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Evaporated nanometer chalcogenide
films for scalable high-performance
complementary electronics
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Yong-Young Noh 1

The exploration of stable and high-mobility semiconductors that can be grown
over a large area using cost-effectivemethods continues to attract the interest
of the electronics community. However, many mainstream candidates are
challenged by scarce and expensive components, manufacturing costs, low
stability, and limitations of large-area growth. Herein, we report wafer-scale
ultrathin (metal) chalcogenide semiconductors for high-performance com-
plementary electronics using standard room temperature thermal evapora-
tion. The n-type bismuth sulfide delivers an in-situ transition from a conductor
to a high-mobility semiconductor after mild post-annealing with self-assembly
phase conversion, achieving thin-film transistorswithmobilities of over 10 cm2

V−1 s−1, on/off current ratios exceeding 108, and high stability. Complementary
inverters are constructed in combination with p-channel tellurium device with
hole mobilities of over 50 cm2 V−1 s−1, delivering remarkable voltage transfer
characteristics with a high gain of 200. This work has laid the foundation for
depositing scalable electronics in a simple and cost-effective manner, which is
compatible with monolithic integration with commercial products such as
organic light-emitting diodes.

Thin-film transistor (TFT) technology has promoted the rapid devel-
opment of inexpensive and large flat-panel displays. It is being applied
widely inmicroprocessors, sensors, radio-frequency identification tags,
wearable electronics, and other Internet-of-Things devices1–7. Unlike
state-of-the-art high-performance silicon metal-oxide-semiconductor
field-effect transistors (which involve stringent process restrictions),
TFT technology is unique in that it can bemanufacturedwith high yield
on various large-area substrates via cost-effective process4. Decades of
research has been devoted to the examination of TFT channel semi-
conductors including metal chalcogenides/oxides/halides, organics,
and low-dimensional nanomaterials7–11. Metal oxides and chalcogenides
show high electrical performance and stability. However, the use of
expensive components (e.g., In andGa) and toxicmetals such asCdand
Pb involve high manufacturing costs and hazards to environmental
safety. Notwithstanding the potential functionalities of emerging low-

dimensional nanomaterials, it is difficult to achieve wafer-scale homo-
geneous deposition via an inexpensive and high reproducible way,
limiting their application in large-area TFTs12.

Among the various thin-film deposition methods for large-area
electronics, thermal evaporation provides remarkable deposition
scalability and reproducibility, and enables precise film thickness
control, homogeneous deposition on textured substrates, and highly
customized multilayer stack growth. The commercialization of eighth
generation (2200× 2500mm) organic light-emitting diodes (OLED)
using thermal evaporation shows the feasibility of mass production of
TFTs. In addition, film patterning with a size of several tens of micro-
meters can be achieved conveniently over a large area using finemetal
masks. Among potential semiconductors capable of thermal eva-
poration, bismuth sulfide (Bi2S3) shows great potential for TFT chan-
nels due to its eco-friendliness and cost-effectiveness in conjunction
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with high electronmobilities of up to 640 cm2 V−1 s−1 13–16. Bi2S3 has been
studied extensively in photoelectric and thermoelectric devices ben-
efiting from the suitable optical bandgap of 1.3–1.7 eV and high heat/
electricity conversion13,17–20. As a p-type candidate, tellurium (Te) has
recently attracted substantial attention for high-performance TFT
fabrication owing to its high hole mobility and stability21–23. In the
efforts to deposit (metal)chalcogenide thin films over a large area in a
cost-effectivemanner, themain attentionhasbeen paid to the solution
process24–27. However, the strong covalent bonding of these solids
requires complex and toxic synthetic processes and has been chal-
lenging to integrate with the conventional complementary metal-
oxide-semiconductor (CMOS) technology. Another noteworthy solu-
tion approach is liquid-phase exfoliation. It is used widely to obtain
layered two-dimensional (2D) metal chalcogenide nanosheets7,28,29.
Recent studies achieved high-performance molybdenum sulfide
(MoS2) TFTs with an electron mobility (μe) of up to ~10 cm2 V−1 s−1 and
on/off current ratio (Ion/Ioff) of 10

4–106 by controlling the defect heal-
ing and intercalation chemistry28,30. However, the structural surface
defects from the high-energy exfoliation process, non-uniform num-
ber of layers in each nanoflake, and inter-flake electrical resistancemay
limit large-area uniformity and further performance optimization28.

In this Article, we report sub-nanometer (metal)chalcogenide thin
films deposited over large areas through industry-compatible room
temperature (RT) thermal evaporation and explore their applications
in TFTs and complementary electronics. Aided by the high vapor
pressure of (metal)chalcogenides, thermally evaporated Bi2S3 exhibits
uniform films over large areas with nanometer-level precise thickness
control. The as-deposited Bi2S3 provides an amorphous structure
containing sulfur-rich components with conductor-like behavior. Mild
post-annealing canmodulate the composition and drive self-assembly
crystallization with the conversion to a high-mobility stable channel
for TFTwithμe ofover 10 cm2 V−1 s−1 and Ion/Ioff exceeding 108. Thehigh-
gain complementary inverter is further realized with the high-mobility
p-channel Te TFT, indicating the great potential of thermally evapo-
rated (metal)chalcogenides for large-area CMOS circuit integration.

Results
Electrical characterizations of thermally-evaporated Bi2S3 TFTs
The Bi2S3 channel layers were deposited by RT thermal evaporation on
atomic layer deposition HfO2 (40 nm)/p+-Si substrates. This was fol-
lowed by post-annealing at 200–300 °C for 30min (see the Methods
section for further details). The gold source/drain electrodes were
then deposited on the patterned Bi2S3 to construct bottom-gate top-
contact TFTs (Fig. 1a). Typical transfer curves of Bi2S3 TFTs are shown
in Fig. 1b. The TFTs with the as-evaporated Bi2S3 channel exhibited
conductor-like behavior with a constant source–drain current (IDS) of
~1mA. Such characteristics are generally caused by the excessive
concentration of charge carriers in the channel layer and thus, the
negligible gate bias modulation capability. It is noteworthy that mild
post-annealing achieved the significant n-channel transistor char-
acteristic with the desired enhancement operation mode (threshold
voltage, VTH > 0V). The improved μe at higher annealing temperatures
can be attributed to the enhanced long-range ordering of the micro-
structures. Among these, the post-annealing at 250 °C yielded a well-
balanced TFT performance, including a high μe of 12.5 cm

2 V−1 s−1, high
Ion/Ioff of 2 × 108, VTH of 1.1 V, subthreshold swing (SS) of 0.2 V dec−1,
small hysteresis <1 V, and high stabilities (Fig. 1c, Supplementary Fig. 1).
The corresponding output curves show significant current linearity at
low source–drain voltages, indicating the Ohmic contact between
Bi2S3 channel and Au electrodes (Fig. 1d). The transmission-line
method31 was employed to evaluate the contact resistance (Rc) and it
was calculated to be 360Ω cm for the 250 °C-Bi2S3 TFT (Fig. 1e). We
then performed temperature-dependent measurements to investigate
the charge transport properties of the optimized 250 °C-Bi2S3 channel
(Fig. 1f). The TFT mobilities first increased as the temperature

decreased from 293 to 223 K. This is a typical band-like transport
commonly observed in highly crystalline and high mobility
semiconductors32–35. Therefore, we could infer a high degree of order
in post-annealed Bi2S3 thin films. When the measurement tempera-
tures decreased further, the electron transport became thermally
activated. Thiswas dominatedby shallow traps in Bi2S3, whichcaused a
marginal reduction in mobility. Such temperature-dependent char-
acteristics differ from the observations of solution-based liquid-phase
exfoliated metal chalcogenide TFTs in that the thermal activation is
governed over the temperature range, which is likely to be associated
with activated interflake hopping36,37.

In addition to facile post-annealing, the Bi2S3 channel thickness
had a significant effect on the key TFT parameters, e.g., μe and Ion/Ioff
(Fig. 1g, Supplementary Fig. 2). A suitable Bi2S3 thickness of 5 nm was
used for the above device characterization. When the Bi2S3 channel
was downscaled to 3 nm, the remarkable electrical performance was
maintainedwith a similarly high Ion/Ioff of 10

8 and amarginally reduced
μe of ~9 cm2 V−1 s−1. During transistor operation, the accumulated
charge carriers were confined to a narrow region (3–5 nm) close to the
channel/dielectric interface. In channel layers that were excessively
thin, the carrier transport could undergo backscattering owing to
roughness, dangling bonds, and defects21. When the channel thick-
nesses exceeded 5 nm, μe increased monotonically from 20.2 to
34.5 cm2 V−1 s−1 for the TFTs based on 8 and 12 nm Bi2S3 channel layers.
A downward trend from 105 to 103 was observed for Ion/Ioff. This can be
interpreted as a reduced electrostatic control for TFTs based on
thicker channel layers, which is commonly observed in different
material systems21,38,39. Finally, to examine the scalability of thermally
evaporated Bi2S3, we fabricated a TFT array on a 4 inch HfO2/p

+-Si
substrate and randomly measured 100 TFTs (Fig. 2h). The devices
exhibited remarkable uniformity and a narrow performance distribu-
tion with μe in the range of 10.8−14.2 cm2 V−1 s−1 and Ion/Ioff of 1–4 × 108

(Fig. 2i). It is noteworthy that suchwafer-scale deposition of 5 nm Bi2S3
film requires only 40mg of Bi2S3 powder (~USD 0.28), representing a
significantly low material cost.

Bi2S3 thin-film characterizations
A series of film analyses were performed to clarify the effects of post-
annealing on the significantly different TFT performance. First, the
crystal structure of the film was analyzed. Bi2S3 is theoretically com-
posed of a lamellar structure with (Bi4S6)n ribbons stacked along the
c-axis through van der Waals interactions (Fig. 2a)13,40. This atomic
chain configuration ensures an intrinsically benign grain boundary and
efficient charge transport41. Based on X-ray diffraction (XRD), the as-
evaporated Bi2S3 film showed an evident amorphous characteristic,
and a polycrystalline texture was observed after post-annealing at
250 °C (Fig. 2b). Cross-sectional high-resolution transmission electron
microscopy (HRTEM) was performed to obtain more precise infor-
mation regarding the microscopic crystal structure. As shown in
Fig. 2c–e, the TEM image and selected area electron diffraction (SAED)
pattern exhibit the typical amorphous structure of as-deposited Bi2S3
without a perceptible long-range order. This initial amorphous state is
favorable to subsequent scalable growth owing to its superior uni-
formity. After the post-annealing at 250 °C, a well-defined laminar
texture was observed without visible defects (Fig. 2f, g). A lattice spa-
cing of 0.56nm corresponding to the (200) crystalline plane of Bi2S3
was measured. It was also verified by the fast Fourier transform (FFT)
spot patterns of themarked frames (Fig. 2h). The thickness of the Bi2S3
film (i.e., the number of layers) could be controlled precisely by
manipulating the evaporation time and rate. It was noted that the
efficient evaporation process enabled the deposition of a 5 nm Bi2S3
thin film in ~25 s (rate: ~2 Å s−1). This provided a high throughput
compared with other film deposition methods.

The optical spectra exhibited increased light absorption after the
annealing at 250 °C, with the bandgap (Eg)marginally reduced from 1.6
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to 1.5 eV (Fig. 3a). The atomic force microscope (AFM) images dis-
played a substantial uniformity and ultra-smooth surfacemorphology,
with small root mean square (RMS) values of 0.28 and 0.24 nm for the
as-deposited and 250 °C-Bi2S3 thin films, respectively (Fig. 3b, c). Such
atomically smooth topography allows for a high-quality interface and
highdeviceyieldover a large area. The typical polycrystalline texture is
observed in the 250 °C-annealed film with the average grain size of
hundred nanometers (Supplementary Fig. 3). We then performed
X-ray photoelectron spectroscopy (XPS) to analyze the film compo-
nents. For both as-deposited and 250 °C-annealed samples, the Bi 4 f

spectra showed two peaks at 163.5 and 158.2 eV. These match closely
with the characteristic Bi3+ peaks in Bi2S3 (Supplementary Fig. 4)40,42.
This indicates that the Bi3+ existed in phase-pure Bi2S3 without other
forms. Figure 3d exhibits the corresponding S 2 s spectra. It could be
split into two subpeaks at 225.4 and 227.6 eV, respectively. The lower-
binding-energy peak can be assigned to the chemical bond between Bi
and S in Bi2S3. Another peak, however, is derived from elemental S40.

During the thermal evaporation, most Bi2S3 powder was evapo-
rated as the Bi2S3molecular form.Meanwhile, partial Bi2S3 powder was
thermally decomposed. Owing to the low vapor pressure of S, both S
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and Bi2S3 were evaporated onto the substrates, resulting in the sulfur-
rich Bi2S3 thin films (Fig. 3e). Residual metallic Bi was observed in the
tungsten boat after evaporation (Supplementary Fig. 4). The as-
obtained films showed an amorphous structure, resulting from the
random distributions of elemental S and Bi2S3 molecules. After
annealing at 250 °C, the amorphous films turned to crystalline. During
annealing, most residual S sublimated, as revealed by the reduced XPS
peak intensity. The Bi:S atomic ratio was 2:3.6. Meanwhile, one of the
double bonds in Bi2S3 was thermally broken, and then the molecules
reassembled into crystalline (Bi4S6)n ribbons. This explains the laminar
crystalline structure in HRTEM images. Secondary-ion mass spectro-
metry (SIMS) was used to track the elemental distribution in the films.
A uniform Bi distribution was observed in both the samples through-
out the bulk. With regard to sulfur, significant enrichment at the bot-
tom was observed in the as-grown Bi2S3, which became homogenous
after annealing at 250 °C (Supplementary Fig. 6, Fig. 2f).

We then assessed the intrinsic electrical properties of different
Bi2S3 samples by conducting Hall measurements. The as-grown Bi2S3
film showed a high electron concentration of 6.7 × 1019 cm−3 with a low
Hall mobility of ~1 cm2 V−1 s−1. The high electron concentration can be
attributed to the strong n-doping effect of interstitial sulfur16. This is
also consistent with the conductor-like behavior of TFTs fabricated

based on the as-evaporated Bi2S3 channel. This low mobility can be
ascribed to two main factors. One is the strong scattering caused by
the high electron concentration and sulfur content. The other is the
amorphous state, which generally exhibits a high degree of structural
disorder. The electron concentration decreased to 8 × 1015 cm2 V−1 s−1

after the annealing at 250 °C. The elimination of scattering in con-
junction with the enhanced crystalline orientation and film densifica-
tion contributed to the high Hall mobility of 300 cm2 V−1 s−1. It is
noteworthy that such extensive electrical property modulation can be
achieved conveniently through gentle post-annealing without further
processing or doping.

The high mobility remained almost constant even after exposure
to air for 30 d, particularly under dry air conditions (Fig. 3g). This
indicated remarkable ambient durability. Humid air conditions caused
a marginal degradation of mobility. This can exacerbate charge
transport owing to moisture absorption at the grain boundaries. This
physisorption of moisture is weakly coordinated, and the electrical
performance can be recovered rapidly after the baking process at
100 °C. Such ambient stability differs significantly from previous
reports on metal chalcogenide films grown by mechanical cleavage or
chemical vapor deposition, which show that their electrical properties
are sensitive to O2 molecules43,44. These film-growth techniques
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generally introduce chalcogen vacancies that induce doping effects
through the chemisorption of O2 molecules. For our thermally eva-
porated Bi2S3, the intrinsic marginally sulfur-rich component indicates
negligible sulfur vacancies. Thereby, the interaction with O2 reduced.
This is supported by the negligible variation in the electron con-
centration of (7–8) × 1015 cm2 V−1 s−1 after long-term air exposure (no
doping occurs).

Electrical characterizations of p-channel Te TFTs and CMOS
inverters
We finally explored p-channel devices to realize complementary cir-
cuits using thermally evaporated chalcogenide TFTs. The fabrication
of high-mobility p-type semiconductors by an inexpensive scalable
method is also an urgent task in the electronics community11,45,46.
Among different candidates, element chalcogenide Te is receiving

increased attention owing to its high hole mobility and remarkable
stability23. Thermal evaporation of Te TFT at a cryogenic temperature
of −80 °C was reported to yield a uniform Te channel layer with a large
domain size21. To enable a more conveniently reproducible film
deposition process, we develop the RT thermal evaporationprocess to
deposit Te thin film, which displays a high uniformity, with an RMS
valueof 0.47 nm (Fig. 4a, b). Aftermild post-annealing at 100 °C, the Te
TFT showed a remarkably high hole mobility (μh) of 52 cm

2 V−1 s−1 and
Ion/Ioff of 104 (Fig. 4c, d, Supplementary Fig. 7). The high current line-
arity and saturation in the output curves indicated Ohmic contact
between the Ni electrodes and Te channel (inset in Fig. 4d). Finally, we
monolithically integrated CMOS inverters with n-channel Bi2S3 and
p-channel Te TFTs in a chip. Figure 4e exhibits full-swing character-
istics and rapid voltage transitions with a high peak gain of nearly 200
at a supply voltage (VDD) of 10 V (Fig. 4f). This indicates the high

Fig. 3 | Basic characterizations of evaporated Bi2S3 thin films. a Optical
absorption spectra of as-grown and 250 °C-annealed Bi2S3 thin films. Eg was cal-
culated by fitting (αhν)2 to hν curves using the standard Tauc plot method, as
shown in the inset. b, c Corresponding AFM images and height profiles (scale bar:
1μm). d Corresponding XPS S 2 s spectra. e Schematic of the fabrication of

amorphous Bi2S3 film composed of sulfur molecules via thermal evaporation.
f SIMS spectra of 250 °C-Bi2S3 thin film. g Variations in Hall mobility and electron
concentrations of 250 °C-Bi2S3 thin films as functions of ambient exposure period
and condition (the relative humidity in dry and humid air conditions are <10% and
50–70%, respectively).
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potential of thermally evaporated (metal)chalcogenide TFTs for inte-
grating more complex large-area logic circuits.

Discussion
This work demonstrated the wafer-scale growth of nanometer-scale
(metal) chalcogenide thin films and the integration of complementary
electronics via standard RT thermal evaporation. Compared with
organic semiconductors (which are also compatible with thermal eva-
poration), (metal)chalcogenides show higher commercial potential as
TFT channels because of their higher mobility and stability. Thermal
evaporation significantly reduces the use of masks compared with
metal oxides deposited by sputtering. In addition to CMOS circuit
integration for various applications, thermally evaporated (metal)chal-
cogenide TFTs provide an opportunity to replace current expensive
metal oxide/polycrystalline silicon (LTPO) and pixel-addressing circuits
in active-matrix OLED displays6,47. This would also enable further inte-
gration with thermally evaporated OLEDs in the same chamber and
thereby, substantially reduce manufacturing procedures and costs.

The exploration of high-mobility p-type semiconductors capable
of large-areadeposition in a low-temperature and cost-effectivemanner

has received substantial attention owing to the highly advanced
n-channel TFT technology. Te is becoming an emerging candidate for
creating high-performance, stable p-channel transistors23. Thermal
evaporation provides a simple means to grow scalable, high-quality Te
films for laboratory and industrial applications.Our studydemonstrates
the feasibility of RT growth via the standard thermal evaporation of
high-quality Te films. A common issue for Te TFTs is a marginally low
Ion/Ioff of 104–105 with a relatively highOFF current owing to the small Eg
of the Te channel (~0.35 eV). In general, an Ion/Ioff > 103 is feasible for
logic circuit operation7. However, this results in increased static power
consumption. The following are proposed to overcome this issue: (1) Eg
enlargement through Se alloying48 or dimension down to the quantum
limit22 and (2) device engineering through external doping or dielectric
encapsulation49. In addition, it is worthwhile to consider optimization of
the deposition procedures (e.g., substrate temperature, nucleation
layer, and deposition rate) and associated film quality in conjunction
with contact/dielectric interface engineering, to further improve elec-
trical properties50–52.

We report wafer-scale growth of nanometer (metal)chalcogenide
semiconductors through simple RT thermal evaporation for high-
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performance complementary electronics. The n-type Bi2S3 exhibits
unique S-rich-dominated electrical properties with self-assembly
crystallization under mild thermal post-annealing conditions. This
enables the fabrication of high-performance TFTs with high stability
and reproducibility. The combination of high-mobility p-channel Te
TFTs further realizes high-gain CMOS inverters. Considering the low
vapor pressure and substantially large library of the (metal)chalco-
genide family, we anticipate that thermal evaporationwould provide a
robust and reliable pathway for the scalable production of high-quality
functional thin films for large-area and flexible nanoelectronics.

Methods
Thin-film fabrication and characterizations
The Bi2S3 powder (99%) and Te (99.8%) were purchased from Sigma-
Aldrich and used directly as evaporation sources. Bi2S3 and Te films
were deposited using the same thermal evaporator via a standard
procedure. The substrate temperature was maintained at RT, and the
vacuum pressure before evaporation was ~3 × 10−6 Torr. The distance
between the substrate and Bi2S3/Te-loaded tungsten boat was ~20 cm.
The thickness of the Bi2S3/Te film was monitored during deposition.
The as-deposited sampleswere then annealed at different temperatures
for 30min in a N2-filled glove box. The crystal structures of the films on
glass were analyzed using XRD with Cu Kα radiation (Bruker D8
ADVANCE). AFM imageswereobtainedusing aNanoscopeVMultimode
8 (Bruker, Newark, DE, United States of America) on Si substrates.
Optical absorption spectra were obtained using a UV–visible spectro-
photometer (V-770, JASCO). Samples for HRTEM characterization were
prepared using a focused ion beam (FIB). The images and FFT patterns
were obtained using HRTEM (JEOL JEM 2100 F). XPS analysis was per-
formedusing aPHI 5000VersaProbe instrument (Ulvac-PHI, Japan). The
depth element distribution was measured by SIMS (IMS 6 F, CAMECA).
TheHallmeasurementsof thefilmswereperformed in anN2-filled glove
box using the van der Pauw method with a 0.51 T magnet at RT.

TFT fabrication and characterizations
A heavily doped Si wafer (resistivity: 1–100Ω cm) was used as the
substrate and gate electrode. The 40 nmHfO2 grown byALD at 200 °C
was used as the dielectric layer. Bi2S3 and Te films were deposited on
HfO2 as the channel layers, using the procedure described above. The
shadow mask was covered with HfO2/Si to obtain patterned Bi2S3 and
Te channel layers for reliable device characterization. Au and Ni
source/drain electrodes (40 nm) were deposited on the Bi2S3 and Te
channel layers, respectively, with a shadow mask by using thermal
evaporation to construct the bottom-gate, top-contact TFT. The
channel length and width (L/W) were 100/800μm. All the TFTs were
characterized at RT in anN2-filled glove box using a Keithley 4200 SCS.
The TFT mobilities were calculated in the saturation region using the
following equation:

μe =
2L
WCi

∂
ffiffiffiffiffiffiffi

IDS
p

∂VGS

 !2

ð1Þ

VTHwas calculated by linearly fitting IDS1/2 toVGS. SS is the inverse of the
maximum slope of the IDS–VGS plot.

Data availability
The data that support the findings of this study are available within the
paper and Supplementary Information. Additional relevant data are
available from the corresponding authors upon reasonable request.
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