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Evaluative application of UKCP09-based downscaled future weather years to simulate 

overheating risk in typical English homes 

1 Introduction 

Given the documented longevity of buildings and the projected change in climate, 

existing weather years for building performance simulation, traditionally based on 

historic climate data, is insufficient for modelling the impact of future change and 

preparing the building industry for appropriate design, resilience and adaptation for the 

projected change (Gething 2010, Mylona 2012). Hence, future weather data are being 

used intensively in building simulation research in the UK to test the potential for 

overheating and energy use change for buildings in the future (Belcher et al. 2005, 

CIBSE 2009, Chow and Levermore 2010, Collins et al. 2010, Jentsch et al. 2008, Du et 

al. 2010, Du et al. 2011,Watkins et al. 2011, Coley and Kershaw 2010, Eames et al. 

2012, de Wilde and Tian 2010, Gupta and Gregg 2013). There is also international 

recognition for this need. In Canada, Robert and Kummert (2012) show through the 

application of ‘morphed’ weather years that net-zero energy buildings designed for the 

current climate miss the net-zero energy target in the future. In Switzerland, Frank 

(2005) demonstrates that climate change will reduce the heating energy demand of an 

office building but ultimately increase the cooling energy demand by a factor 

significantly higher. Other examples are evident in Australia (Guan 2009), China (Chan 

2011, Wan et al. 2011a, Wan et al. 2011b) and the USA (Crawley 2007). 

Climate change impact on buildings has been projected previously based on 

different climate models. The most recent climate model for the UK, the UK Climate 

Projection 2009 (UKCP09), is the most comprehensive package of climate information 

for the 21
st
 century to be made available for the entire UK to date. The UKCP09 differs

from the previous and international climate change models in two fundamental respects. 

First, UKCP09 provides monthly projections of climate change data on a 25km grid-

scale over seven 30-year time slices starting on a baseline of 1961-1990 for three carbon 

emission scenarios and a range or probabilities. Second, an accompanying Weather 

Generator (WG) is used to spatially downscale the 25km data to 5km and to temporally 

downscale the monthly data to daily or hourly data. The WG uses stochastic modelling 

methods to perform the downscaling. For a specific location, time period, and carbon 

emission scenario, the raw data generated from the UKCP09 WG are in the form of 



3000 years of hourly data. This is not in a form that is recognisable and directly usable 

by building simulation practitioners. There is therefore the need for weather data in 

formats suited for building design, planning and management and for the evaluation of 

these data in practical case studies – specifically for dynamic thermal simulation of 

buildings and for the assessment of overheating risks. As a result of this recognized 

need, several research projects have been funded by the UK Engineering and Physical 

Sciences Research Council (EPSRC) to examine the use of UKCP09 data and the 

associated WG tool, in producing weather files appropriate for building simulation.  

The process of downscaling, developing the climate change data from the base 

UKCP09 to building simulation future weather years (FWY), is open to a range of 

methods. The wealth of methodological output has proven to be useful and informative 

in research, however for the building simulation practitioner, potential problems could 

arise. Problems such as, which FWY dataset should be used? - As explained in 

subsequent sections, there are a number of approaches available for FWY development 

producing different FWY datasets. The uncertainty issues and variation in results are by 

no means restricted to FWY datasets but also exist internationally with present day 

stochastic weather files for building performance simulation. As has been recognised 

over 10 years ago, methodologies can vary (and impact the accuracy of modelling 

results) due to gaps in weather station data, depth of consideration for the urban heat 

island effect, and sensitivity of the method to the weather sequence (Crawley and 

Huang 1997, Aguiar et al. 1999, Argiriou et al. 1999, Boland and Dik 2001, Janjai and 

Deeyai 2009). These issues are still of concern and can act to compound the issue of 

future modelling. 

Of notable concern, the UK Technology Strategy Board (TSB) has funded 50 live 

architecture projects to assess climate change impact and adaptation effectiveness. 

These projects are actively testing designs and proposing adaptation strategies based on 

a single chosen method (by the project team and not based on an assessment of all 

methodologies compared). A second problem is explored in the latter half of the paper; 

significant differences in overheating results and energy use patterns can arise when 

multiple FWY datasets, developed through different methods, are aligned along their 

common projection variables (i.e. climate period, emissions scenarios and level of 

probability) and compared through simulation. The FWY datasets are ultimately 

analysed through a dynamic building simulation model as this is the platform for which 

they are developed. Though this paper specifically assesses climate change data in the 



UK, these methods are applicable and even currently used internationally (Robert and 

Kummert, 2012). These issues and questions are expected to inevitably arise anywhere 

climate change simulation for buildings are being performed and the solutions found in 

the UK will be informative for future international work in this field. 

2 Review of future Design Summer Year methodologies 

With the introduction of the UKCP09 probabilistic climate change projections, the 

EPSRC funded four research projects in 2008 under the use of probabilistic information 

in building design programme to develop weather files for building performance 

simulation and to examine the use of the UKCP09 data for building design or 

assessment. To do so, the research projects needed to first downscale the monthly data 

into a usable format and though all projects used the UKCP09 WG to downscale the 

data, different and sometimes multiple methodologies were ultimately developed and 

tested (Mylona 2012). Three of the four projects are described in the following sub-

sections (Sections 2.4-2.7). The fourth, Low-carbon climate change future (LCF) did 

not develop single year weather files but instead, Patidar et al. (2011) and Jenkins et al. 

(2011) used multi-year weather files (e.g. a random selection of 100 years from 3000 

years) for building simulation and developed a regression method to calculate interior 

temperatures based on simulation results.  

The SNACC (Suburban neighbourhood adaptation for a changing climate) 

project, funded under the EPSRC’s Adaptation and Resilience to a Changing Climate 

programme, focuses on adaptation of the built environment through changes to 

individual homes and entire neighbourhoods, using a socio-technical approach (Gupta 

and Gregg 2011). This paper is developed out of building simulation testing undertaken 

as part of the SNACC project. Table 1 summarises a range of future weather year 

datasets for building simulation including those used for SNACC. The datasets and their 

methodological approaches are outlined in Sections 2.1-2.7, The highlighted datasets 

are the datasets which are the subject of testing following the review. 

Table 1 

2.1 CIBSE future DSYs 

In the UK the Chartered Institution of Building Services Engineers (CIBSE) provides 

the Test Reference Year (TRY) and the Design Summer Year (DSY) used by a majority 



of building performance simulators in the UK. CIBSE produced DSY data to enable 

designers to simulate building performance during a year with a hot, but not extreme, 

summer. The DSY consists of an actual 1-year sequence of hourly data, selected from 

the 21-year recorded data sets (typically 1983-2004) to represent a year with the third 

hottest summer (CIBSE 2002). The selection is based on average dry bulb temperatures 

during the period April–September. Practitioners predominantly use DSYs to calculate 

the risk of overheating in a building in terms of percentage of occupied hours (CIBSE 

2006). 

When the UK Climate Impacts Programme 2002 (UKCIP02 – the predecessor to 

the UKCP09) climate change data became public, CIBSE and others used the time 

series adjustment (also called ’morphing’) method with the data to generate future 

DSYs (Jentsch et al. 2008, Belcher et al. 2005). Briefly, the morphing method is to 

stretch and shift observed weather data to produce a future time series that corresponds 

to future projections of average changes in the climate model. In the end the two time 

series are proportionally consistent. Morphing is documented as conceptually 

straightforward and transparent. The ‘ready-made’ datasets offered by CIBSE (2008) 

then became ‘standard’ data for the industry, thereby providing a common platform for 

climate change impact assessments. CIBSE offers DSYs for current, 2020s, 2050s and 

2080s timelines. For each future timeline, weather data based on four carbon emission 

scenarios (low, medium low, medium high and high) were made available. 

2.2 ARUP morph DSYs 

A research partner on the SNACC project, ARUP (2011) has provided to the SNACC 

team two methodologically alternative sets of future weather data based on the UKCP09 

climate change projections. They are UKCP09 Morphed data (Morph, in short) and 

UKCP09 Weather Generator-ARUP data (WG-A, in short). For the first set of future 

weather data (Morph), ARUP used the method explained in CIBSE TM48 (CIBSE 

2009). The variables that have been used to generate the FWYs are dry bulb 

temperature, wet bulb temperature, wind direction, wind speed and cloud cover. The 

mean monthly projections of changes to these climate variables were captured from the 

UKCP09, and they were used to ‘morph’ current time series weather data.  The 

morphing involved ‘stretching’ (i.e. scaling) and ‘shifting’ (i.e. time-adjusting) the 

current climate values of variables so that they have the same monthly average statistics 

as the projected climate change variables.     



2.3 ARUP Weather Generator DSYs – Method F 

The second set of future weather data (WG-A) is also based on UKCP09 projections. 

Instead of using the morphing method, ARUP used the UKCP09 WG to generate 100 

sets of 30 years of hourly data for each time slice, carbon emission scenario and 

location. The 100 sets of 30 years were then ranked by the mean dry bulb temperature 

for each set. From this ranked series, the 30-years at 10
th
, 50

th
 and 90

th
 percentile

1
 were

selected. For the 30 years data at 10
th
 percentile, the 30 years were ranked from coolest

to hottest according to the mean temperature of April-September; the middle of the 

upper quartile was then specified as the DSY at 10
th
 percentile. This process was

repeated for 30 years at 50
th
 percentile and 90

th
 percentile. In order to run the WG for

the first time, a random seed must be supplied by the user or the WG itself. This is the 

number used as the starting point in a random number generation algorithm. The 

random sampling method in the WG gives the whole range of percentiles in its outputs.  

2.4 COPSE Manchester DRYs – Method A 

As part of the COPSE (Co-incident probabilistic climate change weather data for a 

sustainable environment) project, Watkins et al. (2012) at Manchester University 

developed a method of generating future Design Reference Years (DRYs) from 

UKCP09 climate change projections. In the selection procedure applied, each calendar 

month of the DRY is derived separately from any other calendar month. For example, 

3000 Januaries captured from the  UKCP09 WG output and the mean temperatures (or 

solar, or RH) for each calendar month of the 3000 months are calculated, and the 3000 

Januaries are ranked by these monthly means. A 20-month band is taken centred at a 

certain percentile (e.g. 87.5% or 97.5% in their study) of 3000 months. Then a ‘design 

reference’ January is chosen (via the FS-stat method
2
) taking into account all three

1
 Common probability percentages associated with the data in the UKCP09 are 10%: 

very unlikely to be less than, 50%: as likely to be less than as it is to be greater than or 

the central estimate and 90%: very unlikely to be greater than. 

2
The FS-stat (Finkelstein-Schafer statistic) method selects the ‘best’ calendar month from 

multi-year data. For each primary parameter (dry-bulb temperature or solar radiation or 

humidity), the FS-stat method sums the absolute difference between the cumulative distribution 

of the daily value in an individual month (e.g. a January) and the cumulative distribution of the 

daily value in all of that calendar month (e.g. 20 Januaries). The months with the smallest FS 



parameters (temperature, solar radiation, relative humidity) and then wind regardless of 

which primary selection parameter has been used. This month then becomes one of the 

12 contributing months to the DRY. The process is repeated for the other 11 months.  

The whole process is then repeated for the other primary selection parameters. 

The temperature-selected DRY and solar-selected DRY would usually be required, with 

the worst case result being used. If solar gain were known not to be an issue (minimal or 

no glazing), the temperature-selected DRY alone could be used.  

Manchester University offers three sets of DRYs (temperature, solar radiation 

and relative humidity) for the control, 2020s, 2050s and 2080s timelines. For each 

timeline and percentile (87.5% or 97.5%), weather data based on low and high carbon 

emission scenarios were made available. 

2.5 COPSE Northumbria DRYs – Method B 

Also as part of the COPSE project, Du et al. (2012a) at Northumbria University 

developed another method of generating future DRYs from UKCP09 climate change 

projections. This method selects three near-extreme summer months and three near-

extreme winter months and weaves them into the COPSE Northumbria TRY (Du et al. 

2012b). Three near-extreme winter months and three near-extreme summer months 

were derived separately. For example, 3000 Junes are captured from the UKCP09 WG 

output and then are ranked by their monthly mean temperatures. A 30-month band is 

taken centred at a certain percentile (e.g. 85%, 99% in their study) of 3000 months. 

Then a ‘design reference’ June is chosen (via the FS-stat method) (ISO 2005) taking 

into account temperature, solar radiation, relative humidity and wind speed (wind speed 

as secondary selection criteria). This month then becomes one of the summer 

contributing months to the DRY. The process is repeated for July and August months. 

For winter months (December, January and February), the 30-month band is taken at 

certain percentiles (15% and 1%).    

statistic are chosen as the most ‘average’ (‘typical’ or ‘best’). Hence the months chosen using 

the FS statistic can be considered representative of all the years. This process is followed for 

each month of the year for each parameter in turn. More details can be found in ISO 15927-4 

Standard. 



Northumbria University offers DRYs for the control, 2030s, 2050s and 2080s 

timelines. For each timeline and percentile (85% or 99%), weather data were made 

available for low, medium and high emissions scenarios.  

The COPSE stakeholder advisory group suggests using a single TRY and DRY, 

as it is less time and cost consuming for industry application. To balance this with the 

probabilistic nature of the future climate data, Watkins et al. (2012) and Du et al. 

(2012a) both provide DRYs at two percentiles (87.5% and 97.5% in COPSE 

Manchester data, 85% and 99% in COPSE Northumbria data). 

2.6 PROMETHEUS DSYs – Method E 

As the outcome of the PROMETHEUS (The use of probabilistic climate change data to 

future-proof design decisions in the building sector) project, Eames et al. (2011) at 

Exeter University developed a method for generating probabilistic DSYs from the 

UKCP09 climate change projections. In the selection procedure applied by Eames et al., 

for a specific location, climate period and emissions scenario, 100 samples of 30-year 

data were generated by the UKCP09 WG. For each sample of 30-year data, the year 

with the fourth warmest April to September was selected as a DSY; therefore there are 

100 DSYs available. For each calendar month of these 100 DSYs, the 100 months were 

then ranked based on the ascending order of the mean monthly temperatures. Then 

different calendar months at the same percentile (e.g. 10
th
, 33

rd
, 50

th
, 66

th
 and 90

th
) were

joined together to form the PROMETHEUS probabilistic DSYs. For example, the 10th 

percentile January month was joined to the 10th percentile February month et cetera. 

The PROMETHEUS project offers five DSYs (at 10
th
, 33

rd
, 50

th
, 66

th
 and 90

th

percentiles respectively) for the control, 2030s, 2050s and 2080s timelines. For each 

timeline and percentile, weather data based on the medium and high emissions scenarios 

were made available. The five DSYs (at five different probabilities) offer a wider range 

of uncertainty compared with COPSE data. In this paper, PROMETHEUS data is 

named WG-P (Weather Generator- PROMETHEUS) in short.  

2.7 PROCLIMATION DSYs– Methods C,D,G and H 

As the outcome of the PROCLIMATION (The use of probabilistic climate scenarios in 

building environmental performance simulation) project, Smith and Hanby (2012) 

examined four methods of generating DSYs from UKCP09 WG output. All four 

methods retain the concept of using complete years (a complete year selected from 



multi-year data, e.g. 1999 from 1983-2004). This differs from methods proposed by the 

COPSE project and the PROMETHEUS project. The COPSE DRY was composed of 

individual calendar months selected from different years (e.g. January from 1981, 

February from 1990, March from 1984 and so on). The PROMETHEUS DSY retains 

the concept of using a complete year in the first step of their method, then composing 

DSYs by individual calendar months in the following step. 

The other difference between the PROCLIMATION project and others is that 

PROCLIMATION used the percentile sampling feature of the UKCP09 WG for two of 

their methods (G and H). The percentile sampling means that the probabilistic attribute 

(percentile) has been embedded in the WG output. ARUP, COPSE and PROMETHEUS 

used the random sampling feature of the WG. The random sampling output from the 

WG represents the whole range of probability. 

Figure 1 illustrates all methods based on the UKCP09 WG. Method A was used 

by COPSE Manchester team and Method B was used by COPSE Northumbria team. 

Method E was used by the PROMETHEUS team. Method F was used by ARUP (WG-

A) for the SNACC project. Methods C, D, G, and H are the methods examined by the 

PROCLIMATION team. Among the four methods examined by the PROCLIMATION 

team using weighted cooling degree hours, Method D has the most flexibility and 

economy of effort and it provides comparable outputs in relation to the existing 

morphed methods, if its central estimates are used (Smith and Hanby 2012). 

Figure 1  

Mylona (2012) reviewed some of the above methods theoretically and points out 

that the morphing methodology is the preferred method for keeping the consistency 

between the currently available historic and future weather files. However, Eames et al. 

(2012) suggests that there are clear issues with the morphing procedure using UKCP09 

and caution must be used when investigation the effects of extreme temperature. 

3 Method 

This paper examines three datasets, provided for simulation in the SNACC project, 

developed by PROMETHEUS and ARUP (table 1) using morphing and statistical 

modelling.  Two tests were conducted. First, a direct comparison was made among three 



weather datasets. Second, building simulations of four types of typical English homes 

were conducted to calculate future overheating hours. The simulation testing is 

considered important because this is the platform for which the future weather years 

were developed. 

3.1 Climate change scenarios 

The following climate change projections were selected: 

• two climate periods: 2050s ‘medium term’ and 2080s ‘long term’

• one emissions scenario: medium emissions

• two probabilities: 50% (central estimate) and 90% (very unlikely to be

greater than) 

Additional tests were performed for the 2030s climate period for both medium 

and high emissions. The authors consider the medium and long term climate periods to 

sufficiently represent the latter database of future climate change without overlap 

(figure 2). These latter scenarios are preferred due to the historic and expected longevity 

of homes in England. 

Figure 2  

Partially due to limited availability of data, comparisons between all future 

weather datasets are limited to the medium emissions scenarios, 50% probability and 

90% probability. These scenarios do however represent climate change scenarios 

adequate for testing in the SNACC project. 

3.2 Weather data for simulation 

For the SNACC project, three DSY datasets (highlighted in table 1) and corresponding 

three TRY datasets have been obtained and are being used to test climate change impact 

and adaptation effectiveness in typical English homes. Of the three datasets to be tested, 

two varied methodologies, morphing and statistical modelling, for developing FWY are 

applied and tested in this paper. In addition, statistical modelling is represented by two 

individually developed datasets. The datasets are: 

• UKCP09 Morphed data developed by ARUP (Morph)

• UKCP09 WG data statistically modelled by PROMETHEUS (WG-P)

• UKCP09 WG data statistically modelled by ARUP (WG-A)



The three datasets are tested for a single location, Stockport, from the list of 

three cities being studied in the SNACC project (Bristol, Oxford and Stockport). The 

base file for the Morph dataset is Manchester Ringway Airport’s historical CIBSE TRY 

and DSY. The Manchester Ringway Airport and Stockport are a maximum of 6km apart 

centre to centre. The WG-P and WG-A datasets are both based on the 5km grid square 

over Stockport (Grid number: 3900390). The weather files used for initial comparison 

are listed in table 2.  

For analytical comparison of the three datasets, the average temperature and the 

average direct solar radiation for the period of April-September are shown in figure 3 

and 4 respectively. The temperature difference among the three datasets is very small 

for 2050 medium 50 percentile weather condition; however, the difference is up to 

2.63⁰C for 2080 medium 90 percentile. WG-P appears to always result in higher 

average temperatures than the others while WG-P shows higher radiation levels in all 

but the 2050 medium 50 percentile projection. A surprising finding is that the average 

temperature of WG-A for 2080 medium 90 percentile is less than its 2050 medium 90 

percentile’s average temperature. In addition, the WG-A average solar radiation is 

higher in the 2050s climate period than the 2080s. 

Table 2 

Figure 3  

Figure 4  

The total hours equalling or exceeding a certain temperature (25⁰C - 38⁰C) 

during the April – September period for the different datasets are illustrated in figure 5. 

Note that there is no clear pattern showing which datasets are always warmer than 

others. The 50 percentile weather data (two figures at left) tend to give similar results, 

while the difference among 90 percentile (two figures at right) is significant. As an 

example, the hours equal to or over 26⁰C at 2080 medium 90 percentile for the three 

datasets are 170, 360 and 600.  

Figure 5  



The hourly temperatures at a random selected week were plotted in figure 6. As 

expected, two sets of morphed weather data (red lines) have a strong link given the 

nature of the morphing method (CIBSE 2009), while the statistical data do not (Jones et 

al. 2009, Eames et al. 2011). A further investigation is made by applying these weather 

data to the simulation of four types of English homes. In the interest of comparisons 

within the datasets the simulation and analysis was expanded to include both DSY and 

TRY.  

Figure 6  

3.3 Simulation tool 

Detailed house level climate change impact and adaptation analysis is being undertaken 

through building thermal simulation modelling in IES ApacheSim. IES ApacheSim was 

selected partly due to the wide international usage by both research and practice 

communities, and partly due to the extensive historical testing and verification (Gough 

and Rees 2004, IES VE 2010, IES VE 2011). The results from ApacheSim are most 

likely to reflect the results obtained by building simulation practitioners. 

3.4 Case study buildings 

Case study buildings were used to assess the FWY datasets for two reasons. First, with 

intense focus on the need for retrofitting homes both at policy level and within the 

project, there is the interest to test the impact of climate change on existing and 

representative home typologies in actual locations. Although test cell modelling is an 

effective way to assess the differences between weather datasets providing a 

controllable environment over specific climate parameters (Aguiar et al. 1999), the 

simulation results also depend on whole house thermal dynamics such as occupancy 

patterns, internal gains, flow of ventilation throughout the house and even the impact 

(potential shading) of the surrounding environment, data for which is readily available 

for representative case study houses. This is why Judkoff et al. (2008) question how 

well single test cell results present the performance of full-scale buildings.  

Four home typologies, semi-detached, mid-terraced, detached and purpose built 

flat, were selected because they represent the four most common home types in England 

(in the order listed) (DCLG 2010). The constructions are post-1919, theoretically built 



within the period from 1965-1980, which saw the most dwellings built than any other 

period to date. In addition, the amount of flats built during that period is almost double 

any other period (DCLG 2010). The most common construction from this period was 

masonry cavity wall construction. The U-values used in all models are as follows: 

external walls = 1.4 W/m
2
K, glazing (single) = 4.3 W/m

2
K, ground floor = 0.75

W/m
2
K, roof = 0.35 W/m

2
K (Allen and Pinney, 1990). Furthermore, while the homes

are occupied, the windows were set to open for natural ventilation whenever the interior 

temperature exceeds 22⁰C. Please refer to Gupta and Gregg (2012) for comprehensive 

construction, occupancy and operational details of the modelled homes. In contrast to 

the occupancy details available in the reference above, each home is occupied by a 

working couple with no dependants. The construction and occupancy are intentionally 

maintained as controls so that variation between the homes would be attributed only to 

physical exposure, e.g., building element orientation, number of exposed walls and 

scale. 

Figure 7 shows the homes modelled and used for simulation. All plans and 

details apart from the flat were obtained from Allen and Pinney (1990). The flat, 

however, is modelled after the plan of an actual flat in Oxford. 

Figure 7  

3.5 Overheating criteria 

The authors chose to select a single, simple variable that is relevant to climate change 

impact research and particularly an issue in current policy, therefore the FWY datasets 

are compared based on annual overheating results from each home type (DCLG 2011). 

Understanding overheating in the homes is an essential first step for the modelling 

phase of the SNACC research; mitigation of overheating is one of the foundational 

conditions on which the technical performance of suggested adaptation strategies will 

be based. Much of this is explored in Gupta and Gregg (2012). The intent of this paper, 

however, is not to establish the overheating potential in the modelled homes or to 

suggest adaptation strategies that are effective to mitigate overheating; the method 

through which the FWY files are assessed is simply through the measurement and 

comparison of potential overheating simplified as annual hours (and percentage) over a 

specific temperature for a specific space. Furthermore, it is outside the scope of this 

paper and beyond purpose to assess the reason for overheating, the impact of climate 



change on winter heating demand, potential cooling energy demand, etc. 

The primary bedroom and living room of each home are assessed against the 

CIBSE definition for overheating. For bedrooms, 1% of annual occupied hours over the 

operative temperature of 26°C and for living spaces, 1% of annual occupied hours over 

the operative temperature of 28°C and the DSY should be used to calculate overheating 

(CIBSE 2006). Though CIBSE (2006) Guide A recommends assessing overheating 

through the use of DSY files, both TRY and DSY files are used to compare results in 

this study. Based on the CIBSE definition for overheating, it can be established that 

there is overheating in the bedrooms of the homes for most scenarios and in some cases 

far beyond the 1% of annual occupied hours. It is important to note that natural 

ventilation, through the occupancy controlled opening of windows, is being utilised in 

the models to reduce overheating, as it is assumed that this is the most obvious and 

already utilised adaptation for dwellings. 

4 Results 

4.1 Comparing FWY using future overheating risk 

The three FWY datasets were simulated for the four home types. The following figures 

present the actual hours (x-axis) and percentage of occupied hours for overheating, in 

the bedroom (figure 8) and living room (figure 9) of each home type, for the 2050s and 

2080s. The bars in the graphs are stacked to compare the three sources of FWY. 

Overall the three datasets tend to be fairly aligned when considering overheating 

at 50% probability. When comparing 90% probability the differences are more 

noticeable as was the case in figure 5. The Morph dataset, for the most part, tends to be 

either midrange or lower in overheating hours as compared to the other two datasets. 

This appears to correspond with both the mean temperature and solar radiation analysis. 

These findings are not in agreement with the findings in Eames et al. (2011) where a 

morphed dataset was found to be overestimating change when compared to the output 

of the WG. Though the morphed dataset in the former reference used UKCIP02 data, 

the baseline time series remains the same (1983-2004). Another important difference to 

note is that the former reference used whole house internal temperatures to ascertain 

their findings. When the Morph overheating does surpass the WG-A dataset in the 2080s 

this actually appears to be a possible underestimation in the WG-A dataset when 



considering the overheating difference between the 2050s and 2080s for WG-A. This 

difference is considered questionable because the UKCP09 outputs for the same 

location and projections being modelled show a clear upward trend in both mean air 

temperature change and net surface shortwave flux (NSSWF) (table 3).  

Table 3 

Figure 8  

Figure 9  

4.2 Comparing two varied weather generator outputs 

Two trends are clearly noticeable from figure 8 and 9 with regard to the two WG 

developed FWY datasets. First, according to the WG-A dataset, the most significant 

overheating for both the bedroom and living room is found in the 2050s climate period 

at 90% probability for the DSY projection. The TRY is almost comparable between the 

2050s and 2080s while still slightly higher in the 2050s. With respect to overheating in 

both climate periods and probabilities, comparing TRY to TRY and DSY to DSY, the 

WG-P dataset follows a more predictable pattern where overheating hours decrease as 

the climate period and respective probabilities descend. Comparing the DSY files to the 

TRY files in a dataset brings the discussion to the second trend. The WG-A dataset 

appears to be consistent in a pattern where DSY files result in more overheating than 

TRY files as expected. The WG-P dataset on the other hand, appears to provide random 

variation where the DSY file does not always produce more overheating than the TRY 

file from the same climate projection. As an example, refer to figure 9, for all homes in 

the 2080s at 50% probability, the TRYs in all cases result in more overheating than the 

DSYs. For the most part, however, when the TRY does show more overheating than the 

DSY, the difference between the two are quite small. Kershaw et al. (2010) documented 

a similar issue when testing baseline DSY files against a full base set of weather years 

on a number of building types. They found that the DSY would regularly underestimate 

the overheating within a building when compared to the third warmest internal year 

from the base set. The reason suggested is that the internal temperature of buildings can 

be affected by a number of variables such as wind speed and cloud cover, whereas the 



DSY is constructed to reflect the third hottest summer for a climate period as measured 

by external average temperature alone. 

Overall the FWY files appear to be producing quite significant differences in the 

results. Three possible reasons for these differences are as follows: first, flaws may exist 

in the method of generating datasets; second, the definition of ‘percentile’ in different 

methods may not be same, because the ‘percentile’ selection process happened at 

different stages (highlighted in redlines in figure 1); third, the uncertainty contained 

within 3000 future years (for example) is far beyond a situation that would allow a 

single method of statistical modelling of climate change data to stand as the industry 

representative of the data. Some variations are greater than others and this difference 

can clearly be seen in the 2080s time series for all homes. For example, the difference in 

the overheating for each probability and file type, i.e. DSY and TRY, is roughly half 

between the WG-A and WG-P FWY datasets. In other words, as an example, strategies 

taken to reduce or eliminate the overheating (e.g. glazing change or shading of glazing) 

with the WG-A dataset may not be sufficient or as effective according to the WG-P 

dataset. This difference can clearly be seen in figures 10 and 11. These figures display 

the percentages of overheating hours for the WG-P and WG-A datasets at increasing 

temperature thresholds using DSY files for the bedroom of the flat, according to two 

climate periods: 2050s, medium emissions, 90% probability and 2080s, medium 

emissions, 90% probability. 

Figure 10 

Figure 11 

When viewed this way, it is clear that the two datasets indicate completely 

different climate periods for the greatest overheating potential, whereas the WG-A 

dataset is showing the 2050s to be the most significant and the WG-P datasets is 

showing the 2080s to be the most significant. The WG-A dataset is either overestimating 

the impact for the 2050s or underestimating the impact for the 2080s and conversely the 

WG-P dataset could be performing similarly. Designing for the ‘wrong’ dataset could 

lead to erroneous conclusions, e.g., unnecessary energy use or under-adapted homes. 

Given this anomaly further investigation was performed using the 2030s and high 

emissions scenario. 



4.3 Further testing using the 2030s climate period 

The 2030s climate series for both the WG-A and WG-P datasets were also tested for 

medium and high emissions scenarios (figure 12). While the number of tests that could 

potentially be performed is very high considering all possible emissions scenario and 

probability combinations, these additional tests were run to support and verify findings 

already presented above. From these tests the most obvious outcome was that the two 

datasets are again considerably different in overheating projection. Overheating in the 

WG-P dataset appears to be predictably higher where expected, i.e., high emissions 

scenario versus medium and 90% probability versus 50%. Overheating in the WG-A 

dataset is not providing expected results whereas the medium emissions 90% DSY is 

showing the greatest overheating even beyond the high emissions scenario and the high 

emissions scenario 50% DSY is showing overheating above the 90% probabilities for 

the high emissions scenario. 

Figure 12 

5 Discussion 

As building regulations in the UK and internationally should inevitably begin to include 

adaptation to future climate change as a part of an overarching intent to reduce carbon 

emissions in the built environment, the industry will need FWY datasets for each 

specific location which are robust, yet consistent, transparent and valid for testing and 

effective in results. Figure 13 shows an example of a potential dataset. The box puts a 

boundary on the extent of data which may define a FWY dataset for every 5km square 

grid of the UK. For every location there is the potential to have 210 FWY files in a 

dataset, this allows for seven climate periods, three emissions scenarios and a minimum 

of five probabilities. This is an example of the range of projections that could be 

available for every location and can of course be expanded to an infinite number of 

probabilities. Outside the bounding box is the current situation, multiple methodologies 

creating multiple FWY datasets (five are shown simply for example whereas nine have 

been reviewed in Section 2).  

Figure 13 

As has been demonstrated, a number of available FWY datasets, derived using 

different downscaling approaches for the same location, can differ widely in their 



results. Where does this leave the future of modelling climate change impacts when 

attempting to project overheating risk and effective adaptation strategies? As the 

Technology Strategy Board (TSB 2012) is currently funding 50 live projects to be 

adapted to future climate change, these projects will need viable and reliable FWY on 

which to base their adaptation decisions. The difference between the datasets tested 

could potentially lead to different adaptation priorities specifically with regard to time 

series and adaptation phasing through the life of a building.  

Projecting a building’s response to future climate change is adequately 

complicated when considering the wide range of probabilities and emissions scenarios 

one must work with in order to understand the impact of climate change on a building. 

To compound this problem, the variation in the statistical translation of the future 

climate change, as is done through downscaling, has been exhibited to generate wide 

variation in outcomes. Considering the probabilistic nature of climate change 

projection, can there be a ‘correct’ dataset of FWY for a given location? Does this 

uncertainty in FWY output signify the need for yet another probabilistic category; a 

probabilistic category that covers the range of outputs demonstrated in this paper 

(possibly even beyond what is shown here)? An interesting alternative approach is to 

use multi-year weather data to examine the whole range of uncertainties; however this 

either requires a fast building simulation engine or a new calculation method. Jenkins et 

al. (2011) developed a regression formula to calculate interior temperature by using 

Principal Component Analysis. Du et al. (2012a) also developed a regression formula to 

calculate room cooling load by using step-wised multiple regression. Regression 

analysis of a large number of probable variations may be a more robust way to assess 

probabilistic simulation results. 

6 Conclusion 

Which method is ideal? Although more versatile, statistical modelling clearly shows 

more uncertainty with outcome between the two WG based datasets. It does not appear 

that from the definition of statistical modelling that such large variations should exist 

when comparing datasets formed through the same primary methodology (statistical 

modelling). There are however significant differences that could possibly lead to the 

construction of buildings either under-adapted and uncomfortable, in need of costly 

refurbishment or with over-sized cooling leading to significant energy use, large energy 



bills and preventable CO2 emissions. Alternatively, although the morphing method is 

limited in scope with regard to location and observed data, the non-dependence on large 

quantities of data and the transparency of the method appears to allow a replicable 

dataset to be created every time. Clearly, however, incorrect data can be replicated 

continually.  

This paper is not in the position to demonstrate which FWY dataset or method is 

‘correct’ but to establish that the variation is far too significant to ignore. Furthermore, 

the limitations within the methodologies do not necessarily create inaccurately 

downscaled projections. A single ‘correct’ methodology does not even need to be 

defined but the results should lead to decisions that are confident with the outcome 

regardless of methodology used. However, a single dataset for each given location, 

climate period, emissions scenario and probability level may be necessary for results 

that can be both consistently replicated and trusted.  

Based on a number of reviews of recent research on climate change impacts on 

the building sector, research is still on-going in many areas and further work will be 

needed to investigate the application of all above weather years to the same case studies 

in order to examine their significance in building performance (de Wilde and Coley 

2012, Mylona 2012, Street 2012). This need suggests the opportunity for projects 

involving both the building performance simulator and the future weather year 

engineers. One such example of planned progress is the CIBSE Climate Task Force, 

which is exploring potential ways to reflect current and future weather and extreme 

events for building design (Mylona 2012). In conclusion, it is recommended that future 

research should consider harmonisation of the various downscaling approaches so as to 

either ensure that methodologies create FWY that result in an acceptable range of 

variation or generate a unified dataset of FWY for a given location and climate change 

projection. The authors are however not assuming that the resolution of these issues will 

be a simple task. 
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Tables 

Table 4 Summary of future weather data 

Name of weather data 
Climate 

projection 
Method 

Sampling 

method in 

WG 

Complete/ 

composited 

year 

Short 

name in 

this paper 

CIBSE Future DSY UKCIP02 Morphing / Complete / 

ARUP morphed DSY UKCP09 Morphing Random Complete Morph 

ARUP WG DSY UKCP09 Method F Random Complete WG-A 

COPSE Manchester DRY UKCP09 Method A Random Composited / 

COPSE Northumbria 

DRY

UKCP09 Method B Random Composited / 

PROMETHEUS DSY UKCP09 Method E Random Composited WG-P 

PROCLIMATION  DSY UKCP09 Method C Random Complete / 

PROCLIMATION  DSY UKCP09 Method D Random Complete / 

PROCLIMATION  DSY UKCP09 Method G Percentile Complete / 

PROCLIMATION  DSY UKCP09 Method H Percentile Complete / 

Table 5 Weather files used for comparison 

UKCP09 Projection Source / title Weather file type 

2050 Medium 50% 

Morph DSY 

WG-A DSY 

WG-P DSY 

2050 Medium 90% 

Morph DSY 

WG-A DSY 

WG-P DSY 

2080 Medium 50% 

Morph DSY 

WG-A DSY 

WG-P DSY 

2080 Medium 90% 

Morph DSY 

WG-A DSY 

WG-P DSY 



Table 6 Climate change projections for the case study location, Stockport, 25km grid cell 1274(UK Climate 

Projections 2011) 

Climate change variable 2050 medium emissions 2080 medium emissions 

50% 90% 50% 90% 

Summer temperature 

change 

+2.4° C +4.0° C +3.4° C +5.6° C

Summer NSSWF change +6.4 W/m
2
 +17.0 W/m

2
 +8.5 W/m

2
 +21.6 W/m

2



Figures 

Figure 4 Available methods of generating DSYs 

Figure 5 Climate time scale diagram; climate periods cover 30 years of climate data 

Figure 6 Apr-Sep average temperatures 

Figure 4 Apr-Sep average direct solar radiation (taken between the daily hours of 8:00-20:00) 

Figure 5 Total hours equalled or exceeded certain temperature 

Figure 6 Hourly temperatures 

Figure 7 Image of the plans and perspectives showing orientations and room divisions of the four home types 

Figure 8 Hours above 26°C and percentage of occupied hours of overheating in the bedroom for each home 

type 

Figure 9 Hours above 28°C and percentage of occupied hours of overheating in the living room for each home 

type 

Figure 10 Percentage of overheating hours above a specific temperature for the 2050s, medium emissions 

scenario at 90% probability 

Figure 11 Percentage of overheating hours above a specific temperature for the 2080s, medium emissions 

scenario at 90% probability 

Figure 12 Number of occupied hours above 26°C in the primary bedroom of the flat for 2030s medium and 

high emissions scenarios 

Figure 13 Diagrammatic explanation of FWY datasets. Note: an entire FWY dataset shown (enclosed in the 

box) is an example of what would be necessary to embody the probabilistic nature of the climate change data 

and to allow a user access to all climate periods and emissions scenario options. 



Figures 

Figure 1 Available methods of generating DSYs 



Figure 2 Climate time scale diagram; climate periods cover 30 years of climate data 



Figure 3 Apr-Sep average temperatures 



Figure 4 Apr-Sep average direct solar radiation (taken between the daily hours of 8:00-20:00) 



Figure 5 Total hours equalled or exceeded certain temperature 



Figure 6 Hourly temperatures 



Figure 7 Image of the plans and perspectives showing orientations and room divisions of the four home types 
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Figure 10 Percentage of overheating hours above a specific temperature for the 2050s, medium emissions 

scenario at 90% probability 



Figure 11 Percentage of overheating hours above a specific temperature for the 2080s, medium emissions 

scenario at 90% probability 



Figure 12 Number of occupied hours above 26°C in the primary bedroom of the flat for 2030s medium and 

high emissions scenarios 



Figure 13 Diagrammatic explanation of FWY datasets. Note: an entire FWY dataset shown (enclosed in the 

box) is an example of what would be necessary to embody the probabilistic nature of the climate change data 

and to allow a user access to all climate periods and emissions scenario options. 



Tables 

Table 1 Summary of future weather data 

Name of weather data 
Climate 

projection 
Method 

Sampling 

method in 

WG 

Complete/ 

composited year 

Short name 

in this 

paper 

CIBSE Future DSY UKCIP02 Morphing / Complete / 

ARUP morphed DSY UKCP09 Morphing Random Complete Morph 

ARUP WG DSY UKCP09 Method F Random Complete WG-A 

COPSE Manchester DRY UKCP09 Method A Random Composited / 

COPSE Northumbria DRY UKCP09 Method B Random Composited / 

PROMETHEUS DSY UKCP09 Method E Random Composited WG-P 

PROCLIMATION  DSY UKCP09 Method C Random Complete / 

PROCLIMATION  DSY UKCP09 Method D Random Complete / 

PROCLIMATION  DSY UKCP09 Method G Percentile Complete / 

PROCLIMATION  DSY UKCP09 Method H Percentile Complete / 

Table 2 Weather files used for comparison 

UKCP09 Projection Source / title Weather file type 

2050 Medium 50% 

Morph DSY 

WG-A DSY 

WG-P DSY 

2050 Medium 90% 

Morph DSY 

WG-A DSY 

WG-P DSY 

2080 Medium 50% 

Morph DSY 

WG-A DSY 

WG-P DSY 

2080 Medium 90% 

Morph DSY 

WG-A DSY 

WG-P DSY 



Table 3 Climate change projections for the case study location, Stockport, 25km grid cell 1274(UK Climate 

Projections 2011) 

Climate change variable 2050 medium emissions 2080 medium emissions 

50% 90% 50% 90% 

Summer temperature change +2.4° C +4.0° C +3.4° C +5.6° C

Summer NSSWF change +6.4 W/m
2

+17.0 W/m
2

+8.5 W/m
2

+21.6 W/m
2


