

M. Janssen et al. (Eds.): EGES/GISP 2010, IFIP AICT 334, pp. 19–31, 2010.
© IFIP International Federation for Information Processing 2010

Evaluation of WS-* Standards Based Interoperability of
SOA Products

for the Hungarian e-Government Infrastructure

Balázs Simon, Zoltán László, Balázs Goldschmidt, Károly Kondorosi,
Péter Risztics, and László Bacsa

Budapest University of Technology and Economics,
Department of Control Engineering and Information Technology

Magyar tudósok körútja 2,
1117 Budapest, Hungary

{sbalazs,laszlo,balage,kondor}@iit.bme.hu,
{risztics,bacsa}@ik.bme.hu

Abstract. The proposed architecture of the Hungarian e-Government Frame-
work, mandating the functional co-operation of independent organizations, puts
special emphasis on interoperability. WS-* standards have been created to reach
uniformity and interoperability in the common middleware tasks for web ser-
vices such as security, reliable messaging and transactions. These standards,
however, while existing for some time, have implementations slightly different
in quality. In order to assess implementations, thorough tests should be per-
formed, and relevant test cases ought to be accepted. For selecting mature SOA
products for e-Government application, a methodology of such an assessment is
needed. We have defined a flexible and extensible test bed and a set of test
cases for SOA products considering three aspects: compliance with standards,
interoperability and development support.

Keywords: Web services, testing; interoperability, WS-* standards, e-Government.

1 Introduction

Similarly to numerous other countries all over the world, Hungary has its own strat-
egy for e-government development [10]. Although Hungary has middle-ranked posi-
tion in the level of e-government services [11], strategic studies and assessments
showed that one of the primary deficiencies is the lack of interoperable, multi- and
cross-organizational back-office functionality.

Several interoperability frameworks have been accepted by national, or union-level
governments or organizations: e-Government Interoperability Framework (eGIF) in
UK, [8], Federal Enterprise Architecture (FEA) in USA, [12], Standards and Architec-
tures for e-Government Applications (SAGA) in Germany [13], European Interopera-
bility Framework (EIF) in EU [7] etc. For interoperable cross-sector collaboration the
concept of Seamless e-Government has been introduced to describe the ideal model of
delivering public services [9].

20 B. Simon et al.

A similar effort has been started in Hungary by establishing the Hungarian
e-Government Framework (HeGF) [14]. The Framework proposes a SOA-based
e-Government Service Bus for the implementation of the integrated back-office ser-
vices. The architecture specifies three layers: process-level layer, service-level layer
and message-level layer. The process-level layer orchestrates cross-organizational
activities and services. The service-level layer defines interfaces, manages the
basic operations, handles security, federated identity and management aspects. It is
based on WS-* standards, and a wide variety of products promising conformity
to them. The message layer is based on a message oriented middleware to provide
reliability.

Early laboratory pilots showed the difficulties of the integration of heterogeneous
components on the basis of WS-* standards. In some cases products did not follow
the standards, in others poor documentation caused difficulties. Two questions arose
at this point: a) are the SOA products mature enough for e-government use; b) how to
select the best product at a future tender.

The rest of this paper describes a methodology developed to evaluate the interoper-
able behavior of SOA products and the quality of the WS-* standards implementa-
tions. Our goal was only the evaluation of the proposed methodology itself, not
pre-selection of product, or making a ranking at this stage. The test cases copied from
the architecture specification in the HeGF are listed in Table 1.

After presenting related work in section II, several SOA products selected for
test are introduced in section III. Section IV enlists the tested WS-* standards.
Section V describes the test cases. Section VI specifies the test environment. Section
VII presents the test results. Section VIII concludes the paper and describes future
work.

Table 1. Test cases from HeGF

Requirement Corresponding test case

Message format M HTTP, SOAP 1.2
Exception handling M HTTP, SOAP 1.2 faults
Addressing M HTTP, SOAP 1.2, WS-A 1.0
Asynchronous messages M HTTP, SOAP 1.2, WS-A 1.0, async
Message level security M HTTP, SOAP 1.2, WS-A 1.0, WS-SC
Transport level security M HTTPS, SOAP 1.2
Binary transmission R HTTP, SOAP 1.2, MTOM
Reliable messaging O HTTP, SOAP 1.2, WS-A 1.0, WS-RM
Short-term transactions O HTTP, SOAP 1.2, WS-A 1.0, WS-AT
Message format O HTTP, SOAP 1.1
Addressing O HTTP, SOAP 1.1, WS-A 1.0
Addressing O HTTP, SOAP 1.1, WS-A 2004/08
Asynchronous messages O HTTP, SOAP 1.1, WS-A 1.0
Binary transmission O HTTP, SOAP 1.1, MTOM
Short-term transactions O HTTP, SOAP 1.1, WS-A 1.0, WS-AT

M=Mandatory, R=Recommended, O=Optional,
WS-A=WS-Addressing, WS-SC=WS-SecureConversation,

WS-RM=WS-ReliableMessaging, WS-AT=WS-AtomicTransaction.

 Evaluation of WS-* Standards Based Interoperability of SOA Products 21

2 Related Work

2.1 WS-I Basic Profile

The various WS-* standards provide too many options from which the implementers
can choose what to implement. This freedom makes interoperability much harder since
different vendors may choose different options to implement. Therefore the Web Ser-
vices Interoperability (WS-I) Organization [1] was formed by a wide range of compa-
nies and standards development organizations to provide best practices called profiles
for a selected set of standards. They also define test cases and create testing tools to
verify the various implementations against these profiles. Software vendors participat-
ing in WS-I usually implement the test cases in their own products.

WS-I defines profiles for the most important WS-* standards. Basic Profile covers
SOAP, WSDL, WS-Addressing and MTOM. Basic Security Profile aims WS-Security
with different Security Token Profiles including SAML. Reliable Security Profile deals
with WS-ReliableMessaging and WS-SecureConversation. WS-Coordination and WS-
AtomicTransaction, however, are not yet included in any profiles.

The advantage of WS-I is that it covers a lot of issues regarding WS-* standards, it
resolves ambiguities, it defines a lot of test cases and it also implements them. The
source codes are available for public access; they can be downloaded from the WS-I
web site. All the major software vendors participate in the WS-I Organization, thus the
profiles defined are a results of a consensus and are expected to be supported in their
products as well.

The disadvantage of WS-I is that its profiles are a result of a slow agreement proc-
ess, therefore it always lags behind the newest versions of the WS-* standards. The
implementations of the test cases are not up-to-date; they cannot keep up with the
acquisitions in the market and the rapid evolution of the products. The test cases focus
mainly on verifying the conformance to the profiles and are not derived from real
customer needs.

2.2 Interop Events

While Windows Communication Foundation (WCF, codename Indigo) was being
developed, Microsoft organized a series of events called Interop Plug-Fests for SOA
vendors to implement a set of test cases by every participant and then execute the tests
between each other. In the previous years numerous Interop Plug-Fests have been
held and the web services endpoints of WCF are still available [2]. The close coopera-
tion of Microsoft and Sun Microsystems has led to a very high level of interoperabil-
ity between WCF and Metro, the web services stack of Sun.

The advantage of these Interop Plug-Fests is that there were very detailed pre-
defined test cases for the selected WS-* standards and the executed tests resulted in
immediate feedbacks to the vendors. The test specifications are still available for
download. Unfortunately, most of the web pages about these Plug-Fests are no longer
available, the evolution of the products is no longer followed and also the source
codes cannot be downloaded.

22 B. Simon et al.

2.3 Web Services Test Forum

Web Services Test Forum (WSTF) [3] is an open community founded by a couple of
software vendors to provide test scenarios and a multi-vendor testing environment.
Customers can also join the community to suggest test cases based on their needs.
After accepting the test cases members of the community can implement them and
provide web services endpoints to the public.

The advantage of WSTF is that it is less formal than a standards body; therefore, it
is more flexible. Members of WSTF do not have to wait for the standards develop-
ment organizations to complete the standards or the final version of SOA products to
be released to start implementing the test cases. The source code is also accessible for
the community. The current test clients provide a user interface only, no automated
tests are defined. Although some test cases are already available for the various WS-*
standards, not all of them are implemented yet, since the community was formed at
the end of 2008. Unfortunately, Microsoft and Sun Microsystems (although acquired
by the community member: Oracle) were not among the founders and Microsoft still
has not joined the community yet.

Another similar initiative to WSTF is the Apache Stonehenge project [4] formed
earlier than WSTF mainly by open-source vendors (Apache, WSO2, Red Hat), but
Microsoft is also a participant and they also welcome other software vendors.

2.4 Other

Senthil et al. [5] examined how WS-I Basic Profile (WS-I BP) 1.0 addresses interop-
erability issues with the core web services standards (SOAP 1.1 and WSDL 1.1).
They found that the efforts point to the right direction, however, there are some limi-
tations, too. The main argument they brought up is that WS-I BP does not deal with
such data types as float, decimal, date and time, and this can result in precision loss in
interoperability scenarios.

Kuppuraju et al. [6] identified various aspects on how to test interoperability of
SOA products based on a case study. They raised the issues but did not provide any
solution: testing tools and test report generation are mentioned only as a future work.
The main issues are compliance tests against WS-I profiles, integration tests for busi-
ness processes, and performance tests. They also identified WS-* standards as a key
to interoperability.

3 SOA Landscape

This section compares the set of products we selected for testing, but this set is far
from complete since there are many more SOA products. The proposed test environ-
ment, however, is flexible and mature enough to extend the range of the current study
to incorporate further products.

Table II. compares the selected products based on the following aspects: name,
vendor name, application server name, Integrated Development Environment (IDE),
web service API, web service stack implementation, supported programming lan-
guages, configuring WS-* protocols.

 Evaluation of WS-* Standards Based Interoperability of SOA Products 23

Other well-known SOA products subject of further investigation include FUSE
from Iona based on CXF, the WSO2 SOA Platform based on Axis2, ActiveVOS from
Active Endpoints, Intalio BPM from Intalio and also TIBCO Service Bus and Sonic
ESB.

Table 2. Comparison of SOA products

name vendor
name

applica-
tion
server

IDE WS
API

WS stack program
language

configuration

WCF Microsoft IIS Visual
Studio

WCF WCF any .NET custom XML

GlassFishESB Sun GlassFish Netbeans JAX-
WS

Metro Java WS-Policy

RAD 7 IBM WAS 7 RAD 7
(Eclipse
based)

JAX-
WS

 Java WS-Policy

WebLogic Suite Oracle WebLogi
c Server

JDeveloper JAX-
WS

 Java WS-Policy

JBoss RedHat JBoss AS Eclipse JAX-
WS

Native
(RedHat);
Metro
(Sun);
CXF
(Iona)

Java custom XML;
WS-Policy

Axis2 Apache Tomcat Eclipse JAX-
WS

Axis2
(WSO2)

Java custom XML

Abbreviations: WCF = Windows Communication Foundation, IIS = Internet Information Services, RAD = Rational Application Developer,
WAS = WebSphere Application Server, AS = Application Server.

4 WS-* Standards

This section gives a short overview of WS-* standards specified in the requirements
of the Hungarian e-Government Infrastructure.

WS-Addressing (WS-A) raises addressing and routing specifications to message
level thus makes them independent of the actual transport layer. The Message Trans-
mission Optimization Mechanism (MTOM) defines how large binary data can be
efficiently transmitted as part of a SOAP message. WS-ReliableMessaging (WS-RM)
can minimize the impact of network communication problems. It can guarantee ex-
actly-once message delivery and preserving the order of the messages. WS-
Coordination and WS-AtomicTransaction (WS-AT) make specifying and committing
transactions possible.

WS-Security is responsible for signing and encrypting parts of a SOAP message,
and also for transmitting authorization tokens. WS-SecureConversation (WS-SC) is
designed to support excessive encrypted message-exchange by maintaining a security
context (similarly to SSL). WS-Trust defines means for issuing, renewing, exchang-
ing and revoking security tokens by a Security Token Service (STS) (similarly to
Kerberos) and makes federated authorization across security domains also possible
mostly through SAML (Security Assertion Markup Language) assertions.

24 B. Simon et al.

5 Test Aspects and Test Cases

In order to conduct testing three basic tasks were defined; each designed to be capable
of assessing the existence or absence of functionalities selected for testing. For each
task the functionalities checked and the relevant standards are listed. For compliance
and interoperability testing both the input and the expected output parameters have
been specified before actual testing was done.

5.1 Test Cases for Compliance

Calculator
The aim of this task is to test compliance with basic protocols and simple fault han-
dling. A calculator application has to be created with the operations: addition, subtrac-
tion, multiplication and division. The tested standards are:

• SOAP 1.1 and SOAP 1.2 over HTTP
• SOAP 1.2 over HTTPS
• Fault handling with SOAP 1.2: when dividing by zero, MathFault exception is to

be thrown.
• Ws-Addressing 1.0 and Ws-Addressing August 2004
• Ws-ReliableMessaging with SOAP 1.2: order of messages preserved; session

properly closed.
• Ws-SecureConversation with SOAP 1.2: message level encryption and digital

signature is to be applied, based on Basic256 (AES-256) algorithm. Authenticate
both sides with X.509 certificates.

• WS-Trust, SAML: the different operations require different access rights provided
by SAML tokens issued by a STS. (test case not yet implemented)

Asynchronous calculator
The aim of this task is the asynchronous version of the Calculator. The tested stan-
dards are:

• WS-Addressing 1.0 with SOAP 1.1 and SOAP 1.2: the server has to retrieve the
addressing headers and use dynamic addressing when calling back the client.

Upload
This test is to check MTOM encoding compliance, by sending a 1MB file to the
server. The tested standards are:

• MTOM with SOAP 1.1 and SOAP 1.2

Bank
The aim of the test is to check compliance with transaction standards. The task is to
access a database through a web service. The server is a bank which provides services
for modifying the balance of an account and getting the account’s status. If the ac-
count number is non-existent, or during withdrawal the amount is greater than the
balance, a specific BankFault exception is to be thrown. For repeatability automated
SQL scripts have to be created for setting up the database. The tested standards are:

• WS-AtomicTransaction and WS-Coordination over SOAP 1.1 and SOAP 1.2:
checking commit, rollback and exceptions. At the end of each transaction the cor-
rect amounts have to be found in the database.

 Evaluation of WS-* Standards Based Interoperability of SOA Products 25

5.2 Interoperability

To each service endpoint a corresponding client has to be created that tests this spe-
cific service. Clients are also web services and all have the same interface containing
a single tester operation accepting the URL of the service to be called. This tester
operation executes a functional test on the service observing the correct behavior,
handling the expected faults and checking for unexpected exceptions resulting from
protocol implementation mismatches. The return value of the operation indicates the
success of the test. This method makes it possible to pair each client and each service
from all the products corresponding to a given test case, and thus automatic tests can
be run to check interoperability.

5.3 Development Support

This aspect refers to how products support development of web services. Different
products provide different ways of WS-* protocol configuration. The task was to
summarize and evaluate these possibilities.

6 Testing Environment

The testing environment was predefined and every product had to be installed and
tested accordingly. This section summarizes the environment and the main problems
which had to be solved.

The testing environment was built on five high-performance computers each of
them capable of hosting multiple virtual machines. Each SOA product had to be in-
stalled on a separate virtual machine to avoid collisions with the others. The primary
cause of collisions is that the different application servers use the same HTTP port,
although in most cases these ports are reconfigurable.

For security tests X.509 certificates had to be issued for the services, clients and
STSs. The certificates were generated as self-signing certificates using OpenSSL.
Then they were installed in Windows with special access rights for IIS to access
the private keys. The JDK had to be upgraded with the Unlimited Strength Jurisdic-
tion Policy Files to be able to use longer keys for security. The public certificates
were imported into the trust-stores of the Java products using keytool from the JDK.
To import private certificates into key-stores a separate tool named pkcs12import had
to be downloaded. To configure a transaction coordinator for WCF some special
packages had to be installed in Windows. Also the WS-AT coordinators required
the public certificates of the coordinators to be installed into the other products’
trust-stores.

Predefined forms were specified for each task and each test. These forms had to be
filled for every implementation. Additional forms were supplied for installation in-
structions and development problems.

In order to automate tests the clients also had to be created as web services, all of them
providing the same interface having a single operation accepting the URL of the service
to call. A simple testing tool has been created to pair each client with each service for a
given test-case, and the results have been summarized in a table for each test-case.

26 B. Simon et al.

7 Results and Evaluation

In order to validate the testing environment, including product-dependent compo-
nents, forms, the automated testing program and testing methodology a series of tests
have been performed. The test-cases mentioned in section V were implemented in the
selected products. Both the client and service of each test case were realized as web
services. The results of the tests based on the testing method described in sub-section
V.B. are grouped into the following categories:

• Passed: the products participating in the test support the related standards and the
result conforms to the expectations

• Failed: the products participating in the test support the related standards, but the
cooperation between the parties failed for some reason: the client and the service
were unable to produce the expected result

• Not supported: according to the documentation of the tested version of the prod-
uct the given function is not supported

• Not tested: this feature was not supported or was undocumented in the tested ver-
sion of the product, but according to the documentation of a newer version, the
functionality is now supported

7.1 Compliance

In the first test session both the client and the service came from the same SOA prod-
uct. This kind of configuration makes it possible to check compliance to the selected
functionalities. There were 15 test cases for each of the 6 SOA products. From the 90

Fig. 1. Number of tests passed, failed, unsupported and untested grouped by products (products
tested with themselves)

 Evaluation of WS-* Standards Based Interoperability of SOA Products 27

test runs 63 have passed, and only 3 have failed. The number of unsupported test
cases was also 3. The relatively high number (21) of the untested results demonstrates
that the SOA products are evolving rapidly.

It can be seen from Fig. 1. that WCF passed all the tests. GlassFish ESB and RAD7
also perform very well. The reason for the many untested results of the other three
products is that they lacked detailed documentation at the time of the testing. Since
then new versions have been released of them and also their documentations have
gone through improvements, therefore, the tests have to be implemented and executed
again.

Fig. 2. Number of tests passed, failed, unsupported and untested grouped by test cases (prod-
ucts tested with themselves)

From Fig. 2. it can be inferred that the most supported standards are SOAP 1.1 and
1.2, WS-Addressing 1.0, and MTOM. WS-SC and WS-AT do not perform very well;
they had only 2 successful runs each.

7.2 Interoperability

In the second test session the test cases were executed for each client-service pair of
the SOA products (including themselves). This configuration can be used to check
interoperability between different products. Having 15 test cases for 36 client-service
pairs the total sum of tests is 540.

From Fig. 3. it can be seen that the results are very similar to the ones before, but
more tests have failed. This means, that although the products perform well with
themselves, there are still problems when communicating with the others. Another

28 B. Simon et al.

Fig. 3. Number of tests passed, failed, unsupported and untested grouped by products as ser-
vices (products tested with each other)

Fig. 4. Number of tests passed, failed, unsupported and untested grouped by test cases (prod-
ucts tested with each other)

 Evaluation of WS-* Standards Based Interoperability of SOA Products 29

interesting thing to note is that GlassFish ESB became the top one and WCF slid
down to the third place. The reason for this is that GlassFish ESB is more permissive
with the protocols, e.g. if a web service call having multiple MIME parts arrives, it
will still be accepted even if MTOM is not enabled. WCF on the other hand is much
stricter, and rejects every call that does not conform to the specified configuration.

Fig. 4. shows the results grouped by the test cases. It can be noted that the most and
least supported standards are the same as before.

7.3 Development Support

For maintainable and interoperable development it is essential to have support for
generating client proxies and service implementations from a WSDL. WCF has a tool
named SvcUtil.exe, which generates service contracts as well as application configu-
rations. JDK contains a similar tool named wsimport that does the same (less the
configuration files) in the Java world. In the case of Metro the WSDL containing the
bindings and policies serves directly as configuration file, too. Other JAX-WS API
implementations usually rely also on wsimport, however, in most cases the configura-
tion has to be done manually due to lack of built-in tool support.

WCF and JAX-WS implementations automatically generate WSDL-s for the de-
ployed service endpoints. Authors have found that WS-Policy support is essential for
interoperability since more complicated standards like WS-SecureConversation re-
quire many parameters, and setting them manually in a custom configuration to match
the required values is very difficult and often results in unexpected errors. Some older
SOA products lacked WS-Policy support, but the current versions of the examined
products all perform very well regarding this aspect.

The different products provide different ways of WS-* standards configuration.
These were mentioned during the introduction of the SOA products. The two main
methods are either the direct usage of WS-Policy or using a custom XML configura-
tion file. In the former case it is useful to have pre-defined policies or graphical sup-
port for policy generation. In the latter case a tool is needed to convert between the
custom configuration and WS-Policies.

It is advisable to keep the program code independent of the applied protocols;
therefore a separate configuration is useful. In most cases this can be achieved. Unfor-
tunately, JAX-WS raises some protocols to programming level: the SOAP version,
MTOM and WS-Addressing features are all selected by Java annotations, however, in
some cases these can be overridden in configuration files.

JAX-WS provides a portable API for web services in the Java world, however,
configuration of WS-* standards is out of scope resulting in vendor-dependent con-
figuration solutions. This also makes interoperability harder as it is difficult to find
the exact match for a specific configuration in another product.

7.4 Evaluation

The applied testing methodology is very similar to the one used in WSTF, but our
testing environment supports automated tests, too. The test cases are not intended to
formally check conformance to specific standards. The focus is mainly on achieving
interoperability based on typical application patterns. From the implementations and

30 B. Simon et al.

documentations of these patterns new applications can be easily created. The test
cases cover all the service level requirements of the Hungarian e-Government.

When a new version of a product was released during the testing phase, we imme-
diately switched to that one so that we could always have the most current results.
The tests ended at the end of 2008. Newer versions of the products released since then
have to be retested, but it would take much less effort than the original tests. Some of
the products were already mature enough in 2008 to pass most of the test cases.

Implementing the test cases helped us to learn the peculiarities of the selected
products, and now we have a broader view of the different development methods. We
have the virtual machines running the products, the source codes of each test case and
nearly 400 pages of documentation. Based on this documentation the test environment
and all the test cases can be reproduced.

8 Conclusions and Future Work

When selecting mature SOA products for e-Government application, a methodology
of assessment, including test-case specifications and a flexible, automated testing
environment is needed. This paper has shown a test bed suitable to assess interopera-
bility of SOA products. The test cases are reproducible and the testing environment is
flexible enough for adding a new product and having it tested with all the others. The
automated tests make collecting the results easier. We also evaluated our results of
tests on products of several major vendors.

The test results published in this paper only demonstrate the suitability of the test-
ing framework for assessing interoperability based on WS-* standards. Our intention
was not yet the ranking the tested SOA products, although, we have found that some
SOA products are mature enough to fulfill the HeGF requirements. We would like to
introduce further test aspects such as performance and stress tests.

The tested SOA products use different configuration methods. Based on a product-
independent model, a code generator tool could be used to produce directly interoper-
able configurations. The construction of a meta-model and a tool has been started and
some of its functions are already under test. This tool is also for generating common
administration and management components, and also functional test cases for e-
Government services. The platform-independent models of these services and the
code generators producing the required components could be part of a service registry
to make development easier.

As it was shown in section II, WSTF has a similar testing methodology. We have
the most development experience in WCF and GlassFish ESB, which seem to be a
shortage of their profile. Cooperation with them could be mutually beneficial.

References

[1] WS-I Basic Profile, http://www.ws-i.org/ (accessed: June 11, 2009)
[2] Microsoft, Web Services Interoperability Plug-Fest,

http://www.mssoapinterop.org/ilab/ (accessed: June 11, 2009)
[3] Web Services Test Forum, http://www.wstf.org/ (accessed: June 11, 2009)

 Evaluation of WS-* Standards Based Interoperability of SOA Products 31

[4] Apache, Project Stonehenge,
http://wiki.apache.org/incubator/StonehengeProposal
(last access: June 11, 2009)

[5] Senthil Kumar, K.M., Das, A.S., Padmanabhuni, S.: WS-I Basic Profile: a practitioner’s
view. In: Proc. IEEE International Conference on Web Services, pp. 17–24 (2004)

[6] Kuppuraju, S., Kumar, A., Kumari, G.P.: Case Study to Verify the Interoperability of a
Service Oriented Architecture Stack. In: Proc. IEEE International Conference on Ser-
vices Computing SCC 2007, pp. 678–679 (2007)

[7] European Interoperability Framework, http://ec.europa.eu/idabc/en/
document/7728 (accessed: June 11, 2009)

[8] Saekow, A., Boonmee, C.: Towards a Practical Approach for Electronic Government In-
teroperability Framework (e-GIF). In: Proc. 42nd Hawaii International Conference on
System Sciences HICSS 2009, pp. 1–9 (2009)

[9] Estevez, E., Janowski, T.: Government-Enterprise Ecosystem Gateway (G-EEG) for
Seamless e-Government. In: Proc. 40th Annual Hawaii International Conference on Sys-
tem Sciences HICSS 2007, pp. 101–110 (2007)

[10] E-public administration, Strategy (2010), http://www.ekk.gov.hu/hu/ekk/
strategia/egovstrategy.pdf (accessed: June 14, 2009)

[11] United Nations e-Government Survey 2008, From e-Government to Connected Govern-
ance, United Nations, New York (2008)

[12] US Government, Federal Enterprise Architecture,
http://www.whitehouse.gov/omb/e-gov/fea/ (accessed: June 14, 2009)

[13] German Government, Standards and Architectures for e-Government Applications
(SAGA) 4.0 (March 2008), http://www.kbst.bund.de/saga (accessed: June 14,
2009)

[14] E_Közgazgatási Követelménytár (in Hungarian),
http://kovetelmenytar.complex.hu/ (accessed: June 14, 2009)

	Evaluation of WS-* Standards Based Interoperability of SOA Products for the Hungarian e-Government Infrastructure
	Introduction
	Related Work
	WS-I Basic Profile
	Interop Events
	Web Services Test Forum
	Other

	SOA Landscape
	WS-* Standards
	Test Aspects and Test Cases
	Test Cases for Compliance
	Interoperability
	Development Support

	Testing Environment
	Results and Evaluation
	Compliance
	Interoperability
	Development Support
	Evaluation

	Conclusions and Future Work
	References

