on

those days with little to no convection are very similar.

In addition, it strengthens the conclusions that the CAM

forecasts are typically worse overall than the NAM and

GFS forecasts for environmental parameters; yet, the

CAPS-ENSMEAN forecasts are almost always better

than the control and are frequently better than the other

models, regardless of their native grid lengths and ef-

fective resolutions. Implications for this result are dis-

cussed in section 6.

6. Summary and discussion

This study examines the quality of the preconvec-

tive and near-storm environment forecasts from the

convection-allowing WRF models run for the 2008

NOAAHWT spring experiment. The goal of this paper

is to present the typical error characteristics of CAMs

in severe weather–relevant subdomains and to compare

them to the lower-resolution models used frequently

in operations and to the mean of an ensemble of CAMs.

The motivation came from recent studies (Weisman

et al. 2008; Weiss et al. 2008; Schwartz et al. 2009) and

experiences during the SE08 that show a strong corre-

spondence of CAMmodel forecasts of convection to the

precipitation forecasts of the lower-resolution models

that provide the initial conditions (ICs) and the lateral

boundary conditions (LBCs). Indeed, SE08 participants

noted errors in the preconvective environment that had

a large influence on the timing and location of convec-

tion for 18–30-h forecasts on several days. However, it

was not clear how the forecasts of the environment with

increased resolution compared overall to the forecasts

of the environment from the lower-resolution model

output. Understanding the nature of the errors in the

prediction of the environments by the CAMs is impor-

tant to the continued development of the models at such

high resolution and in the use of CAM-based systems at

operational forecasting centers.

Although the use of summary statistics in this study

(mean RMSE and bias) cannot separate the contribution

of timing, location, and magnitude errors objectively,

inspection of the forecasts reveals that the placements of

larger-scale airmass boundaries in the NAM forecasts

were often very similar to the locations of the same

boundaries represented in the CAM models, which re-

sulted in similar timing and placement of convective

features for next-day convective forecasts (18–30 h). This

correspondence contributed to similar temporal trends

in the mean RMSE values among several variables ex-

amined. However, despite these similarities in the mean

error patterns in the CAM and NAM forecasts resulting

from location errors, substantial errors were also found

away from the airmass boundaries that were often ex-

acerbated in the CAMs. For example, the tendency for

4 The CAPS-CN forecasts of CAPE are often ranked the worst

among all the models, for reasons that are not clear, but the CAPS-

ENSMEAN forecasts are still almost always ranked higher than

the CAPS-CN forecasts, even if the forecasts are not accurate

compared to the other models.
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the CAMs to display a systematic cold bias was exam-

ined in detail.

Although this study does not isolate specific reasons

for these error characteristics, we offer some hypotheses

for some of the more pertinent results. Although the

influence of the initialization and the strategy for the

lateral boundary conditions cannot be ruled out (Warner

et al. 1997), experience with a subjective evaluation of

CAM forecasts during NOAAHWT spring experiments

(Kain et al. 2005, 2008), and the results presented in this

study showing the model biases in the CAMs (Figs. 4–7

and 10), suggests that these errors away from airmass

boundaries are linked to physical parameterizations

used at model grid lengths that allow convection, espe-

cially parameterizations for boundary layer processes

and shallow (nonprecipitating) clouds at or near the top

of the boundary layer. All of the fields examined in this

study are strongly modulated by these two parameteri-

zations because each field is sensitive to the growth and

decay of the planetary boundary layer (PBL), in addition

to other parameterized processes such as exchanges with

the underlying surface below and the free atmosphere

FIG. 11. As in Fig. 8, but for the 16 clean-slate convective days, in which there was little to no deep convection in the

model forecasts or in the real atmosphere within the regional domains in the period from 0900 to 1900 UTC. The

EMC and NCARmodels are not shown because output was available on only 10 of the 16 clean-slate days for these

models.
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above and the degree of cloud cover. The MYJ PBL

scheme, and the methods for how it interacts with other

parameterized processes, were used in all of the deter-

ministic forecasts examined here, yet this scheme was de-

veloped and calibrated using grid spacing of ;O(10 km).

While it may be one of the better-performing PBL

schemes tested in the WRF model, the use of the MYJ

scheme, or any PBL scheme, at ;4 km grid spacing

could be impinging upon a ‘‘gray area’’ in grid spacing,

in which resolved large eddies or horizontal convective

rolls begins to blend with the parameterized mixing

from the PBL scheme (Stensrud 2007). This PBL gray

area could be analogous to the use of convective pa-

rameterization with grid lengths ;O(10 km), in which

the parameterized convective processes mixes with

grid-scale convection (Molinari and Dudek 1992). The

fact that the model fields that are strongly influenced by

the PBL showed relatively slow error growth with time

and a strong diurnal trend in the objective statistics

(Fig. 3) suggests further a dominant role for the surface

and PBL physics at these resolutions compared to other

sources ofmodel error (Mass et al. 2002), such as boundary

conditions and error growth in the background larger-

scale flows.

Another contributor to the relatively high-amplitude

CAMerrors may be the absence of a shallow-convection

parameterization in the CAM configurations. The Betts–

Miller–Janjić (BMJ) SC parameterization (Janjić 1994)

has been documented to produce unrealistic vertical

structures at times (Baldwin et al. 2002), but in the NAM

it provides a critically important transport mechanism

between the MYJ PBL and the free atmosphere, modu-

lating boundary layer growth processes and the exchange

of mass between the PBL and the atmosphere just above

it. There is no parameterization for this process in the

CAMs.

Although the CAMs appear to suffer from relatively

high-amplitude errors in predictions of the convective

environment, we stress that these errors do not prevent

the CAMs from outperforming the NAM in terms of

QPF from both deterministic (Schwartz et al. 2009) and

ensemble perspectives (Clark et al. 2009). It seems likely

that this QPF advantage could be further enhanced if

the WRF model’s physical parameterizations could be

refined for higher-resolution applications. Again, this

study does not isolate the specific causes of the error

characteristics of the CAMs, including the reasons of-

fered above. However, it is hoped that this study pro-

vides an impetus for further research into identifying the

true cause for the poorer environmental forecasts in the

absence of significant convective activity so that forecasts

of both the environment and convection, and the con-

vective feedback to the environment, can be improved.

Finally, it is intriguing that a CAM-based ensemble

mean provides better forecasts of the preconvective and

near-storm environment than the parent NAM, even

though the high-resolution ensemble is anchored by the

CAPS-CN configuration, which does not predict the

environment better than the NAM. Since the NAM

appears to provide a deterministic framework for pre-

dicting the mesoscale environment that is as good or

a better than the CAMs, it seems reasonable to ask,

could a mesoscale ensemble provide even better fore-

casts of the environment than a CAM ensemble? Fur-

thermore, can we then drive individual CAMs with

members from the mesoscale ensemble to derive an

even better deterministic CAM forecast? If these sup-

positions are true, a potentially useful strategy, given

current capabilities of operational models, is to employ

a combination of mesoscale and convection-allowing

configurations to provide guidance for severe weather

forecasters. Ensembles based on mesoscale models may

provide optimal forecasts for the background convective

environment and such ensembles could then be used to

launch CAMs within either deterministic or ensemble

frameworks for explicit predictions of convective storms.

This strategy may be prudent currently for a number of

reasons, not the least of which is cost: computational

expenses for a 4-km grid are at least 27 times higher than

those for the same domain with 12-km grid spacing. This

underscores the need to develop ensemble systems that

are appropriate for explicit predictions of convection.

Recent studies have begun to examine the creation of

CAM forecasts driven by an ensemble of mesoscale

forecasts (Kong et al. 2006; Dowell and Stensrud 2008)

and research is ongoing at theNSSL and SPC to configure

such a system for testing in upcoming NOAA HWT

spring experiments (Stensrud et al. 2008).
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APPENDIX

Filter Description

AGaussian distance-dependent weighting function was

used to interpolate the model fields to the evaluation do-

mains and was designed to remove convective-scale de-

tails completely while retaining meso-b- and larger-scale

features; the filter removes over 99% of the amplitude

FIG. A1. Response function of the Gaussian-weighting function

used to interpolate the model fields to the common domain.

FIG. A2. The 20-kmRUC analysis of TMP2m valid at 2100 UTC

1 May 2008 and the corresponding 21-h forecasts from the filtered

and unfiltered TMP2m fields from the EMC 4-km model over the

regional domain.
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of 30-km-wavelength features while retaining over two-

thirds of the amplitude of 100-km-wavelength features

(see Fig. A1 for the filter response function). The example

shown in Fig. A2 illustrates that the filtered forecast fields

from the CAMs contain spatial structures much closer to

the structures seen in the 20-km RUC analyses than those

from the fields on the native CAM grids.

It should be noted that although the filter is effective

at removing convective-scale details up to 7 times the

grid length of the CAMs (Fig. A2), the feedback of

convective systems to the larger-scale environment is

retained to some degree, especially for larger convective

systems. However, the scale and amplitude of the con-

vectively induced features that are retained in the fil-

tered CAM fields are similar to the scale and amplitude

of the convectively induced features that can be resolved

by the 12-km NAM forecasts and the 20-km RUC anal-

yses. The resulting comparison is then largely a compari-

son of the mesoscale and larger-scale synoptic fields,

with a small contribution from the feedback from con-

vection. We believe the contribution of the convective

feedback to the errors is relatively small, however. As

shown in section 5, a comparison of the long-term error

statistics on all days and on those days with little to no

convection in the real atmosphere or the model envi-

ronments yields very similar results.
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