
EvalVid - A Framework for Video Transmission and
Quality Evaluation

Jirka Klaue, Berthold Rathke, and Adam Wolisz

Technical University of Berlin, Telecommunication Networks Group (TKN)
Sekr. FT5-2, Einsteinufer 25, 10587 Berlin, Germany,�
jklaue,rathke,wolisz�@ee.tu-berlin.de

Abstract. With EvalVid1 we present a complete framework and tool-set for eval-
uation of the quality of video transmitted over a real or simulated communication
network. Besides measuring QoS parameters of the underlying network, like loss
rates, delays, and jitter, we support also a subjective video quality evaluation of
the received video based on the frame-by-frame PSNR calculation. The tool-set
has a modular construction, making it possible to exchange both the network and
the codec. We present here its application for MPEG-4 as example. EvalVid is
targeted for researchers who want to evaluate their networkdesigns or setups in
terms of user perceived video quality. The tool-set is publicly available [11].

1 Introduction

Recently noticeably more and more telecommunication systems are supporting differ-
ent kinds of real-time transmission, video transmission being one of the most important
applications. This increasing deployment causes the quality of the supported video to
become a major issue. Surprisingly enough, although an impressive number of papers
has been devoted to mechanisms supporting the QoS in different types of networks,
much less has been done to support the unified, comparable assessment of the quality
really achieved by the individual approaches. In fact, manyresearchers constrain them-
selves to prove that the mechanism under study has been able to reduce the packet loss
rate, packet delay or packet jitter considering those measures as sufficient to character-
ize the quality of the resulting video transmission. It is, however, well known that the
above mentioned parameters can not be easily, uniquely transformed into a quality of
the video transmission: in fact such transformation could be different for every coding
scheme, loss concealment scheme and delay/jitter handling.

Publicly available tools for video quality evaluation often assume synchronized
frames at the sender and the receiver side, which means they can’t calculate the video
quality in the case of frame drops or frame decoding errors. Examples are the JNDmetrix-
IQ software [4] and the AQUAVIT project [5]. Such tools are not meant for evaluation
of incompletely received videos. They are only applicable to videos where every frame
could be decoded at the receiver side. Other researchers occupied with video quality

1 This work has been partially supported by the German research funding agency ’Deutsche
Forschungsgemeinschaft’ under the program ”Adaptabilityin Heterogeneous Communication
Networks with Wireless Access” (AKOM)

Administrator
To appear in Proc. of the 13th International Conference on Modelling Techniques and Tools for Computer Performance Evaluation, Urbana, Illinois, USA, September 2003

evaluation of transmission-distorted video, e.g., [20, 21], did not make their software
publicly available. To the best knowledge of the authors there is no free tool-set avail-
able which satisfies the above mentioned requirements.

In this paper we introduce EvalVid, a framework and a toolkitfor a unified assess-
ment of the quality of video transmission. EvalVid has a modular structure, making it
possible to exchange at users discretion both the underlying transmission system as well
as the codecs, so it is applicable to any kind of coding scheme, and might be used both
in real experimental set-ups and simulation experiments. The tools are implemented in
pure ISO-C for maximum portability. All interactions with the network are done via
two trace files. So it is very easy to integrate EvalVid in any environments.

The paper is structured as follows: we start with an overviewof the whole frame-
work in Section 2, followed by the explanation of the scope ofthe supported func-
tionality in Section 3 with explanation of the major design decisions. Afterwards the
individual tools are described in more detail (Section 4). Exemplary results and a short
outline of the usability and further research issues complete the paper.

2 Framework and Design

In Figure 1 the structure of the EvalVid framework is shown. The interactions between
the implemented tools and data flows are also symbolized. In Section 3 it is explained
what can be calculated and Section 4 showshow it is done and which results can be
obtained.

VS

FV

ET

PSNR

Video
Encoder

Video
Decoder

raw YUV video
(sender)

raw YUV video
(receiver)

sender
trace receiver

trace

video trace

coded video

erroneous
video

MOS

Network
(or simulation)

loss / delay

tc
p

d
u

m
p

E
va

lV
id

-
A

P
I

tc
p

d
u

m
p

E
va

lV
id

-
A

P
ISource

Play-out
buffer User

reconstructed
raw YUV video (receiver)

reconstructed
erroneous video

- user perceived
 quality

- frame loss /
 frame jitter

RESULTS:

Fig. 1. Scheme of evaluation framework

Also, in Figure 1, a complete transmission of a digital videois symbolized from the
recording at the source over the encoding, packetization, transmission over the network,

jitter reduction by the play-out buffer, decoding and display for the user. Furthermore
the points, where data are tapped from the transmission flow are marked. This informa-
tion is stored in various files. These files are used to gather the desired results, e.g., loss
rates, jitter, and video quality. A lot of information is required to calculate these values.

The required data are (from the sender side):

– raw uncompressed video
– encoded video
– time-stamp and type of every packet sent

and from the receiver side:

– time-stamp and type of every packet received
– reassembled encoded video (possibly errorneous)
– raw uncompressed video to be displayed

The evaluation of these data is done on the sender side, so theinformations from the
receiver have to be transported back to the sender. Of practical concern is that the raw
uncompressed video can be very large, for instance 680 MB fora 3 minute PDA-screen
sized video. On the other hand it is possible to reconstruct the video to be displayed from
the information available at the sender side. The only additional information required
from the receiver side is the file containing the time stamps of every received packet.
This is much more convenient than the transmission of the complete (errorneous and
decoded) video files from the receiver side.

The processing of the data takes place in 3 stages. The first stage requires the time-
stamps from both sides and the packet types. The results of this stage are the frame-type
based loss rates and the inter-packet times. Furthermore the errorneous video file from
the receiver side is reconstructed using the original encoded video file and the packet
loss information. This video can now be decoded yielding theraw video frames which
would be displayed to the user. At this point a common problemof video quality eval-
uation comes up. Video quality metrics always require the comparison of the displayed
(possibly distorted) frame with the corresponding original frame. In the case of com-
pletely lost frames, the required synchronization can not be kept up (see Section 4.4 for
further explanations).

The second stage of the processing provides a solution to this problem. Based on
the loss information, frame synchronization is recovered by inserting the last displayed
frame for every lost frame. This makes further quality assessment possible. The thus
fixed raw video file and the original raw video file are used in the last stage to obtain
the video quality.

The boxes in Figure 1 named VS, ET, FV, PSNR and MOS are the programs of
which the framework actually consists (see Section 4). Interactions between the tools
and the network (which is considered a black box) are based ontrace files. These files
contain all necessary data. The only file that must be provided from the user of EvalVid
is the “receiver trace file”. If the network is a real link, this is achieved with the help
of TCP-dump (for details see Section 4, too). If the network is simulated, then this
file must be produced by the receiver entity of the simulation. This is explained in the
documentation [11].

For the tools within EvalVid only these trace files, the original video file and the
decoder are needed. Therefore, in the context of EvalVid thenetwork is just a “black
box” which generates delay, loss and possible packet reordering. It can be a real link,
such as Ethernet or WLAN, or a simulation or emulation of a network. Since the only
interaction of EvalVid and the network is represented by thetwo trace files (sender and
receiver), the network box can be easily replaced, which makes EvalVid very flexible.
Similarly, the video codec can also be easily replaced.

3 Supported Functionalities

In this section the parameters calculated by the tools of EvalVid are described, formal
definitions and references to deeper discussions of the matter, particularly for video
quality assessment, are given.

3.1 Determination of Packet and Frame Loss

Packet lossPacket losses are usually calculated on the basis of packet identifiers. Con-
sequently the network black box has to provide unique packetid’s. This is not a problem
for simulations, since unique id’s can be generated fairly easy. In measurements, packet
id’s are often taken from IP, which provides a unique packet id. The unique packet id
is also used to cancel the effect of reordering. In the context of video transmission it
is not only interesting how much packets got lost, but also which kind of data is in the
packets. E.g., the MPEG-4 codec defines four different typesof frames (I, P, B, S) and
also some generic headers. For details see the MPEG-4 Standard [10]. Since it is very
important for video transmissions which kind of data gets lost (or not) it is necessary
to distinguish between the different kind of packets. Evaluation of packet losses should
be done type (frame type, header) dependent. Packet loss is defined in Equation 1. It is
expressed in percent.

packet loss � �� � ���
����	

�����
 � where: (1)

� �
Type of data in packet (one of all, header, I, P, B, S)

�����
 �
number of type

�
packets sent

����	
 �
number of type

�
packets received

Frame loss A video frame (actually being a single coded image) can be relatively big.
Not only in the case of variable bit rate videos, but also in constant bit rate videos, since
the term constant applies to a short time average. I-frames are often considerable larger
than the target (short time average) constant bit rate even in “CBR” videos (Figure 2).

It is possible and likely that some or possibly all frames arebigger than the maxi-
mum transfer unit (MTU) of the network. This is the maximum packet size supported
by the network (e.g. Ethernet = 1500 and 802.11b WLAN = 2312 bytes). These frames
has to be segmented into smaller packets to fit the network MTU. This possible seg-
menting of frames introduces a problem for the calculation of frame losses. In principle

Examples of MPEG-4 CBR

0

100

200

300

400

500

600

700

1 11 21 31 41 51 61 71 81 91 101

frame

T
ar

g
et

 B
it

 R
at

e
[k

B
/s

]

Fig. 2. CBR MPEG-4 video at target bit rate 200 kbps

the frame loss rate can be derived from the packet loss rate (packet always means IP
packet here). But this process depends a bit of the capabilities of the actual video de-
coder in use, because some decoders can process a frame even if some parts are missing
and some can’t. Furthermore, wether a frame can be decoded depends on which of its
packet got lost. If the first packet is missing, the frame can almost never be decoded.
Thus, the capabilities of certain decoders has to be taken into account in order to calcu-
late the frame loss rate. It is calculated separately for each frame type.

frame loss � �� � ���
����	

�����
 � where: (2)

� �
Type of frame (one of all, header, I, P, B, S)

�����
 �
number of type

�
frames sent

����	
 �
number of type

�
frames received

Determination of Delay and Jitter In video transmission systems not only the actual
loss is important for the perceived video quality, but also the delay of frames and the
variation of the delay, usually referred to as frame jitter.Digital videos always consists
of frames with have to be displayed at a constant rate. Displaying a frame before or after
the defined time results in “jerkiness” [20]. This issue is addressed by so called play-out
buffers. These buffers have the purpose of absorbing the jitter introduced by network
delivery delays. It is obvious that a big enough play-out buffer can compensate any
amount of jitter. In extreme case the buffer is as big as the entire video and displaying
starts not until the last frame is received. This would eliminate any possible jitter at the
cost of a additional delay of the entire transmission time. The other extreme would be a
buffer capable of holding exactly one frame. In this case no jitter at all can be eliminated
but no additional delay is introduced.

There have been sophisticated techniques developed for optimized play-out buffers
dealing with this particular trade-off [17]. These techniques are not within the scope
of the described framework. The play-out buffer size is merely a parameter for the
evaluation process (Section 4.3). This currently restricts the framework to static play-
out buffers. However, because of the integration of play-out buffer strategies into the

evaluation process, the additional loss caused by play-outbuffer over- or under-runs
can be considered.

The formal definition of jitter as used in this paper is given by Equation 3, 4 and 5.
It is the variance of the inter-packet or inter-frame time. The “frame time” is determined
by the time at which the last segment of a segmented frame is received.

inter-packet time ���� � � (3)

���� � ��� � �����
where: ��� �

time-stamp of packet number�
inter-frame time ���� � �

���� � ��� � ��� ��
where: ��� �

time-stamp of last segment of frame number	

packet jitter
 � � ��
�

��� ���� � ���� �� (4)

� �
number of packets

���� �
average of inter-packet times

frame jitter
 � � �� �
��� ���� � ���
�
�� (5)

where: � �
number of frames

���
�

�
average of inter-frame times

For statistical purposes histograms of the inter-packet and inter-frame times are also
calculated by the tools of the framework (see Section 4.3).

3.2 Video Quality Evaluation

Digital video quality measurements must be based on the perceived quality of the actual
video being received by the users of the digital video systembecause the impression of
the user is what counts in the end. There are basically two approaches to measure digital
video quality, namely subjective quality measures and objective quality measures. Sub-
jective quality metrics always grasp the crucial factor, the impression of the user watch-
ing the video while they are extremely costly: highly time consuming, high manpower
requirements and special equipment needed. Such objectivemethods are described in
detail by ITU [3, 15], ANSI [18, 19] and MPEG [9]. The human quality impression
usually is given on a scale from 5 (best) to 1 (worst) as in Table 1. This scale is called
Mean Opinion Score (MOS).

Table 1. ITU-R quality and impairment scale

ScaleQuality Impairment

5 ExcellentImperceptible
4 Good Perceptible, but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

Many tasks in industry and research require automated methods to evaluate video
quality. The expensive and complex subjective tests can often not be afforded. There-
fore, objective metrics have been developed to emulate the quality impression of the
human visual system (HVS). In [20] there is an exhaustive discussion of various objec-
tive metrics and their performance compared to subjective tests.

However, the most widespread method is the calculation of peak signal to noise
ratio (PSNR) image by image. It is a derivative of the well-known signal to noise ratio
(SNR), which compares the signal energy to the error energy.The PSNR compares
the maximum possible signal energy to the noise energy, which has shown to result in
a higher correlation with the subjective quality perception than the conventional SNR
[6]. Equation 6 is the definition of the PSNR between the luminance component Y of
source image S and destination image D.

� �� �
�� ��� � �� ��� ��

	

�

�
���� �� 	��� ��� � 	����� �
� ������� ��� �� � � �
 � �

��
�� � � �
 ���

�
����� (6)

�
 ��� � �� � �� � number of bits per pixel (luminance component)

The part under the fraction stroke is nothing but the mean square error (MSE). Thus,
the formula for the PSNR can be abbreviated as� �� � � �� ��� ! �"#

�
�$, see [16].

Since the PSNR is calculated frame by frame it can be inconvenient, when applied to
videos consisting of several hundred or thousand frames. Furthermore, people are often
interested in the distortion introduced by the network alone. So they want to compare
the received (possibly distorted) video with the undistorted2 video sent. This can be
done by comparing the PSNR of the encoded video with the received video frame by
frame or comparing their averages and standard deviations.

Another possibility is to calculate the MOS first (see Table 2) and calculate the
percentage of frames with a MOS worse than that of the sent (undistorted) video. This
method has the advantage of showing clearly the distortion caused by the network at a

2 Actually, there is always the distortion caused by the encoding process, but this distortion also
exists in the received video

glance. In Section 4 you can see an example produced with the MOS tool of EvalVid.
Further results gained using EvalVid are shown briefly in Section 5.

Table 2.Possible PSNR to MOS conversion [14]

PSNR [dB]MOS
�

37 5 (Excellent)
31 - 37 4 (Good)
25 - 31 3 (Fair)
20 - 25 2 (Poor)
�

20 1 (Bad)

4 Tools

This section introduces the tools of the EvalVid framework,describes their purpose and
usage and shows examples of the results attained. Furthermore sources of sample video
files and codecs are given.

4.1 Files and Data Structures

At first a video source is needed. Raw (uncoded) video files areusually stored in the
YUV format, since this is the preferred input format of many available video encoders.
Such files can be obtained from different sources, as well as free MPEG-4 codecs.
Sample videos can also be obtained from the author.

Once encoded video files (bit streams) exist, trace files are produced out of them.
These trace files contain all relevant information for the tools of EvalVid to obtain the
results discussed in Section 3. The evaluation tools provide routines to read an write
these trace files and use a central data structure containingall the information needed to
produce the desired results. The exact format of the trace files, the usage of the routines
and the definition of the central data structure are described briefly in the next section
and in detail in the documentation [11].

4.2 VS - Video Sender

For MPEG-4 video files, a parser was developed based on the MPEG-4 video standard
[10]; simple profile and advanced simple profile are implemented. This makes it possi-
ble to read any MPEG-4 video file produced by a conforming encoder. The purpose of
VS is to generate a trace file from the encoded video file. Optionally, the video file can
be transmitted via UDP (if the investigated system is a network setup). The results pro-
duced by VS are two trace files containing information about every frame in the video
file and every packet generated for transmission (Table 3 and4).

Table 3. The relevant data contained in the video trace file is the frame number, the frame type
and size and the number of segments in case of (optional) frame segmentation. The time in the
last column is only informative when transmitting the videoover UDP, so that you can see during
transmission, if all runs as expected (The time should reflect the frame rate of the video, e.g. 40
ms at 25 Hz).

Format of video trace file:

Frame Number Frame Type Frame Size Number of UDP-packets Sender Time
0 H 24 1 segm 40 ms
1 I 9379 10 segm 80 ms
2 P 2549 3 segm 120 ms
3 B 550 1 segm 160 ms
...

Table 4. The relevant data contained in the sender trace file is the time stamp, the packet id and
the packet size. This file is generated separately because itcan be obtained by other tools as well
(e.g. TCP-dump, see documentation).

Format of sender trace file:

time stamp [s] packet id payload size
1029710404.014760 id 48946 udp 24
1029710404.048304 id 48947 udp 1024
1029710404.048376 id 48948 udp 1024
...

These two trace files together represent a complete video transmission (at the sender
side) and contain all informations needed for further evaluations by EvalVid. With VS
you can generate these coupled trace files for different video files and with different
packet sizes, which can then be fed into the network black box(e.g. simulation). This is
done with the help of the input routines and data structures provided by EvalVid, which
are described in the documentation. The network then causesdelay and possibly loss
and re-ordering of packets. At the receiver side another trace, the receiver trace file is
generated, either with the help of the output routines of EvalVid, or, in the case of a real
transmission, simply by TCP-dump (4.7), which produces trace files compatible with
EvalVid.

It is worth noting that although the IP-layer will segment UDP packets exceeding
the MTU of underlying layers and will try to reassemble them at the receiving side it
is much better to do the segmenting self. If one segment (IP fragment) is missing, the
whole packet (UDP) is considered lost. Since it is preferable to get the rest of the seg-
ments of the packet I would strongly recommend using the optional MTU segmentation
function of VS, if possible.

4.3 ET - Evaluate Traces

The heart of the evaluation framework is a program called ET (evaluate traces). Here
the actual calculation of packet and frame losses and delay/jitter takes place. For the
calculation of these data only the three trace files are required, since there is all nec-
essary information included (see Section 4.2) to perform the loss and jitter calculation,
even frame/packet type based. The calculation of loss is quite easy, considering the
availability of unique packet id’s. With the help of the video trace file, every packet gets
assigned a type. Every packet of this type not included in thereceiver trace is counted
lost. The type based loss rates are calculated according to Equation 1. Frame losses
are calculated by looking for any frame, if one of it’s segments (packets) got lost and
which one. If the first segment of the frame is among the lost segments, the frame is
counted lost. This is because the video decoder cannot decode a frame, which first part
is missing. The type-based frame loss is calculated according to Equation 2.

This is a sample output of ET for losses (a video transmissionof 4498 frames in
8301 packets).

PACKET LOSS FRAME LOSS
H: 1 0 0.0% H: 1 0 0.0%
I: 2825 3 0.1% I: 375 3 0.8%
P: 2210 45 2.0% P: 1125 45 4.0%
B: 3266 166 5.1% B: 2998 166 5.5%

ALL: 8302 214 2.6% ALL: 4499 214 4.8%

The calculation of inter-packet times is done using Equation 3 and 4). Yet, in the
case of packet losses, these formulas can’t be applied offhand. This is because in the
case of packet losses no time-stamp is available in the receiver trace file for the lost
packets. This raises the question how the inter-packet timeis calculated, if at least one
of two consecutive packets is lost? One possibility would beto set the inter-packet
time in the case of the lost packet to an “error” value, e.g., 0. If then a packet is actually
received, one could search backwards, until a valid value isfound. The inter-packet time
in this case would be�� � ����� � ����� ��
 �����

. This has the disadvantage of not getting a
value for every packet and inter-packet times could grow unreasonable big. That’s why
the approach used by ET is slightly different. If at least one(of the two actually used in
every calculation) packets is missing, there will be not generated an invalid value, but
rather a value will be “guessed”. This is done by calculatinga supposable arrival time
of a lost packet. We will show how this is done later in this section, and in particular
using Equation 7. This practically means that for lost packets the expectancy value of
the sender inter-packet time is used. If relatively few packets get lost, this method does
not have a significant impact on the jitter statistics. On theother hand, if there are very
high loss rates, we recommend another possibility: to calculate only pairwise received
packets and count lost packets seperately.

arrival time (lost packet) ��� � ����� � 	��� � �����
 (7)

where: ��� �
time-stamp ofsentpacket number�

��� �
time-stamp of(not) receivedpacket number�

Now, having a valid time-stamp for every packet, inter-packet (and based on this,
inter-frame) delay can be calculated according to Equation3. Figure 3 shows an exam-
ple of the inter-frame times calculated by ET.

0
50

100

150

200

250

300
350

1 101 201 301 401 501 601 701 801 901

fram e

in
te

r-
fr

am
e

d
el

ay
 [

m
s]

Fig. 3. Example inter-packet times (same video transmission as used for loss calculation)

ET can also take into account the possibility of the existence of certain time bounds.
If there is a play-out buffer implemented at the receiving network entity, this buffer will
run empty, if no frame arrives for a certain time, the maximumplay-out buffer “size”.
Objective video quality metrics like PSNR cannot take delayor jitter into account.
However, an empty (or full) play-out buffer effectively causes loss (no frame there to be
displayed). The maximum play-out buffer size can be used to “convert” delay into loss.
With ET you can do this by providing the maximum play-out buffer size as a parameter.
The matching of delay to loss is then done as follows:

MAX = maximum play-out buffer size

new_arrival_time(0) := orig_arrival_time(0);
FOREACH frame m
IF (m is lost)

-> new_arrival_time(m) := new_arrival_time(m-1) + MAX
ELSE

IF (inter-frame_time(m) > MAX)
-> frame is marked lost
-> new_arrival_time(m) := new_arrival_time(m-1)

+ MAX
ELSE
-> new_arrival_time(m) := new_arrival_time(m-1)

+ (orig_arrival_time(m)
- orig_arrival_tm(m-1));

END IF
END IF

END FOREACH

Another task ET performs, is the generation of a corrupted (due of losses) video file.
This corrupted file is needed later to perform the end-to-endvideo quality assessment.

Thus another file is needed as input for ET, namely the original encoded video file. In
principle the generation of the corrupted video is done by copying the original video
packet by packet where lost packets are omitted. One has to pay attention to the actual
error handling capabilities of the video decoder in use. It is possible, that the decoder
expects special markings in the case of missing data, e.g., special code words or simply
an empty (filled with zeros) buffer instead of a missing packet. You must check the
documentation of the video codec you want to use.

4.4 FV - Fix Video

Digital video quality assessment is performed frame by frame. That means that you
need exactly as many frames at the receiver side as at the sender side. This raises the
question how lost frames should be treated if the decoder does not generate “empty”
frames for lost frames3. The FV tool is only needed if the codec used cannot provide
lost frames. How lost frames are handled by FV is described inlater in this section.
Some explanations of video formats may be required. You can skip these parts if you
are already familiar with this.

Raw video formats Digital video is a sequence of images. No matter how this se-
quence is encoded, if only by exploiting spatial redundancy(like Motion-JPEG, which
actually is a sequence of JPEG-encoded images) or by also taking advantage of tempo-
ral redundancy (as MPEG or H.263), in the end every video codec generates a sequence
of raw images (pixel by pixel) which can then be displayed. Normally such a raw im-
ages is just a two-dimensional array of pixels. Each pixel isgiven by three color values,
one for the red, for the green and for the blue component of itscolor. In video coding
however pixels are not given by the three ground colors, but rather as a combination
of one luminance and two chrominance values. Both representations can be converted
back and forth (Equation 8) and are therefore exactly equivalent.

It has been shown that the human eye is much more sensitive to luminance than
to chrominance components of a picture. That’s why in video coding the luminance
component is calculated for every pixel, but the two chrominance components are often
averaged over four pixels. This halves the amount of data transmitted for every pixel
in comparison to the RGB scheme. There are other possibilities of this so called YUV
coding, for details see [10].

� � � ����� � � ����� � � ����� (8)
� � � ��	� �� � � �� � � ���
 �

� � � �
3 This is a Quality of Implementation issue of the video decoder. Because of the time stamps

available in the MPEG stream, a decoder could figure out if oneor more frames are missing
between two received frames.

� � � � � ���
�
� � � � � �
��� � � �����
� � � � � �����

The decoding process of most video decoders results in raw video files in the YUV
format. The MPEG-4 decoder which I mostly use writes YUV filesin the 4:2:0 format.

Decode and display orderThe MPEG standard basically defines three types of frames,
namely I, P and B frames. I frames contain an entire image, which can be decoded
independently, only spatial redundancy is exploited. I frames areintra coded frames. P
frames are predicted frames; they contain intra coded partsas well as motion vectors
which are calculated in dependence on previous (I or P) frames. P frame coding exploits
both spatial and temporal redundancy. These frames can onlybe completely decoded
if the previous I or P frame is available. B frames are coded exclusively in dependence
on previous and successive (I or P) frames. B frames only exploit temporal redundancy.
They can be decoded completely only if the previous and successive I or P frame is
available. That’s why MPEG reorders the frames before transmission, so that any frame
received can be decoded immediately, see Table 5.

Table 5.MPEG decode and display frame ordering

Display orderFrame typeDecode order
1 I 2
2 B 3
3 B 1
4 P 5
5 B 6
6 B 4
...

Because of this reordering issue, a coded frame does not correspond to the decoded
(YUV) frame with the same number. FV fixes this issue, by matching display (YUV)
frames to transmission (coded) frames according to Table 5.There are more possible
coding schemes than the one shown in this table (e.g. schemeswithout B frames, with
only one B frame in between or with more than two B frames between two I (or P)
frames), but the principle of reordering is always the same.

Handling of missing frames Another issue fixed by FV is the possible mismatch of
the number of decoded to the original number of frames causedby losses. A mismatch
would make quality assessment impossible. A decent decodercan decode every frame,
which was partly received. Some decoders refuse to decode parts of frames or to decode
B frames, where one of the frames misses from which it was derived. Knowing the
handling of missing or corrupted frames by the decoder in use, FV can be tuned to fix

the handling weaknesses of the decoder. The fixing always consists of inserting missing
frames. There are two possibilities of doing so. The first is to insert an “empty” frame for
every not decoded frame (for whatever reason). An empty frame is a frame containing
no information. An empty frame will cause certain decoders to display to display a black
(or white) picture. This is not a clever approach, because ofthe usually low differences
between two consecutive video frames. So FV uses the second possibility, which is the
insertion of the last decoded frame instead of an empty framein case of a decoder frame
loss. This handling has the further advantage of matching the behaviour of a real world
video player.

4.5 PSNR - Quality assessment

The PSNR is the base of the quality metric used in the framework to assess the resulting
video quality. Considering the preparations from preliminary components of the frame-
work, the calculation of the PSNR itself is now a simple process described by Equation
6. It must be noted, however, that PSNR cannot be calculated if two images are binary
equivalent. This is because of the fact that the mean square error is zero in this case and
thus, the PSNR couldn’t be calculated according to Equation6. Usually this is solved
by calculating the PSNR between the original raw video file before the encoding pro-
cess and the received video. This assures that there will be always a difference between
to raw images, since all modern video codecs are lossy.

PSNR tim e series
low losses

0

10

20

30

40

50

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1
10

01
11

01
12

01
13

01
14

01
15

01
16

01
17

01
18

01
19

01
20

01
21

01
22

01
23

01
24

01
25

01
26

01
27

01
28

01
29

01
30

01
31

01
32

01
33

01
34

01
35

01
36

01
37

01
38

01
39

01
40

01
41

01
42

01
43

01
44

01

fram e

P
S

N
R

 [
d

B
]

PSNR tim e series
very high losses

0

10

20

30

40

50

1
10

1
20

1
30

1
40

1
50

1
60

1
70

1
80

1
90

1
10

01
11

01
12

01
13

01
14

01
15

01
16

01
17

01
18

01
19

01
20

01
21

01
22

01
23

01
24

01
25

01
26

01
27

01
28

01
29

01
30

01
31

01
32

01
33

01
34

01
35

01
36

01
37

01
38

01
39

01
40

01
41

01
42

01
43

01
44

01

fram e

P
S

N
R

 [
d

B
]

Fig. 4.Example of PSNR (same video transmitted with few and with high losses)

Almost all authors, who use PSNR, only use the luminance component of the video
(see Section 4.4). This is not surprising considering the relevance of the Y component
for the HVS (Section 3.2). Figure 4 exemplifies two PSNR time series. Other metrics

than PSNR can be used, in this case the desired video quality assessment software , e.g.,
[20], [2] or [4] must replace the PSNR/MOS modules.

4.6 MOS calculation

Since the PSNR time series’ are not very concise an additional metric is provided. The
PSNR of every single frame is mapped to the MOS scale in Table 1as described in
section 3.2. Now there are only five grades left and every frame of a certain grade
is counted. This can be easily compared with the fraction of graded frames from the
original video as pictured in Figure 5. The rightmost bar displays the quality of the
original video as a reference, “few losses” means an averagepacket loss rate of 5%,
and the leftmost bar shows the video quality of a transmission with a packet loss rate of
25%. Figure 5 pictures the same video transmissions as Figure 4.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

high losses few losses lossless

MOS
scale

5 excellent

4 good

3 fair

2 poor

1 bad

Fig. 5. Example of MOS graded video (same video transmissions as in Figure 4)

The impact of the network is immediately visible and the performance of the net-
work system can be expressed in terms of user perceived quality. Figure 5 shows how
near the quality of a certain video transmission comes to themaximal achievable video
quality.

4.7 Required 3rd party tools

The programs described above are available as ISO-C source code or pre-compiled bi-
naries for Linux-i386 and Windows. To perform ones own videoquality evaluations,
you still need some software from other sources. Their integration into the EvalVid
framework is described in the documentation. If you want to evaluate video transmis-
sion systems using a Unix system or Windows, then you need TCP-dump or win-dump,
respectively. You can get them it from:

– http://www.tcpdump.org
– http://windump.polito.it

You also need raw video files (lossless coded videos) and a video encoder and decoder,
capable of decoding corrupted video steams. There are MPEG-4 codecs available from:

– MPEG-4 Industry Forum (http://www.m4if.org/resources.php)
– MPEG (http://mpeg.nist.gov/)

5 Exemplary Results

This tool-set has been used to evaluate video quality for various simulations [1, 12]
and measurements [7]. It proved usable and quite stable. Exemplary results are shown
here and described briefly. Figure 6 shows the result of the video quality assessment
with EvalVid for a simulation of MPEG-4 video transmission over a wireless link using
different scheduling policies and dropping deadlines. Thepicture shows the percentage
of frames with the five MOS ratings, the rightmost bar shows the MOS rating of the
original (without network loss) video. It can be clearly seen that the blind scheduling
policy does not work very well and that the video quality for the two other policies
increases towards the reference with increasing deadlines.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100
%

10 20 30 40 50 10 20 30 40 50

F
ra

m
es

 w
ith

 M
O

S

Blind Deadline Deadline Drop Reference
(no loss)

Deadline [ms]

Good

Excellent

Bad

Fair

Poor

MOS Scale

Fig. 6.Example of video quality evaluation (MOS scale) with EvalVid

Similarly, Figure 7 shows the enhancement of user satisfaction with increasing drop-
ping deadlines and better scheduling schemes in a simulation of an OFDM system. The
“user satisfaction” was calculated based on the MOS resultsobtained with EvalVid. The

bars in this figure show the number of users that could be supported with a certain mean
MOS.

S / OFF S / ON D / OFF D / ON

100
175

250

0
1
2
3
4
5
6
7
8
9

10

subcarrier

100 2 3 4 6

175 3 4 5 8

250 4 5 6 9

S / OFF S / ON D / OFF D / ON

n
u

m
b

er
 o

f s
at

is
fie

d
 u

se
rs

deadline [ms]

assignment and semantic scheduling

Fig. 7.Example of video quality evaluation (number of satisfied users) with EvalVid

6 Conclusion and Topics to further Research

The EvalVid framework can be used to evaluate the performance of network setups or
simulations thereof regarding user perceived applicationquality. Furthermore the calcu-
lation of delay, jitter and loss is implemented. The tool-set currently supports MPEG-4
video streaming applications but it can be easily extended to address other video codecs
or even other applications like audio streaming. Certain quirks of common video de-
coders (omitting lost frames), which make it impossible to calculate the resulting qual-
ity, are resolved. A PSNR-based quality metric is introduced which is more convenient
especially for longer video sequences than the traditionally used average PSNR. The
tool-set has been implemented in ISO-C for maximum portability and is designed mod-
ularly in order to be easily extensible with other applications and performance metrics.
It was successfully tested with Windows, Linux and Mac OS X.

The tools of the EvalVid framework are continuously extended to support other
video codecs as H.263, H.26L and H.264 and to address additional codec functionalities
like fine grained scalability (FGS) [13] and intra frame resynchronisation. Furthermore
the support of dynamic play-out buffer strategies is subject of future developments.
Also it is planned to add support of other applications, e.g.voice over IP (VoIP) [8] and
synchronised audio-video streaming. And last but not leastother metrics than PSNR-
based will be integrated into the EvalVid framework.

Bibliography

[1] A. C. C. Aguiar, C. Hoene, J. Klaue, H. Karl, A. Wolisz, andH. Miesmer. Channel-aware
schedulers for voip and mpeg-4 based on channel prediction.to be published at MoMuC,
2003.

[2] Johan Berts and Anders Persson. Objective and subjective quality assessment of com-
pressed digital video sequences. Master’s thesis, Chalmers University of Technology, 1998.

[3] ITU-R Recommendation BT.500-10. Methodology for the subjective assessment of the
quality of television pictures, March 2000.

[4] Sarnoff Corporation. Jndmetrix-iq software and jnd: A human vision system model for
objective picture quality measurements, 2002.

[5] Project P905-PF EURESCOM. Aquavit - assessment of quality for audio-visual signals
over internet and umts, 2000.

[6] Lajos Hanzo, Peter J. Cherriman, and Juergen Streit.Wireless Video Communications. Dig-
ital & Mobile Communications. IEEE Press, 445 Hoes Lane, Piscataway, 2001.

[7] Daniel Hertrich. Mpeg4 video transmission in wireless lans — basic qos support on the
data link layer of 802.11b. Minor Thesis, 2002.

[8] H.Sanneck, W.Mohr, L.Le, C.Hoene, and A.Wolisz. Quality of service support for voice
over ip over wireless.Wireless IP and Building the Mobile Internet, December 2002.

[9] ISO-IEC/JTC1/SC29/WG11. Evaluation methods and procedures for july mpeg-4 tests,
1996.

[10] ISO-IEC/JTC1/SC29/WG11.ISO/IEC 14496: Information technology - Coding of audio-
visual objects, 2001.

[11] J. Klaue. Evalvid — http://www.tkn.tu-berlin.de/research/evalvid/fw.html.
[12] J. Klaue, J. Gross, H. Karl, and A. Wolisz. Semantic-aware link layer scheduling of mpeg-

4 video streams in wireless systems. InProc. of Applications and Services in Wireless
Networks (AWSN), Bern, Switzerland, July 2003.

[13] Weiping Li. Overview of fine granularity scalability inmpeg-4 video standard.IEEE
transaction on circuits and systems for video technology, March 2001.

[14] Jens-Rainer Ohm. Bildsignalverarbeitung fuer multimedia-systeme. Skript, 1999.
[15] ITU-T Recommendations P.910 P.920 P.930. Subjective video quality assessment meth-

ods for multimedia applications, interactive test methodsfor audiovisual communications,
principles of a reference impairment system for video, 1996.

[16] Martyn J. Riley and Iain E. G. Richardson.Digital Video Communications. Artech House,
685 Canton Street, Norwood, 1997.

[17] Cormac J. Sreeman, Jyh-Cheng Chen, Prathima Agrawal, and B. Narendran. Delay reduc-
tion techniques for playout buffering.IEEE Transactions on Multimedia, 2(2):100–112,
June 2000.

[18] ANSI T1.801.01/02-1996. Digital transport of video teleconferencing / video telephony
signals. ANSI, 1996.

[19] ANSI T1.801.03-1996. Digital transport of one-way video signals - parameters for objective
performance assessment. ANSI, 1996.

[20] Stephen Wolf and Margaret Pinson. Video quality measurement techniques. Technical
Report 02-392, U.S. Department of Commerce, NTIA, June 2002.

[21] D. Wu, Y. T. Hou, W. Zhu, H.-J. Lee, T. Chiang, Y.-Q. Zhang, and H. J. Chao. On end-
to-end architecture for transporting mpeg-4 video over theinternet. IEEE Transactions on
Circuits and Systems for Video Technology, 10(6):923–941, September 2000.

