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METHODOLOGY ARTICLE Open Access

NextSV: a meta-caller for structural variants
from low-coverage long-read sequencing
data
Li Fang1,2,3, Jiang Hu1, Depeng Wang1 and Kai Wang2,3,4*

Abstract

Background: Structural variants (SVs) in human genomes are implicated in a variety of human diseases. Long-read

sequencing delivers much longer read lengths than short-read sequencing and may greatly improve SV detection.

However, due to the relatively high cost of long-read sequencing, it is unclear what coverage is needed and how

to optimally use the aligners and SV callers.

Results: In this study, we developed NextSV, a meta-caller to perform SV calling from low coverage long-read

sequencing data. NextSV integrates three aligners and three SV callers and generates two integrated call sets

(sensitive/stringent) for different analysis purposes. We evaluated SV calling performance of NextSV under different

PacBio coverages on two personal genomes, NA12878 and HX1. Our results showed that, compared with running

any single SV caller, NextSV stringent call set had higher precision and balanced accuracy (F1 score) while NextSV

sensitive call set had a higher recall. At 10X coverage, the recall of NextSV sensitive call set was 93.5 to 94.1% for

deletions and 87.9 to 93.2% for insertions, indicating that ~10X coverage might be an optimal coverage to use in

practice, considering the balance between the sequencing costs and the recall rates. We further evaluated the

Mendelian errors on an Ashkenazi Jewish trio dataset.

Conclusions: Our results provide useful guidelines for SV detection from low coverage whole-genome PacBio data

and we expect that NextSV will facilitate the analysis of SVs on long-read sequencing data.

Keywords: Long-read sequencing, Structural variants, Low coverage, PacBio

Background

Structural variants (SVs) represent genomic rearrange-

ments (typically defined as longer than 50 bp), and SVs

may play important roles in human diversity and disease

susceptibility [1–3]. Many inherited diseases and cancers

have been associated with a large number of SVs in recent

years [4–9]. Recent advances in next-generation sequen-

cing (NGS) technologies have facilitated the analysis of

variations such as SNPs and small indels in unprecedented

details, but the discovery of SVs using short-read sequen-

cing still remains challenging [10]. Single-molecule,

real-time (SMRT) sequencing developed by Pacific

Biosciences (PacBio) produces long-read sequencing data,

making it potentially well-suited for SV detection in

personal genomes [10, 11]. Most recently, Merker et al.

reported the application of low coverage whole genome

PacBio sequencing to identify pathogenic structural vari-

ants from a patient with autosomal dominant Carney

complex, for whom targeted clinical gene testing and

whole genome short-read sequencing were both negative

[12]. This represents a clear example that long-read

sequencing may solve some negative cases in clinical diag-

nostic settings.

Two popular SV software tools have been developed

specifically for long-read sequencing: PBHoney [13] and

Sniffles [14]. PBHoney identifies genomic variants via two

algorithms, long-read discordance (PBHoney-Spots) and

interrupted mapping (PBHoney-Tails). Sniffles is a SV

caller written in C++ and it detects SVs using evidence

from split-read alignments, high-mismatch regions, and
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coverage analysis [14]. PBHoney uses BAM files generated

by BLASR [15] as input while Sniffles requires BAM files

from BWA-MEM [16] or NGMLR [14], a new long-read

aligner. Due to the relatively high cost of PacBio sequen-

cing, users are often faced with issues such as what cover-

age is needed and how to get the best use of the available

aligners and SV callers. In addition, it is unclear which

software tool performs the best in low-coverage settings,

and whether the combination of software tools can im-

prove performance of SV calls. Finally, the execution of

these software tools is often not straightforward and re-

quires careful re-parameterization given specific coverage

of the source data.

To address these challenges, we developed NextSV, an

automated SV detection pipeline integrating multiple

tools. NextSV automatically execute these software tools

with optimized parameters for user-specified coverage,

then integrates results of each caller and generates a

sensitive call set and a stringent call set, for different

analysis purposes.

Recently, the Genome in a Bottle (GIAB) consortium

and the 1000 Genome Project Consortium released

high-confidence SV calls for the NA12878 genome, an

extensively sequenced genome by different platforms,

enabling benchmarking of SV callers [17, 18]. They also

published sequencing data of seven human genomes, in-

cluding PacBio data of an Ashkenazi Jewish (AJ) family

trio [19]. Previously, we sequenced a Chinese individual

HX1 on the PacBio platform with over 100X coverage,

and generated assembly-based SV call sets [20]. Using data

sets of NA12878, HX1 and the AJ family trio, we evalu-

ated the performance of four aligner/SV caller combina-

tions (BLASR/PBHoney-Spots, BLASR/PBHoney-Tails,

BWA/Sniffles and NGMLR/Sniffles) as well as NextSV

under different PacBio coverages. We expect that NextSV

will facilitate the detection and analysis of SVs on

long-read sequencing data.

Materials and methods

PacBio data sets used for this study

Five whole-genome PacBio sequencing data sets were

used to test the performance of SV calling pipelines

(Table 1). Data sets of NA12878 and HX1 genome were

downloaded from NCBI SRA database (Accession:

SRX627421, SRX1424851). Data sets of the AJ family

trio were downloaded from the FTP site of National In-

stitute of Standards and Technology (NIST) [21]. After

we obtained raw data, we extracted subreads (reads that

can be used for analysis) using the SMRT Portal soft-

ware (Pacific Biosciences, Menlo Park, CA) with filtering

parameters (minReadScore = 0.75, minLength = 500).

The subreads were mapped to the reference genome

using BLASR [15], BWA-MEM [16] or NGMLR [14].

The BAM files were down-sampled to different

coverages using SAMtools (samtools view -s). We per-

formed five subsampling replicates at each coverage.

The down-sampled coverages and mean read lengths of

the data sets were shown in Table 1.

SV detection using BLASR / PBHoney-spots and BLASR /

PBHoney-tails

PacBio subreads were iteratively aligned to the human

reference genome (GRCh38 for HX1, GRCh37 for

NA12878 and AJ trio genomes, depending on the refer-

ence of high-confidence set) using the BLASR aligner

(parameter: -bestn 1). Each read’s single best alignment

was stored in the SAM output. Unmapped portions of

each read were extracted from the alignments and re-

mapped to the reference genome. The alignments in

SAM format were converted to BAM format and sorted

by SAMtools. PBHoney-Tails and PBHoney-Spots (from

PBSuite-15.8.24) were run with slightly modified param-

eters (minimal read support 2, instead of 3 and consen-

sus polishing disabled) to increase sensitivity and to

discover SVs under low coverages (2-15X). The reference

FASTA files used in this study were downloaded from

the FTP sites of 1000 Genome Project [22] (GRCh37)

and NCBI [23] (GRCh38). The FASTA files contain as-

sembled chromosomes with unlocalized, unplaced and

decoy sequences.

SV detection using BWA / sniffles and NGMLR / sniffles

PacBio subreads were aligned to the reference genome,

using BWA-MEM (bwa mem -M -x pacbio) or NGMLR

(default parameters) to generate the BAM file. The BAM

file was sorted by SAMtools, then used as input of Snif-

fles (version 1.0.5). Sniffles was run with slightly modi-

fied parameters (minimal read support 2, instead of 10)

to increase sensitivity and discover SVs under low fold

of coverages (2-15X).

NextSV analysis pipeline

As shown in Fig. 1, NextSV currently supports four

aligner/SV caller combinations: BLASR/PBHoney-Spots,

BLASR/PBHoney-Tails, BWA/Sniffles and NGMLR/Snif-

fles. NextSV extracts FASTQ files from PacBio raw data

Table 1 Description of PacBio data sets used for this study

Data
Source

Genome Original
Coverage

Down-sampled
Coverage

Mean Read
Length

Reference

NCBI
SRA

NA12878 22X 2-15X 4.9 kb [26]

NCBI
SRA

HX1 103X 6-15X 7.0 kb [20]

NIST AJ son 69X 10X 8.0 kb [19]

NIST AJ father 32X 10X 7.3 kb [19]

NIST AJ
mother

30X 10X 7.8 kb [19]
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(.hdf5 or .bam) and performs QC according to users spe-

cified settings. Once the aligner/SV caller combination is

selected by user, NextSV automatically generates the

scripts for alignment, sorting, and SV calling with appro-

priate parameters. When the analysis is finished, NextSV

will format the raw result files (.tails, .spots, or .vcf files)

into BED files. If multiple aligner/SV caller combinations

are selected, NextSV will integrate the calls to generate a

sensitive (by union) and a stringent (by intersection) call

set. The output of NextSV is ANNOVAR-compatible, so

that users can easily perform downstream annotation

using ANNOVAR [24]. In addition, NextSV also

supports job submitting via Sun Grid Engine (SGE), a

popular batch-queuing system in cluster environment.

Users can choose to run any of the four aligner/SV

caller combination. By default, NextSV will enable

BLASR/PBHoney-Spots, BLASR/PBHoney-Tails and

NGMLR/Sniffles and integrate the results to generate

the sensitive calls and stringent calls. We do not enable

BWA/Sniffles by default because Sniffles works better

with NGMLR in our evaluation and alignment is a time

consuming step. SVs that are shorter than reads may re-

sult in intra-read discordances while larger SVs may re-

sult in soft-clipped tails of long reads. We suggest

running both PBHoney-Spots and PBHoney-Tails be-

cause they are two complementary algorithms designed

to detect intra-read discordances and soft-clipped tails,

respectively. Sniffles uses multiple evidences to detect

SV so it should be suitable for both types of SVs.

NextSV sensitive call set is generated as:

SNIF ∪ (SPOT ∪ TAIL),

and NextSV stringent call set is generated as:

SNIF ∩ (SPOT ∪ TAIL),

where SNIF denotes the call set of Sniffles (the aligner

can be BWA or NGMLR, whichever is enabled; if both

aligners are enabled, the call set of NGMLR/Sniffles will

be used), SPOT denotes the call set of BLASR /

PBHoney-Spots and TAIL denotes the call set of BLASR

/ PBHoney-Tails.

Comparing two SV call sets

The criteria for merging two SV calls were chosen to fol-

low what was done by the NIST/GIAB analysis team

[25] and a previous study [26]. Two deletion calls were

considered the same if they had at least 50% reciprocal

overlap (the overlapped region was more than 50% of

both calls). The insertion call had a single breakpoint

position so the criterion for insertion calls should be dif-

ferent from that of deletion calls. Two insertion calls

were considered the same if the two breakpoints were

within a distance delta. Delta used by NIST/GIAB

analysis team was 1000 bp and used by Pendleton et al.

(reference [26]) was 100 bp. However, 100 bp was too

small for our analysis since the coverages (2-15X) were

far lower than that of Pendleton’s data set (46X in total).

On the other hand, 1000 bp might be too large to in-

clude distant calls as the same merged call. Therefore,

we chose 500 bp as a compromise. When merging two

SVs, the average start and end positions were taken.

High-confidence SV call sets

The high-confidence deletion call set of the NA12878

genome was release by the Genome In A Bottle (GIAB)

consortium [17], in which most of the calls were refined

by experimental validation or other independent tech-

nologies. The high-confidence insertion call set of the

NA12878 genome was obtained by merging the

high-confidence insertion calls of 1000 Genome phase 3

[18] and high-confidence insertion calls from GIAB. For

the HX1 genome, we generated the high-confidence SV

call set via two steps. First, we used the SV calls from a

previously validated local assembly-based approach [11]

Fig. 1 Scheme of NextSV workflow
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as the initial high-quality calls. Next, we detected SVs on

103X coverage PacBio data set of the HX1 genome using

BLASR / PBHoney-Spots, BLASR / PBHoney-Tails,

BWA / Sniffles and NGMLR / Sniffles (minimal read

support = 20 for each SV caller). The initial high-quality

calls (from step 1) that overlapped with one of the four

103X call sets (from step 2) were retained as final

high-confidence calls. SVs are generally defined as

genomic rearrangements that are larger than 50 bp.

However, we do not consider SVs that are less than

200 bp. There are two reasons. First, SVs that are smaller

than 200 bp are within the library size of paired-end

short-read sequencing. Therefore, they may be readily

detected by short-read sequencing. Second, PacBio se-

quencing has a fairly high per-base error rate and we

found it has a very low precision on detection of small

SVs from coverage data sets. Therefore, we believe that

the advantage of PacBio sequencing may be the detec-

tion of large SVs that are more than 200 bp. The number

of SVs in the high-confidence sets is shown in Table 2.

Performance evaluation of SV callers

The SV calls of each caller were compared with the

high-confidence SV set. Precision, recall, and F1 score

were used to evaluate the performance of the callers.

Precision, recall, and F1 were calculated as

Precision ¼
TP

TP þ FP
;

Recall ¼
TP

TP þ FN
;

F1 ¼ 2∙
precision∙recall

precisionþ recall
;

where TP is the number of true positives (variants called

by a variant caller and matching the high-confidence

set), FP is the number of false positives (variants called

by a variant caller but not in the high-confidence set),

and FN is the number of false negatives (variants in the

high-confidence set but not called by a variant caller).

Results
Performance of SV calling on different coverages of the

NA12878 genome

To determine the optimal coverage for SV detection on

PacBio data, we evaluated the performance of NextSV

under several different coverages. We downloaded a re-

cently published PacBio data set of NA12878 [26] and

down-sampled the data set to 2X, 4X, 6X, 8X, 10X, 12X,

and 15X. SV calling was performed using NextSV under

each coverage. We performed five subsampling replicates

for each coverage so that the down-sampling errors could

be estimated. All supported aligner/SV caller combinations

were evaluated. At least two supporting reads was required

for all SV calls. The resulting calls were compared with the

high-confidence SV set (including 2094 deletion calls and

1114 insertion calls) described in the Method section.

First, we examined how many calls in the high-confidence

set can be discovered. As shown in Fig. 2, the recall in-

creased rapidly before 10X coverage but the slope of in-

crease slowed down after 10X. The standard deviations of

recall values of the down-sampling replicates were very

small (shown as error bars in the Figure). Among the four

aligner / SV caller combinations, BLASR / PBHoney-Spots

had the highest recall for insertions while NGMLR / Sniffles

had the highest recall for deletions. At 10X coverage,

BLASR / PBHoney-Spots had an average recall of 76.2% for

deletions and an average recall of 81.5% for insertions;

NGMLR / Sniffles had an average recall of 91.1% for dele-

tions and an average recall of 76.3% for insertions. BWA /

Sniffles had a lower recall for deletions (72.6%) and inser-

tions (50.8%) than NGMLR / Sniffles, indicating that

NGMLR was a better aligner for Sniffles. PBHoney-Tails

only detected 26.3% deletions and 0.1% insertions. NextSV

sensitive call set, which was generated by the union call

set of BLASR / PBHoney-Spots, BLASR / PBHoney-Tails,

and NGMLR / Sniffles, had the highest recall. At 10X

coverage, the average recall of NextSV sensitive call set is

94.7% for deletions and 87.8% for insertions. At 15X

coverage, the recall of NextSV sensitive call set increased

slightly. Therefore, 10X coverage might be an optimal

coverage to use in practice, considering the relatively high

sequencing costs and the generally high recall rates.

Second, we examined the precision and balanced ac-

curacy (F1 scores) under different coverages (Fig. 3). The

precision was calculated as the fraction of detected SVs

which matching the high-confidence set. For deletions

calls, NextSV stringent call set had the second highest

precision and highest F1 score. For insertion calls,

NextSV stringent call set had the highest precision and

F1 score at each coverage. Therefore, NextSV stringent

call set performs the best, considering the balance be-

tween recall and precision. We observed that the preci-

sion decreased as the coverage increased from 2X to

15X. This was because we used the same parameter (at

least two supporting reads) to generate the calls for each

coverage. Therefore, the false positive rates increased as

the coverage increased. A stricter parameter (e.g. at least

three supporting reads) for 10X and 15X coverages may in-

crease the precision, but decrease the recall. We discussed

Table 2 Number of calls in the high-confidence SV sets

Genome Platform Number of
Deletions
(≥ 200 bp)

Number of
Insertions
(≥ 200 bp)

Reference

NA12878 Illumina 2094 1114 [17, 18]

HX1 PacBio 2387 2937 [20]
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the trade-off between recall and precision in the Discussion

section. Detailed values of recall rates, precisions and F1

scores on differrent coverages of the NA12878 genome were

shown in Table S1-S12 (see Additional file 1).

Performance of SV calling on different coverages on the

HX1 genome

To verify the performance of SV detection on different

individuals, we also performed evaluation on a Chinese

genome HX1, which was sequenced by us recently [20]

at 103X PacBio coverage. The genome was sequenced

using a newer version of chemical reagents and thus the

mean read length of HX1 was 40% longer than that

of NA12878 (Table 1). The total data set was

down-sampled to three representative coverages

(6X, 10X and 15X). We also performed five subsampling

replicates at each coverage. SVs were called using the

four pipelines described above and compared to the

high-confidence set. The results were similar to those of

the NA12878 data set (Fig. 4). At 10X coverage, NextSV

sensitive call set had an average recall of 95.5% for dele-

tions and 90.3% for insertions, highest among all the call

sets. NextSV stringent call set had the highest precisions

and F1 scores. Among the four aligner / SV caller

combinations, NGMLR / Sniffles discovered the most

deletions (91.6%) and BLASR / PBHoney-Spots discov-

ered the most insertions (81.5%) at 10X coverage. BWA

/ Sniffles had a higher precision but a lower recall and

F1 score than NGMLR / Sniffles. Detailed values of re-

call rates, precisions and F1 scores on differrent cover-

ages of the HX1 genome were shown in Table S13-S24

(see Additional file 1).

Evaluation on Mendelian errors

As the de novo mutation rate is very low [27, 28],

Mendelian errors are more likely a result of genotyping

errors and can be used as a quality control criteria in

genome sequencing [29]. Due to the lack of gold stand-

ard call sets, here we evaluated the errors of allele

drop-in (ADI), which means the presence of an allele in

offspring that does not appear in either parent. The ADI

rate is calculated as the ratio of ADI events to SV calls

detected in the offspring. We used a whole genome Pac-

Bio sequencing data set of an AJ family trio released by

NIST [19] to do the evaluation. The sequencing data for

father, mother and son are 32X, 29X, and 63X, respect-

ively. First, we did the ADI rate analysis using all the

available data. Since the coverages were high, 8

Fig. 2 Evaluation of recall rates under different coverages on the NA12878 genome. Five down-sampling replicates were performed at each

coverage. (a) Recall rates of deletion calls. (b) Recall rates of insertion calls. Data shown represent mean ± SD

Fang et al. BMC Bioinformatics  (2018) 19:180 Page 5 of 11



Fig. 3 Evaluation of precisions and F1 scores under different coverages on the NA12878 genome. Five down-sampling replicates were

performed. (a) Precisions of deletion calls. (b) F1 scores of deletion calls. (c) Precisions of insertion calls. (d) F1 scores of insertion calls. Data

shown represent mean ± SD

Fang et al. BMC Bioinformatics  (2018) 19:180 Page 6 of 11



supporting reads were required for SV calls of the par-

ents and 15 supporting reads were required for SV calls

of the son. Among the four aligner/SV caller

combinations, NGMLR/Sniffles had the lowest ADI rate

(12.0%) for deletions, while BLASR/PBHoney-Tails had

the lowest ADI rate (10%) for insertions (Fig. 5). Next,

we down-sampled the sequencing data of the son to 10X

coverage and analyzed the ADI rate at this low coverage.

Five down-sampling replicates were performed. The ADI

rates at 10X coverage were generally higher than those

at 63X coverage. NGMLR/Sniffles achieved lowest ADI

rate for both deletions (19.0%) and insertions (25.2%)

among the four aligner/SV caller combinations. NextSV

stringent call set had the lowest ADI rate for insertions

(15.7%) and second lowest ADI rate for deletions

(20.0%). The standard deviations of ADI rates of the

down-sampling replicates were very small (shown as

error bars in the Figure).

Computational performance of NextSV

To evaluate the computational resources consumed by

NextSV, we used the whole genome sequencing data set

of HX1 (10X coverage) for benchmarking. All aligners and

SV callers in NextSV were tested using a machine

equipped with 12-core Intel Xeon 2.66 GHz CPU and 48

Gigabytes of memory. As shown in Table 3, mapping is

the most time-consuming step. BLASR takes about 80 h

to map the reads, whereas NGMLR needs only 11.2 h.

The SV calling step is much faster. PBHoney-Spots and

Sniffles take about 1 h, while PBHoney-Tails needs 0.27 h.

In total, the BLASR / PBHoney combination takes 80.8 h

while the NGMLR / Sniffles combination takes 12.5 h,

84.5% less than the former one. Since BLASR/PBHoney--

Spots and NGMLR / Sniffles have good performance on

SV calling and running PBHoney-Tails is very fast given

the BLASR output, the NextSV pipeline will execute the

three methods by default for generating the final results.

Fig. 4 SV calling performance on the HX1 genome. Five down-sampling replicates were performed. (a-c) Recall rates, precisions and F1 scores of

deletion calls. (d-e) Recall rates, precisions and F1 scores of insertion calls. Data shown represent mean ± SD

Fang et al. BMC Bioinformatics  (2018) 19:180 Page 7 of 11



Discussion

Long-read sequencing such as PacBio sequencing has

clear advantages over short-read sequencing on SV dis-

covery [10]. However, its application in real-world set-

ting is often limited due to the relatively high

sequencing cost and hence the relatively low sequencing

coverage. Some efforts have been made to improve SV

detection from low coverage short-read data [30], but

methods for improving SV detection from long-read se-

quencing data have not been reported. In this study, we

developed NextSV, a meta SV caller integrating multiple

aligners and SV callers to improve SV discovery on

low-coverage PacBio data sets. Our results showed that,

NextSV stringent call set had the highest precisions and

F1 scores while NextSV sensitive call set had the highest

recall. At 10X coverage, the recall of NextSV sensitive

call set was 94.7 to 95.5% for deletions and 87.8 to 90.3%

for insertions. At 15X coverage, there was only a slight

increase in recall. Therefore, ~10X coverage can be an

optimal coverage to use in practice, considering the bal-

ance between the sequencing costs and the recall rates.

The high-confidence call set of HX1 genome was gen-

erated using two steps. First, we used a call set from a

previously validated local assembly-based approach [11,

20, 31] as the initial high-quality calls. Second, we de-

tected SVs on 103X coverage PacBio data set of the HX1

genome using the four aligner/SV caller combinations

described above. The calls were filtered using a strict

parameter (minimal read support = 20 for each SV

caller). The initial high-quality calls that overlapped with

one of the four 103X call sets were retained as final

high-confidence calls. Since the aligners/SV callers con-

tribute to generation of the high-confidence call sets,

there may be some biases on the comparison of aligner/

SV callers. However, it would be less biased on compari-

son of the performances on different coverages, which is

an important goal of our study.

There is often a trade-off between recall and precision.

NextSV generates a sensitive call set and a stringent call

set, for different purposes. NextSV sensitive call set is

suitable for users who consider recall more important

than precision and who can afford extensive downstream

Fig. 5 Comparison of allele drop-in rate. For evaluation of ADI rate at 10X coverage, five down-sampling replicates were performed. (a) ADI rates

of deletion call. (b) ADI rate of insertion calls. Data shown represent mean ± SD.

Table 3 Time consumption for each steps in the NextSV

pipeline for 10X PacBio data set

SV caller Aligner CPU (number
of threads)

Alignment
time (hour)

SV calling
time (hour)

Total
Time
(hour)

PBHoney BLASR 12 79.6 0.27 (Tails)
0.96 (Spots)

80.8

Sniffles BWA-MEM 12 27.0 1.1 28.1

Sniffles NGMLR 12 11.2 1.3 12.5
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analysis (such as Sanger sequencing) to validate the can-

didate variants. This is often the case when doing

disease-casual variant discovery on personal genomes.

NextSV stringent call set has the highest precision, F1

score. It is suitable for users who aim to perform

genome-wide analysis of SVs on a collection of samples,

with limited downstream validation.

The performance of SV callers are affected by the par-

ameter settings. The number of supporting reads is a

key parameter that affect the trade-off between recall

and precision. By default, PBHoney requires a minimal

read support of 3 for an SV event and Sniffles requires a

minimal read support of 10 for an SV event. However,

this may be too high for low coverage data set. In our

evaluation of recall and precision, we changed this set-

ting to require a minimal read support of 2. This allows

detection of SVs from very low coverage regions, with an

acceptable precision. Thus, substantially higher number

of true positives would be detected and less variants of

interest would be missed. For users who consider

precision to be more important than recall, they can

either use the NextSV stringent call set or specify a stric-

ter parameter (e.g. requiring more supporting reads)

when running the NextSV pipeline. The F1 score is a

balance between recall and precision. Therefore, its cor-

relation with coverage is affected by the two aspects. In

general, as the coverage increases, the recall increases

but the precision decreases. Therefore, the F1 score may

either increase or decrease as the coverage increases.

In addition to test recalls and precisions, we examined

the allele drop-in (ADI) errors, which represent the SV

calls that in the offspring but not appear in either parent.

Since the de novo mutation rate is very low, the ADI er-

rors may mainly come from errors of sequencing and

subsequent SV detection. In our results, the ADI rates of

insertions are higher than those of deletion calls, which

is consistent with the fact that PacBio sequencing has

higher per-base insertion errors than deletion errors.

Another source of ADI may come from the SV callers.

SV detection from PacBio data set is still in its early

stage. The currently available SV callers are not carefully

designed for low-coverage data sets. For example, Snif-

fles requires 10 reads to support a SV under default set-

tings, which means at least 20X coverage is required to

detect a heterozygous SV. We expect the improvement

of SV callers in the future.

NextSV currently supports four aligner / SV caller

combinations: BLASR / PBHoney-Spots, BLASR /

PBHoney-Tails, BWA / Sniffles, NGMLR / Sniffles, but

we expect to continuously expand the support for other

aligner / caller combinations. In the future, if more

aligners/SV callers are supported, we will evaluate the

performance of each combination and find the best

aligner for each SV caller. The NextSV sensitive call will

be the union call set of all SV callers; the NextSV strin-

gent calls will be the calls that are detected by at least

two SV callers. If one SV caller can work with multiple

aligners, only the call set of its best aligner will be used.

In this study, we only evaluated the performance

for insertions and deletions because we only have the

high-confidence calls of insertions and deletions. This

is another limitation of the study. We will evaluate

the performance on other types of SVs in the future

when more high-confidence SV calls are available.

Nonetheless, NextSV generates SV calls of all types.

The output of NextSV is in ANNOVAR-compatible

format. Users can easily perform downstream annota-

tion using ANNOVAR and disease gene discovery

using Phenolyzer [32]. NextSV is available on GitHub

[33] and can be installed by one simple command.

Conclusion
In this study, we proposed NextSV, a comprehensive,

user-friendly and efficient meta-caller to perform SV

calling from low coverage long-read sequencing data.

NextSV integrates multiple aligners and SV callers and

performs better than running a single SV caller. We also

showed that ~10X PacBio coverage can be an optimal

coverage to use in practice, considering the balance be-

tween the sequencing costs and the recall rates. Our re-

sults provide useful guidelines for SV detection from low

coverage whole-genome PacBio data and we expect that

NextSV will facilitate the analysis of SVs on long-read

sequencing data.
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