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Abstract: In this work, temperature-dependent transient threshold voltage (VT) instability behaviors
in p-GaN/AlGaN/GaN HEMTs, with both Schottky gate (SG) and Ohmic gate (OG), were inves-
tigated systematically, under negative gate bias stress, by a fast voltage sweeping method. For SG
devices, a concave-shaped VT evolution gradually occurs with the increase in temperature, and
the concave peak appears faster with increasing reverse bias stress, followed by a corresponding
convex-shaped VT recovery process. In contrast, the concave-shaped VT evolution for OG devices
that occurred at room temperature gradually disappears in the opposite shifting direction with the
increasing temperature, but the corresponding convex-shaped VT recovery process is not observed,
substituted, instead, with a quick and monotonic recovery process to the initial state. To explain these
interesting and different phenomena, we proposed physical mechanisms of time and temperature-
dependent hole trapping, releasing, and transport, in terms of the discrepancies in barrier height and
space charge region, at the metal/p-GaN junction between SG and OG HEMTs.

Keywords: p-GaN gate AlGaN/GaN HEMT; NBTI; fast sweeping; threshold instability

1. Introduction

With superior performances of fast switching and low switching loss over Si/SiC
counterparts, p-GaN gate AlGaN/GaN HEMTs are playing an increasingly important role
in today’s power electronics market [1–3]. Under this background of accelerated industrial
application, extensive studies are underway to understand and address the reliability
concerns of devices [4,5].

The gate bias stress-induced threshold voltage (VT) instability of p-GaN gate HEMTs
has been widely investigated recently, and the imbalanced extra charge accumulation,
caused by the (de-) trapping of holes or electrons in the gate stack region, has been proposed
as the main physical cause [6–19]. Considering that normally-off p-GaN gate devices feature
a relatively low VT voltage, applying negative gate voltage is an important method for
improving the dv/dt robustness and preventing possible false turning-on induced by
system noise [20–22]. Nevertheless, most studies have focused on the impacts of positive
gate bias stress [6–15], but less attention has been given to the impact of negative gate bias
stress on device VT instability [4,16–18]. Elangovan et al. recently analyzed the instability
behavior of Schottky-type E-mode p-GaN gate power HEMTs through pulsed negative gate
bias stress tests and attributed the positive threshold shift (∆VT) to the hole deficiency in the
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p-GaN region [17]. Zhang et al. also observed positive ∆VT in the transfer characteristics
of Schottky-type devices after prolonging negative gate bias stress time from 1 min to
60 min, and they attributed this positive ∆VT to hole release from donor-type traps at the
p-GaN/AlGaN hetero-interface [18].

Although the general law about threshold voltage shift and recovery is similar, the
observed phenomena and corresponding physical explanations are quite different—or even
contradictory—in detail, due to the differences in device structure, process, and the testing
method [7,8,12]. Recently, the measurement time and the positive gate bias history, in
conventional static transfer characteristic measurements, were found to have a significant
influence on the reading of VT values in p-GaN HEMTs [12,13,19]. For these reasons, fast
voltage sweeping characterizations were recommended and adopted as useful methods to
precisely capture transient VT changes at the −µs time scale [12,13].

In this work, we employed specifically designed fast voltage sweeping measure-
ments, on both Schottky and Ohmic-type p-GaN gate devices, to study negative gate bias
stress-related VT instability issues. Pulse-biased transfer tests and Measurement–Stress-
Measurement (MSM) sequences were conducted to monitor the ∆VT behaviors. From room
temperature to elevated temperatures up to 150 ◦C, significant differences in transient ∆VT
evolution were captured, for both types of devices, over a wide time window, ranging from
−µs to −ks during the stress and recovery processes in MSM sequences. These distinct
phenomena offer a glimpse into more dynamic details, and the physical mechanisms are
further analyzed accordingly.

2. Device Descriptions and Test Schemes

The p-GaN gate HEMTs adopted in this work are commercially available devices with
two different gate contact technologies, as shown in Figure 1. The Schottky-type gate (SG)
p-GaN HEMT consists of two diodes connected back-to-back in the gate region: one is
the metal/p-GaN junction, and the other one is the AlGaN/GaN interface. In this case, it
features a reduced gate leakage current limited by the Schottky diode [23]. The other one
is labeled as the Ohmic-type gate (OG) p-GaN HEMT that exhibits a higher gate leakage
current, which could be modeled by a resistor and a diode connected in a series [24].

Micromachines 2022, 13, x FOR PEER REVIEW 2 of 10 
 

 

pulsed negative gate bias stress tests and attributed the positive threshold shift (ΔVT) to 
the hole deficiency in the p-GaN region [17]. Zhang et al. also observed positive ΔVT in 
the transfer characteristics of Schottky-type devices after prolonging negative gate bias 
stress time from 1 min to 60 min, and they attributed this positive ΔVT to hole release from 
donor-type traps at the p-GaN/AlGaN hetero-interface [18]. 

Although the general law about threshold voltage shift and recovery is similar, the 
observed phenomena and corresponding physical explanations are quite different—or 
even contradictory—in detail, due to the differences in device structure, process, and the 
testing method [7,8,12]. Recently, the measurement time and the positive gate bias history, 
in conventional static transfer characteristic measurements, were found to have a signifi-
cant influence on the reading of VT values in p-GaN HEMTs [12,13,19]. For these reasons, 
fast voltage sweeping characterizations were recommended and adopted as useful meth-
ods to precisely capture transient VT changes at the −μs time scale [12,13]. 

In this work, we employed specifically designed fast voltage sweeping measure-
ments, on both Schottky and Ohmic-type p-GaN gate devices, to study negative gate bias 
stress-related VT instability issues. Pulse-biased transfer tests and Measurement–Stress-
Measurement (MSM) sequences were conducted to monitor the ΔVT behaviors. From 
room temperature to elevated temperatures up to 150 °C, significant differences in transi-
ent ΔVT evolution were captured, for both types of devices, over a wide time window, 
ranging from −μs to −ks during the stress and recovery processes in MSM sequences. 
These distinct phenomena offer a glimpse into more dynamic details, and the physical 
mechanisms are further analyzed accordingly. 

2. Device Descriptions and Test Schemes 
The p-GaN gate HEMTs adopted in this work are commercially available devices 

with two different gate contact technologies, as shown in Figure 1. The Schottky-type gate 
(SG) p-GaN HEMT consists of two diodes connected back-to-back in the gate region: one 
is the metal/p-GaN junction, and the other one is the AlGaN/GaN interface. In this case, it 
features a reduced gate leakage current limited by the Schottky diode [23]. The other one 
is labeled as the Ohmic-type gate (OG) p-GaN HEMT that exhibits a higher gate leakage 
current, which could be modeled by a resistor and a diode connected in a series [24]. 

 
Figure 1. Schematics of the GaN HEMT device and gate structures. 

Pulsed transfer characteristic tests with prolonged negative quiescent gate bias (VGSQ) 
were carried out under a Keithley 4200-SCS system with ultrafast I-V modules (4225-
PMU). As shown in Figure 2, to minimize the extra charge accumulation introduced by 
the measurement [13], the pulse width (tm) of each test point was fixed at 10 μs, and the 
gate voltage scanning range was limited from 0 V to 3 V. The voltage step was 0.03 V, and 
100 test points were adopted in each pulsed transfer measurement. Meanwhile, the pulse 
period was much longer, and it was set to no less than 1 ms, corresponding to a duty ratio 
of 1% or less. In addition, a time interval of 300 s was adopted between the adjacent pulsed 
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Figure 1. Schematics of the GaN HEMT device and gate structures.

Pulsed transfer characteristic tests with prolonged negative quiescent gate bias (VGSQ)
were carried out under a Keithley 4200-SCS system with ultrafast I-V modules (4225-PMU).
As shown in Figure 2, to minimize the extra charge accumulation introduced by the
measurement [13], the pulse width (tm) of each test point was fixed at 10 µs, and the gate
voltage scanning range was limited from 0 V to 3 V. The voltage step was 0.03 V, and 100 test
points were adopted in each pulsed transfer measurement. Meanwhile, the pulse period
was much longer, and it was set to no less than 1 ms, corresponding to a duty ratio of 1% or
less. In addition, a time interval of 300 s was adopted between the adjacent pulsed transfer
measurements to ensure a full recovery of VT before each measurement.
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Figure 2. Schematics of a pulsed transfer characteristic test with negative quiescent gate bias (VGSQ).

Although the prolonged pulse test method could roughly reflect the impact of negative
gate bias stress and the stress duration on device VT stability, it still lacks transient VT
shift (∆VT) details in the stress and recovery processes. Thus, a series of MSM sequences
with a −µs level of periodically inserted ID-VG measurements were conducted to further
explore the transient details, as shown in Figure 3. To minimize the testing error induced
by extra charge accumulation, low forward gate sweeping voltages, from 1 V to 3 V and
0 V to 2 V, were applied on SG and OG HEMTs, respectively, in a short testing time of 2 µs.
The influence of the sweeping measurements has been carefully pre-evaluated through
without-stress monitory tests. In addition, a DC gate bias, varying from −4 V to −10 V,
was adopted in the stress process, followed by a 1000 s recovery process with zero gate bias.
Furthermore, the temperature-dependent transient ∆VT, from room temperature to 150 ◦C,
was also evaluated under negative gate bias stress.
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3. Results and Discussion
3.1. VT Shift in Pulse Transfer Tests

As shown in Figure 4, the VT shift of both two types of devices increases with increas-
ing pulse stress time and negative gate stress bias, but their shift directions are opposite.
For SG devices, VT under tp = 100 ms shows a forward shift, from approximately 1.2 V to
1.6 V, when VGSQ varies from 0 V to −10 V, as shown in Figure 4a. In contrast, a smaller
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backward VT shift, from around 1.30 to 1.25, is observed for OG devices under the same
test conditions, as shown in Figure 4b. The different VT shift behaviors indicate different
extra charge accumulations in the gate region, and the detailed physical mechanism for
this discrepancy will be further investigated by a series of MSM sequences.
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3.2. Transient ∆VT Evolution in MSM Sequences

As shown in Figure 5, the transient ∆VT of SG HEMTs shows no obvious change
during the initial stress process (5 µs–10 ms). As the stress time continues, ∆VT begins
to increase and becomes gradually saturated with a further increase in stress time. It is
also worth mentioning that ∆VT becomes more positive with increasing negative gate bias
stress, as marked by the red arrow in Figure 5a. During the recovery process, as shown in
Figure 5b, ∆VT remains almost unchanged for the initial 0.1 s, and then, it can gradually
recover to the initial state in the subsequent 1000 s. Compared with SG HEMTs, OG HEMTs
feature a smaller amplitude in ∆VT under the same stress conditions. In addition, ∆VT
shows non-monotonic change as the stress time increases. More specifically, ∆VT first
drops to a negative value, after approximately 1 s of stress time, as marked by the blue
shade in Figure 5c. After that, ∆VT gradually rises to a stable state. Besides, the change
trend of ∆VT, with the gate bias stress in OG HEMTs, is opposite to that in SG HEMTs, as
marked by the blue arrow in Figure 5c. In the subsequent recovery process, OG HEMTs
demonstrate a faster recovery speed, where VT starts the recovery process immediately
after the removal of gate bias stress and can fully recover to the initial state in approximately
1 s recovery time.
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Figure 5. Transient ∆VT evolution in 1000 s stress and subsequent 1000 s recovery processes, with
gate stress from −4 V to −10 V, under room temperature: (a,b) SG HEMT, (c,d) OG HEMT.

However, the ∆VT evolution, with stress and recovery time, at elevated temperatures
is found to be very different from the behavior at room temperature, for both SG and OG
HEMTs, when conducting negative bias stress MSM sequences. As shown in Figure 6,
∆VT, with stress time in SG HEMTs, features a concave-shaped evolution process under
the given negative bias stress, and the concave shape occurs earlier and features a larger
amplitude with the increasing temperature. It is very interesting that a convex-shaped VT
evolution appears, correspondingly, in the recovery process. In addition, as marked by the
black arrows, the final saturated ∆VT decreases with the increasing temperature under the
given gate bias stress.

For OG HEMTs, the change in ∆VT is generally smaller in comparison with SG
HEMTs. As shown in Figure 7a–c, ∆VT becomes slightly more negative in the initial
stress process and, then, begins to rise to a stable and positive value earlier, with the
increasing temperature, for all the given gate bias stress. The time to reach the stable state
for ∆VT is greatly shortened from 100 s to 1 ms when the temperature varies from room
temperature to 150 ◦C. In addition, this stable ∆VT seems to grow gradually saturated with
further increases in temperature. The recovery process becomes simpler with a quick and
monotonous change to the initial state.
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3.3. Physical Mechanism Analysis

The transient ∆VT evolution of devices during stress and subsequent recovery pro-
cesses, presented above, reflects the dynamic changes of net charges underneath the gate
stack region. Figure 8 illustrates the schematic energy band diagram of the device gate stack
region under negative gate bias stress. Under the stress condition, the p-GaN/AlGaN/GaN
heterojunction is reverse biased, and a depletion region takes place, as marked by the red
shadow. In particular, the metal/p-GaN Schottky junction in SG HEMTs is forward biased,
and it features an additional Space Charge Region (SCR) compared to that in OG HEMTs,
as marked by the yellow shadow.
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At room temperature, little electron injection or a trapping process could be introduced
under the negative gate bias stress [18], while the depletion or accumulation of holes plays
a major role and is further investigated. The positive ∆VT during the gate stress process
could stem from the hole emission of the gate-stack region of p-GaN gate HEMTs, which is
equivalent to the depletion of net positive charges. In contrast, the negative ∆VT results
from hole accumulation. The behavior of ∆VT could be linked to three physical processes,
as illustrated in Figure 8a,b:

1. Donor-type hole trap states at the p-GaN/AlGaN interface could be activated and
release holes to the valence band in the p-GaN layer [17,18];

2. The depletion width of SCR, in the p-GaN layer of SG HEMTs, would decrease under
the negative gate bias stress, which also leads to hole release [4];

3. Holes could flow from the gate-source drift region, towards the gate stack, and under
large negative gate bias stress. Part of the holes may flow out to the gate terminal and
contribute to the gate current, while part of the holes may get trapped into the gate
stack region and lead to an extra hole accumulation [16].
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In SG HEMTs, the increase in the saturated ∆VT, with increasing negative bias stress
in Figure 5a, corresponds to further depletion of holes. With the increasing electric field
under higher bias stress, more holes released in process (i)–(iii) could be emitted to gate
metal and drift away, leading to a higher extent of hole deficiency. In contrast, OG HEMTs
exhibit a smaller VT shift toward the opposite direction with increasing negative bias stress,
as shown in Figure 5c. For OG HEMTs, holes would be less released through process
(ii) because of the absence of the SCR. In addition, the p-i-n diode mainly undertakes the
reverse-bias voltage, and the electric field drop across the AlGaN barrier is larger in OG
HEMTs, compared with that in SG HEMTs, under given negative gate stress. Thus, it is
easier for a hole to cross the AlGaN barrier layer and inject into the gate stack region in OG
HEMT. Besides, with an increasing negative bias, OG HEMTs feature a larger gate leakage
current, which is six orders of magnitude higher than that in SG HEMTs, under a given gate
bias of −10 V, as shown in Figure 9. The increased difference in the gate leakage current,
under large reverse gate bias, indicates that the process (iii) plays an important role in OG
HEMTs. As a result, hole accumulation gradually becomes dominated in the gate stack
region of OG HEMTs, as negative gate bias stress increases and, hence, leads to a more
negative ∆VT. Moreover, in the subsequent recovery processes, SG HEMTs demonstrate a
slower recovery process compared to OG HEMTs Figure 5b,d. This phenomenon could
be attributed to the presence of the Schottky barrier at the metal/p-GaN junction in SG
HEMTs. Different from OG HEMTs, the p-GaN bulk begins electrically floating with the
formation of Schottky-type contacts at the metal/p-GaN interface in SG HEMTs. When the
stress is withdrawn, the previously reduced SCR depletion width in the p-GaN layer of SG
HEMTs is restored, and the valance–band offset at the metal/p-GaN junction increases and
returns to the original state. This Schottky barrier will hinder the backflow of those holes
depleted in the stress phase and, hence, results in a slower recovery process in SG HEMTs.
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In principle, both hole injection or release in processes (i)–(iii) could be enhanced
through thermal assistance under elevated temperatures. Additionally, more detailed
physical processes should be taken into consideration, as shown in Figure 8c,d:

1. The deep-level defects in the AlGaN layer could be activated with an increasing
temperature and participate in the de-trapping process of electrons at the negative
gate bias;
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2. The acceptors in the p-GaN cap layer could be quickly ionized with an increasing
temperature and, hence, release holes at the negative gate bias, leaving net negative
charges behind.

As a result, the distinct transient ∆VT behavior, under the elevated temperature for
two types of devices, could be attributed to a combination of the above processes. For SG
HEMTs, the concave-shaped ∆VT evolution, in the range of around 10 ms to 1 s stress time,
could be linked to a temporary accumulation of net positive charges during the initial stress
stage. For one thing, the electrons released by the activated deep-level defects, through the
process (iv), are driven away from the gate stack region under the electric field. Meanwhile,
more holes could also be released through processes (v) with increasing temperatures,
and these extra released holes could not fully drift away in short time, due to the block of
Schottky barrier. Consequently, the more obvious concave-shaped ∆VT evolution occurs
with increasing temperatures.

In addition, the convex-shaped ∆VT evolution in the recovery process is also associated
with the involvement of process (iv). When the bias stress is withdrawn, the electrons driven
away during the stress process gradually flow back to the gate stack region. However, the
holes could not be replenished immediately, due to the blocking of the Schottky barrier.
For these reasons, negative net charge accumulation becomes temporarily dominated, and
hence, convex-shaped ∆VT evolution occurs in the recovery process. As recovery time
increases, the number of electrons re-captured by the deep-level defects becomes saturated.
The transient ∆VT could recover to the initial state as the reduced positive charges are
gradually restored. Moreover, the reduction in the saturated ∆VT with an increasing
temperature could be ascribed to the participation of processes (v). With the increasing
ionization of acceptors under elevated temperatures, more net negative charges are left
behind and could balance the voltage drop on the gate stack region, hence resulting in a
reduction in the saturated ∆VT under the given gate bias stress.

For OG HEMTs, the concave-shaped VT evolution that occurred at room temperature
gradually disappears, and the time of reaching the saturated ∆VT becomes shorter with
the increasing temperature under the given gate bias stress. These phenomena indicate an
accelerated hole depletion process underneath the gate stack region. With lower barrier
height in OG HEMTs, more holes under elevated temperatures could be emitted to the
gate metal and drift away. In addition, the recovery process in OG HEMTs is simpler
and exhibits quick and monotonic change towards the initial state, which could also be
attributed to the flowing of holes back under the low barrier being easier.

4. Conclusions

In summary, the temperature-dependent transient ∆VT evolution in OG and SG
HEMTs, under negative gate bias stress, are captured in the −µs to −ks time window by
fast sweeping characterizations, and some interesting phenomena are observed. As the
temperature increases, SG HEMTs exhibit distinct concave-shaped and convex-shaped
∆VT evolution in the stress and recovery processes, separately, while OG HEMTs exhibit
an accelerated ∆VT increase, towards the positive direction, in the stress process and
monotonic change in the recovery process. These transient details reflect the dynamic
net charge variations underneath the gate stack region, and the time and temperature-
dependent hole trapping, releasing, and transport processes are further analyzed through
the proposed physical mechanisms. The comprehensive mechanism analysis takes account
of the differences in device structures, as well as the participation of different physical
processes under elevated temperatures, which contributes to a better understanding on the
characteristics of p-GaN gate HEMTs.
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