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all of these scenarios, a unitary Page curve is obtained by applying the usual prescription

for holographic entanglement entropy and identifying the quantum extremal surface for
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the black hole interior from a subsystem containing the Hawking radiation. We examine

the roles of the Hawking radiation and also the purification of the thermal bath in this

reconstruction.
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1 Introduction

In the past year, new models of black hole evaporation [1–3] have given fresh insight

into one of the longest-standing puzzles in quantum gravity, the black hole evaporation

paradox [4–10]. The black hole information paradox is essentially the problem that in

Hawking’s famous calculation, black hole evaporation appears non-unitary, in conflict with

the standard rules of quantum mechanics. A black hole may be formed in the collapse

of a pure quantum state, however, the evaporation process appears to leave only thermal

Hawking radiation in a mixed state. That is, quantum information seems to be destroyed

by this process. The newly constructed models, however, have convincingly demonstrated
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for the first time the entropy decreases after the Page time and unitarity is maintained in

quantum gravity. Although the models are semiclassical, they exhibit novel saddle points,

first observed in [2, 3], which take into account large corrections from quantum fields and

produce a Page curve consistent with unitary evaporation. This result represents the first

major progress toward resolving the famous paradox in many years.

The model of Almheiri, Engelhardt, Marolf and Maxfield [3] examines black holes

in two-dimensional Jackiw-Teitelboim (JT) gravity theory coupled to conformal matter.

Later, Almheiri, Mahajan, Maldacena and Zhao [1] made a small but important modifica-

tion: instead of only assuming conformal symmetry for the bulk matter, they also assume

that the matter theory is holographic. In this paper, we will use the initials of the original

paper (AEMM) to denote the original model, and the initials of both papers combined

(AEM4Z) to denote the model with holographic matter.

We now give a brief description of the setup for both models. One begins with a

two-sided equilibrium black hole, which is a solution of JT gravity coupled to a CFT in

two-dimensional anti-de Sitter (AdS2) spacetime. The black hole is allowed to evaporate

by changing the asymptotic boundary conditions with a ‘joining quench’ to a nongravita-

tional region containing the same CFT. That is, at time zero, the asymptotic boundary

on one side is joined to a semi-infinite interval [0, ∞). The conformal matter in the lat-

ter space acts as an auxiliary bath system, which absorbs the Hawking radiation emitted

from the evaporating black hole. The dynamics of this model can be solved analytically,

including the gravitational backreaction and the von Neumann entropy of the Hawking

radiation. One can study the entropy of the black hole or its complementary subsystem

(containing the Hawking radiation) as a function of time, using the Engelhardt-Wall pre-

scription [11] (see also [12]) for calculating von Neumann entropy — a generalization of the

Hubeny-Ryu-Rangamani-Takayanagi (HRT) prescription [13, 14] to incorporate quantum

corrections. The important distinction between the HRT prescription and the Engelhardt-

Wall prescription is that the former computes entropy using codimension-two surfaces with

stationary areas, whereas the latter asks us to instead find minimal values of the generalized

entropy,1 defined by

Sgen =
A

4GN~
+ Sout . (1.1)

That is, to leading order in GN~, this quantity is simply the area A,2 but the functional

receives a quantum correction Sout given by the entropy of quantum fields of the spatial

region outside the surface. The surface which extremizes Sgen is referred to as the quantum

extremal surface (QES). In the AEM4Z model, the calculation of the generalized entropy

is purely geometric using holography. That is, assuming the bath system is described by a

holographic CFT2, Sout can be found using the HRT prescription in the AdS3 dual, while

the Bekenstein-Hawking term becomes an additional boundary contribution (from the JT

gravity) for HRT surfaces ending in the gravitational region, i.e. on the Planck brane —

see [16, 17] for further discussion.

1Counterterms are required to render this quantity finite. For a thorough discussion of how the renor-

malization of entropy works, see the appendix of [15] for example.
2Note that in the following we examine two-dimensional JT gravity where the Bekenstein-Hawking

contribution is replaced by φ/(4GN~), where φ denotes the value of the dilaton evaluated on the QES.
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Using this approach, at early times, the entropy of the Hawking radiation grows in a

manner consistent with Hawking’s original calculation of information loss. However, later

in the evolution, a new class of extremal surfaces appears and the QES computing the

entropy switches to this new class. These new surfaces, which lie close to the black hole’s

horizon, exist and dominate the values of the generalized entropy Sgen due to large entropy

gradients that come from the contribution of Hawking radiation at late times. With the

QES approaching the horizon at late times, the result is a phase transition in the entropy,

producing a downward-sloping Page curve consistent with unitary evolution towards a pure

state. Recovering a unitary Page curve for old black holes is a major step towards resolving

the information paradox. It indicates that the semiclassical gravity path integral knows

more about unitarity than previously believed.

This result is surprising from the perspective of the two-dimensional theory. In par-

ticular, the above phase transition indicates that at late times, the standard calculation of

the von Neumann entropy of the Hawking radiation is incorrect because of gravitational

effects. Instead, one must modify the usual prescription for computing the entropy with

the so-called ‘island formula’ [1], which accounts for the contributions of quantum extremal

islands (QEIs). The QEIs are gravitational regions that may contribute to reducing the

(entanglement) entropy of a non-gravitational region by creating new stationary points for

the generalized entropy, i.e. the sum of the gravitational and matter entropies. In par-

ticular, for a QEI, a change in area from perturbing the boundary of a QEI is exactly

compensated for with an equal and opposite change in the entropy of the quantum fields

inside the island. The HRT prescription in the three-dimensional bulk theory implies that

the correct generalized entropy in the two-dimensional theory should be computed by in-

cluding these islands, whenever they exist, to the entangling region, if doing so results in

a smaller entropy. In the present context, the phase transition where the QEIs appear

corresponds to the time when the thermal bath encodes (part of) the black hole interior, a

manifestation of the ER = EPR principle [18]. See [16, 17, 19–35] for recent explorations

on the island formula in different black hole geometries and [33, 36–48] for more associated

studies on information paradox and Page curve from various aspects.

These models are clearly rich with new physics, and with fascinating implications for

quantum gravity. The present work furthers the direction of our earlier work [20] exploring

these models. There, we initiated a study of the flow of quantum information during black

hole evaporation. In this earlier work, and indeed in most of the literature on these models,

the AdS black hole evaporates completely due to the coupling to a bath system prepared at

zero temperature. In this paper, we study the dynamics of coupling the initial equilibrium

black hole to a bath BCFT which is initially in a finite non-zero temperature state instead.

Similar situations were studied in [19, 28], but we do not make the assumption that the

black hole and bath are initially at the same temperature. We study the resulting dynamics

numerically and analytically.

As in [19], we find that the quantum extremal surfaces can lie outside the black hole

horizon, and correspondingly the QEIs can include part of the exterior of the black hole.

For thermal baths with a temperature around the same temperature as the initial black

hole, the late time QES is already outside the horizon around the Page time. On the
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other hand, with arbitrary bath temperatures, the late time QES are initially inside of the

event horizon and eventually cross the event horizon, remaining outside for the rest of the

equilibration process.

Similar to our analysis in our previous work [20], we compute the Page curve for the

dynamic black hole coupled with a thermal bath at arbitrary temperatures or equivalently,

that of the complementary subsystem to the black hole, i.e. the QML together with (parts

of) the bath and its purification. Taking the bath to be at finite temperature changes the

flow of quantum information in important ways. The bath has its own purification and

thus must be accounted for in the computation of the generalized entropy. We study the

role of the purification in altering the flow of quantum information as the black hole and

bath exchange radiation.

In section 2, we review the AEM4Z model and set up the model for a black hole in

contact with an auxiliary bath at finite temperature, finding the generalized entanglement

entropy of various different intervals during the equilibration process. The equilibrium

case, i.e. the black hole temperature immediately after the quench matches that of the

bath, is analyzed in section 3, and we find the constraints for finite bath intervals, together

with QML, to recover the black hole interior. Interestingly, the purification of the bath is

essential for the reconstruction of the black hole interior. The case of general temperatures

is studied in section 4, and the results smoothly interpolate between the evaporating case

of [1, 3, 20] and the equilibrium case in section 3.

2 Background and setup

The AEM4Z model [1] has three holographic descriptions — see figure 1. The boundary

perspective describes the system as two quantum mechanical systems QML + QMR in a

thermofield double (TFD) state which is connected to a bath via a quantum quench. In

the present analysis, the bath consists of two copies of a two-dimensional holographic CFT

on a half-line, which is initially prepared in an independent TFD state, with a temperature

Tb. After the quench, the system evolves towards a new equilibrium between the quantum

mechanical and bath systems, during which three different phases are distinguished by

the position of the quantum extremal surface. The TFD in QML + QMR is dual to a

two-dimensional black hole in JT gravity, and this gravitational region also supports the

same holographic CFT matter as appears in the bath. The third description replaces the

holographic CFT with a three-dimensional AdS bulk and in particular, the TFD is replaced

by a AdS3 black hole geometry. From this bulk perspective, the joining quench [49, 50]

connecting the systems has a holographic description as an end-of-the-world brane pinching

off the AdS2/bath boundary and falling into AdS3 spacetime.3

3We would like to point out that the roles of the end-of-the-world branes and Planck brane are quite

different. The latter supports the JT gravity (as well as the holographic CFT) and plays a crucial role in

the appearance of the island phase. The interested reader is referred to references [16, 17] for a detailed

discussion of the explicit construction from the viewpoint of bulk spacetime, including the renormalization

on the brane theory. The end-of-the-world branes appear in the AdS3 bulk construction since the two-

dimensional dual theory is a boundary CFT living on the upper-half-plane (viewed in the appropriate

conformal frame) [51, 52]. The details of the bulk dynamics of these branes through the joining quench is

described in [49, 50].
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Figure 1. In the AEM4Z model, the holographic principle is invoked twice, resulting in three

different pictures of the same physical system. In our present analysis of this model, we include

a thermal bath at finite temperature. In the top picture (a), there are two quantum mechanical

systems (QML and QMR), as well as a two copies of the field theory (CFT2) on a half-line (dashed

and dotted). Both of the quantum mechanical and field theory systems are prepared in independent

thermofield double states. The middle picture (b) introduces the two-dimensional holographic

geometry (JT gravity) dual to the entangled state of QML and QMR. This gravitating region also

supports the same CFT2 that appears in the bath region. The last picture (c) contains the doubly-

holographic description, where the holographic CFT is replaced by an AdS3 bulk, and in particular,

the thermofield double is replaced by a bulk region with the geometry of an AdS3 black hole.

The three phases of the equilibration process are illustrated in figure 2. The QES re-

mains at the bifurcation surface during the quench phase. At the transition to the scram-

bling phase, the QES shifts outwards by a very small distance. The generalized entropy

in these two phases increases, consistent with the original information loss calculations.

However, at the Page transition, the QES is instead located at a new minimum outside of

the infalling shock. The generalized entropy at the Page transition then begins to asymp-

tote towards the expected entropy of a black hole in equilibrium with the bath, completing

a correct Page curve of the equilibration process. In the example shown in figure 2, the

temperature of the bath is less than that of the black hole so the entropy decreases in the

late time phase, similarly to the evaporating black hole. Note that a bath with temperature

greater than that of the black hole instead heats up the black hole, giving a Page curve as

in figure 11.

The central quantity necessary for studying the Page curve and the behaviour of the

extremal surface throughout the equilibration process is the generalized entanglement en-

tropy Sgen. Similar to previous work in the evaporating AdS2 black hole in JT gravity [3],

we break the process of calculating the generalized entropy into three steps:4

4Note that we have adapted the notation in eq. (1.1) to our specific system, in which the area of the

HRT surface is given by the value of the dilaton. Further, we specify that the quantum corrections Sout are

given by the von-Neumann entropy SvN of the CFT matter on either side of the bipartition.
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Figure 2. A cartoon illustration of the three phases for the entanglement entropy of QMR or of

QML, (a semi-infinite interval in) the thermal bath, and the (entire) bath purifier, after the quench

where QMR is connected to the bath. The darker colors indicate the true generalized entropy, while

the lighter colors indicate the general shape of each of the branches slightly beyond the regime where

it provides the minimal value for the generalized entropy. Below the plot is a sketch of the shape

of the extremal HRT surfaces in AdS3 which contribute to the generalized entropy in each phase.

• Calculating the von Neumann entropy of the CFT matter SvN

• Calculating the backreaction of the quench onto the dilaton φ

• Extremizing the resulting Sgen = φ
4GN

+ SvN

Conveniently, these steps are very similar to the evaporating models in [1, 3, 20], the only

change coming from the details of the time reparametrization function in eq. (2.29) and

the extra conformal transformation in eq. (2.18) required to map the vacuum on upper half

plane to our quenched system. We now proceed to carry out each one of these steps in the

rest of this section.

2.1 Entropy of holographic CFT2

To calculate the von Neumann entropy of the CFT matter, we proceed in a similar way

to previous work on evaporating models [1, 3, 20] and map the corresponding quantum

state to the vacuum of the CFT on the upper half plane by a local Weyl rescaling and a

coordinate transformation. The details of the required coordinate transformation will be

explained in section 2.3, but for now, we simply specify that we will be working in Poincaré

coordinates for the AdS2 spacetime

ds2
AdS = − 4L2

AdS

(x+ − x−)2
dx+dx− , (x± = t ± s) , (2.1)

and in flat coordinates for the bath

ds2
bath = −L2

AdSdy+dy−

ǫ2
, (y± = u ∓ σ) . (2.2)
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The two spaces are glued together at one-dimensional boundary with σ = −ǫ, s = ǫf ′,

guu =
L2

AdS
ǫ2 where ǫ corresponds to the UV cutoff in the dual boundary theory, and f is

the coordinate reparametrization function x = f(y), given below in eq. (2.29).5 In the rest

of the paper, we simply set LAdS = 1.

The CFT matter state can then be mapped to the CFT vacuum via the local Weyl

rescaling

ds2
AdS → Ω(x+, x−)2ds2

AdS = dzdz̄ ,

ds2
bath → Ω′(y+, y−)2ds2

bath = dzdz̄ ,
(2.3)

where

Ω =
x+ − x−

2

√

z′(x)z̄′(x̄) , Ω′ = ǫ
√

z′(y)z̄′(ȳ) , (2.4)

where we have introduced the Euclidean coordinates x = −x−, x̄ = x+ and similarly

for y and ȳ. The coordinate transformations relating the x, y and z coordinates in

eqs. (2.18), (2.21) and (2.29) are all derived in section 2.3. In the rest of this subsection,

we focus on deriving the von Neumann entropy of the CFT matter in the z coordinates.

To begin, one can consider the von Neumann entropy of a finite interval with one

end-point being the boundary of the BCFT and the other (z, z̄) residing in the interior.

Equivalently, this is the entropy for the semi-infinite interval beginning at (z, z̄) and ex-

tending to infinity. This can be calculated using twist operator one-point functions in the

upper half plane, but by the method of images, the latter resembles a two-point function

of a CFT on the entire plane. Correspondingly, the von Neumann entropy resembles that

of an interval with length −i(z − z̄):

S1pt =
c

6
log[−i(z − z̄)] + log g (2.5)

where log g is the Affleck-Ludwig boundary entropy [53].

The entanglement entropy of an interval in a two-dimensional CFT in the presence of

a conformal boundary at z − z̄ = 0 is [54–57]

S2pt =
c

6
log

(

|z1 − z2|2η
)

+ log G(η) , (2.6)

where η = (z1−z̄1)(z2−z̄2)
(z1−z̄2)(z2−z̄1) is the conformally invariant cross ratio and G(η) is an undeter-

mined function that depends on the theory and boundary conditions. The G(η) function

has two limits that can be determined by either a bulk OPE or an operator-boundary

expansion: G(η → 1) = 1 from the OPE limit, and G(η → 0) = g2 from the operator-

boundary expansion.

In the following, we adopt the holographic framework describing boundary conformal

field theory (BCFT) [51, 52]. In this setup, the JT gravity plus bath system lives on the

boundary of an AdS3 geometry. From this bulk perspective, the boundary defect at the mo-

ment of quenching anchors an end-of-the-world (ETW) brane hanging into the holographic

5In section 3.3, we also introduce analogous coordinates ỹ± = ũ ± σ̃ for the purification of the bath.

These are related to x± in eq. (3.36), which is then the analog of eq. (2.13).

– 7 –
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direction. After the quench, the ETW brane detaches from the asymptotic boundary

falls off into the bulk. For this system, the entanglement entropy is determined using the

Ryu-Takayanagi prescription [58], i.e. for a two-dimensional CFT on the asymptotic AdS

boundary, the entanglement entropy is simply given by evaluating the bulk length of the

corresponding geodesics connecting the end-points on the boundary, with the added possi-

bility of having geodesics ending at the ETW brane. In the z coordinates, this corresponds

to evaluating the length of the geodesics connecting the end-points in a flat asymptotic

boundary of AdS3 with the possibility of having geodesics ending at a flat ETW brane

intersecting the asymptotic boundary at z − z̄ = 0 at an angle determined by the boundary

entropy log g. In this case, eq. (2.6) reduces to the following simple form

S2pt =











c
3 log (|z1 − z2|) if η > η∗

c
6 log (|z1 − z̄1||z2 − z̄2|) + 2 log g if η < η∗

, (2.7)

where η∗ = 1
1+g12/c is the value of the conformal cross ratio at which the transition between

HRT surfaces occur. Let us note that with the simple choice g = 1 (i.e. log g = 0 and a

tensionless ETW brane), the latter simplifies to η∗ = 1/2. Equivalently, the G(η) function

for a holographic BCFT is given by

G(η) = θ(η − η∗) η−c/6 + θ(η∗ − η)
g2

(1 − η)c/6
. (2.8)

It is straightforward to verify that G(η → 1) = 1 and G(η → 0) = g2. For simplicity, we

take the case of zero boundary entropy g = 1 (and η∗ = 1/2) in the following. As was

noted in [20], for a general g, the quench to scrambling phase transition gets shifted, while

the Page transition remains unaffected.

The von Neumann entropies in eqs. (2.5) and (2.7) correspond to intervals of the vac-

uum of the BCFT. To find the von Neumann entropies of the CFT matter in our black

hole thermalization model, we simply have to include the effect of the local Weyl transfor-

mation in eq. (2.3). Under a Weyl transformation gµν → Ω−2gµν , the transformation of

twist operators induces the following transformation on entropy:

SΩ−2g =Sg − c

6

∑

endpoints

log Ω(endpoint). (2.9)

The above transformation may be interpreted as resulting from the rescaling of UV cutoffs

with respect to which the entropy is defined.

2.2 Jackiw-Teitelboim gravity

The brane perspective of the AEM4Z model — see figure 1b — describes the system as a

black hole in two-dimensional JT theory coupled to holographic conformal matter which is

connected to a bath with a joining quench, and allowed to evaporate. We refer the reader

to [3] for a more detailed discussion of this description. In this subsection, we summarize

the essential parts of our analysis.

– 8 –
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The dynamics of the black hole and CFT matter are governed by the action

I =
1

16πGN

[

∫

M
d2x

√−g φ

(

R +
2

L2
AdS

)

+ 2

∫

∂M
φbK

]

+ Itop + ICFT , (2.10)

where

Itop =
φ0

16πGN

[∫

M
d2x

√−g R + 2

∫

∂M
K

]

(2.11)

is a topological term which provides a large constant contribution S0 = φ0

4GN
to the entropy

of the black hole. The last term in eq. (2.10) is the action of the holographic CFT matter

to which JT gravity is coupled.

The dilaton equation of motion imposes the geometry to be locally AdS2 with radius

LAdS, as described by the metric in eq. (2.1). The metric equations of motion give the

coupling of the dilaton to the CFT stress tensor

2∂x+∂x−φ +
4φ

(x+ − x−)2
= 16πGN〈Tx+x−〉 ,

−∂x+

(

(x+ − x−)2∂x+φ
)

(x+ − x−)2
= 8πGN〈Tx+x+〉 ,

−∂x−

(

(x+ − x−)2∂x−φ
)

(x+ − x−)2
= 8πGN〈Tx−x−〉 .

(2.12)

Before the quench, the CFT matter is in the vacuum of the generator of t translations

(see eq. (2.1)) i.e. 〈Tx+x+〉 = 〈Tx−x−〉 = 〈Tx+x−〉 = 0,6 however, this can also be seen as a

TFD state for the generator of u translations (see eq. (2.2)). Here we have continued the

y coordinates into a Rindler patch of AdS2 with

x± =
1

πT0
tanh

(

πT0y±) . (2.13)

The dilaton profile is given by

φ = 2φ̄r
1 − (πT0)2 x+x−

x+ − x−
= 2φ̄rπT0 coth

(

πT0

(

y+ − y−
))

. (2.14)

After the quench, the dilaton receives a contribution from the back-reaction of the matter

stress tensor

φ = φ̄r
2 − 2 (πT1)2 x+x− + kI0

x+ − x−
, (2.15)

where

I0 = −24π

c

∫ x−

0
dt (x+ − t)(x− − t) 〈Tx−x−(t)〉 , (2.16)

accounts for the matter back-reaction and k = cGN

3φ̄r
controls the strength of the back-

reaction, which we take to be very small. The dilaton profile in eqs. (2.14) and (2.15) give

the leading contribution to the generalized entanglement entropy. The details of the dilaton

profile after the quench in eq. (2.15) and the resulting generalized entropy are calculated

in section 2.3.
6In principle, we should have one non-zero component 〈Tx+x− 〉 = c

12π(x+−x−)2 due to the trace anomaly.

But this extra term can be absorbed by shifting the value of the dilaton field as φ̃ = φ− cGN
3

— see discussion

in [16, 17]. So we simply ignore the trace anomaly in the following.

– 9 –
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ỹ
±

= ũ ± σ̃

t
∞

x
±

= ±
1

πT0

Ⅰ Ⅱ

Ⅲ Ⅳ

y −

=
∞

y
+

−
y

−
=

0

y
+ =

∞

u = 0

x+

x−

QES

New horizon

Shock waveQES

Gravitational Region Bath Region Purifying Region

Bifurcation 

surface

QML
QMR

Figure 3. The Penrose diagram for the AdS2 black hole coupled with a thermal bath and its

purification in flat spacetime at time u = 0. The (thick) pink lines are the shock waves propagating

into the gravitating and bath regions, which are generated by this joining quench. The bifurcation

surface of the initial equilibrium black hole is indicated by the red dot. The new horizon is indicated

by the black dashed line, i.e. y+ = ∞. Note that only the blue and red shaded regions are covered

by the y±, ỹ± coordinates, respectively. The evolution of quantum extremal surface in three phases

is presented by the corresponding colored curves, as indicated in figure 2.

2.3 Coupling to a thermal bath

The setup which we wish to consider is very similar to the one constructed in [3]: a two-

sided AdS2 black hole prepared at some temperature T0 coupled by a joining quench to

a bath consisting of a CFT on a half-line. Again, the key difference will be that our

bath will be at some finite temperature Tb, rather than zero temperature as in [3]. The

corresponding Penrose diagram is shown in figure 3. Up until an initial time, we imagine

two decoupled systems. Firstly, we have the AdS2 black hole solution7 of JT gravity with

the metric and dilaton profile in eqs. (2.1) and (2.14), respectively. This gravitating region

also supports the same two-dimensional CFT as appears in the bath region. The right side

of this black hole will have a boundary given by an IR cutoff introduced by the JT boundary

particle. Additionally, we have a separate bath system supporting an identical CFT2 (but

in a different state), prepared on a half-line σ = y−−y+

2 > −ǫ on the flat spacetime (2.2).

The boundaries in the two systems initially impose reflecting boundary conditions. But,

at some initial time u = t = 0, we perform a joining quench. This is done by identifying

7Note that an appropriate choice of coordinates, e.g., those spanning the trajectory of the JT boundary

particle, furnishes a pure AdS2 with Rindler horizons — we are treating the AdS2 spacetime as a black hole

in the usual sense for JT gravity [59–61].
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σ = −ǫ in the bath with the AdS2 IR cutoff surface, allowing CFT matter to flow freely

across the now transparent division between the AdS2 and bath systems. The details of this

gluing are specified by the trajectory t = f(u) — that is, we identify the time parameter

of the AdS2 boundary with the time coordinate of the bath. Further demanding that the

induced metrics along the AdS2 and bath boundaries match to leading order in ǫ, we have

x± = f(y±) (2.17)

along the gluing. For convenience, we shall further extend the above equality to hold

everywhere, so that we may alternatively describe patches of AdS2 and the bath using

either x± or y± coordinates. Later in this section, we will determine the trajectory t = f(u)

of the JT boundary particle by tracking the exchange of energy between the AdS2 and

bath systems.

While we have described the physical evolution of the system above, it is practically

useful also to consider a Euclidean preparation of the CFT state at u = t = 0. Thus, we

imagine preparing the CFT in a Hartle-Hawking state on the JT black hole with a path

integral over Euclidean AdS2 (with an appropriate dilaton profile). Similarly, we prepare

the CFT in the bath (and the purifying copy) in a thermofield state with a path integral on

Euclidean half-spaces. (The details will be elaborated below.) Both systems have reflecting

boundary conditions, except in an infinitesimal neighborhood of iu = it = 0, where the

two spacetimes are joined. The size of this neighborhood provides a regulator for the shock

energy ES produced by the joining quench — recall that stripping the vacuum entanglement

along an entangling surface (in this case, the point at the AdS-bath boundary) produces

an infinite amount of energy. This construction produces the CFT state at u = t = 0, from

which analytic continuation provides the correct Lorentzian evolution according to the

joined Hamiltonian. We note that this joined evolution, obtained by analytic continuation,

does not match the physical decoupled evolution of the AdS and bath systems to the past

of the point of the joining quench. In particular, we expect the time-reversal symmetry of

the Euclidean path integral to carry over to Lorentzian time upon analytic continuation;

in contrast, the physical Lorentzian evolution is manifestly not time-reversal symmetric

due to the change in boundary conditions at the quench. However, results obtained by

analytic continuation will be adequate for our purposes as we are primarily interested in

the Lorentzian physics beyond the past light-cone of the quench point where the AdS2 and

bath boundaries are joined.

Our point of departure from [3, 20] lies with the generalization to thermal baths pre-

pared at finite temperature. To put the bath at a finite temperature Tb, we take the

Euclidean y coordinates for the bath and8 identify y ∼ y + i
Tb

. We still take the bath to be

the half-space y+ȳ
2 ≤ ǫ. As expected for a thermal state, this results in a non-zero stress

8Note that this identification makes Tb the temperature associated with the unit time-like vector in

the geometry dydȳ, as opposed to the physical geometry
L2

AdS
dydȳ

ǫ2 . In the doubly holographic language of

figure 1c, the former is the CFT metric of the asymptotic boundary of AdS3 while the latter is the induced

metric on a cutoff surface which becomes the asymptotic boundary in the ǫ → 0 limit. Similarly, in (2.13),

T0 describes a temperature with respect to the parametric time u = y++y−

2
of the boundary particle, which

does not correspond to a unit vector in the AdS2 geometry (2.1).
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tensor expectation value in y coordinates. Although the x coordinates of AdS2 are stitched

to the y coordinates of the bath (i.e. x = f(y)), it will nonetheless be convenient in the

following to introduce a conformal transformation after which the stress tensor becomes

trivial. This can be achieved by transforming the thermal half-cylinder, with coordinates

y, to the left half-plane,9 with coordinates Y , via

Y =
1

πTb
tanh(πTby). (2.18)

This is simply the composition of an exponential map y′ = e2πTby taking the thermal half-

cylinder to a unit disk, and a Mobius map Y = 1
πTb

y′−1
y′+1 pushing a point on the boundary

of the disk to ∞.

It will be useful, e.g., to make use of the entropy formula (2.9), to write down another

map which maps the joint system of AdS, with Poincare coordinates x, and the bath,

with Euclidean coordinates y or equivalently the coordinates Y found above, to the upper

half plane, with coordinates z, z̄. Just prior to coupling the AdS and bath systems, the

AdS system is in the Hartle-Hawking state with vanishing stress tensor in x coordinates.

Meanwhile, by construction, the stress tensor of the bath vanishes upon conformal trans-

formation to Y coordinates. Finally, the stress tensor in the half-plane with coordinates z

must also vanish. By demanding that the conformal anomalies of the map from x and Y

to z vanish respectively in AdS and the bath, together with boundary conditions, fixes this

map. Following [3], we choose boundary conditions such that the AdS2 space is mapped

to the region (0, iz0) and the bath to (iz0, i∞). The map is piecewise-Mobius:

z =















−iz2
0

x − iz0
x > 0 ,

z0 − iY x < 0 .

(2.19)

The discontinuity at z = z0 produces the shock wave contributions to the stress tensor

components 〈Txx〉 = ES δ(x) and 〈Tx̄x̄〉 = ES δ(x̄), with

ES ≃ c

12π(−iz0)
. (2.20)

In the limit ES → ∞ (i.e. −iz0 → 0), the map (2.19) becomes

z =















(

12π

c
ES

)−2 i

x
x > 0 ,

−iY x < 0 .

(2.21)

9Strictly speaking, we should take the bath to be the half-space y+ȳ
2

≤ ǫ and (2.18) would map this

region to the plane minus a large disk in the right half-plane. Similarly, Euclidean preparation of the

AdS2 system, in the x, x̄ coordinates analytically continued from (2.13), does not occur on a full Euclidean

Poincaré AdS2, but rather on a large disk-like subregion. Note that the stress tensor still vanishes in these

subregions of the dY dȲ and 2dxdx̄
x+x̄

geometries, since a flat disk (or its complement) is related to a flat

half-plane by a Mobius transformation. (The rescaling of dxdx̄ by the Poincaré Weyl factor 2
x+x̄

does not

introduce an extra anomalous contribution to the stress tensor.)
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The next step is to determine f by demanding the conservation of energy between the

AdS and bath systems [3, 60]:

∂uE(u) = f ′(u)2(Tx−x− − Tx+x+). (2.22)

From the conformal anomaly associated with the Weyl transformation (2.21), i.e.

〈Txx〉 =

(

dz

dx

)2

〈Tzz〉 − c

24π
{z, x} , (2.23)

we can find that the stress tensor in AdS region satisfies10

〈Tx±x±(x±)〉AdS = ES δ(x±) − c

24π
{Y ±, x±} Θ

(

∓x±)

= ES δ(x±) − c

24π
Θ
(

∓x±)
[

{y±, x±} − 2

(

πTb

f ′(y±)

)2
]

,
(2.24)

where we have used the Schwarzian composition rule

{Y, x} ={y, x} +

(

dy

dx

)2

{Y, y}. (2.25)

For completeness, from eq. (2.21), we also write the stress tensor in the bath region:

〈Ty±y±(y±)〉bath =ES δ(y±) − c

24π

[

Θ
(

±y±) {x±, y±} − Θ
(

∓y±) 2(πTb)2
]

(2.26)

As mentioned below eq. (2.19), the δ-function contributions in eqs. (2.24) and (2.26) may

be interpreted as the positive-energy shockwaves produced by the quench. The Schwarzian

terms have a similar simple interpretation: Tx−x− ∼ − c
24π {y−, x−} < 0 describes a negative

energy flux from the bath experienced by the black hole, while Ty+y+ ∼ − c
24π {x+, y+} > 0

describes a positive energy flux from the black hole experienced by the bath. Considering

for simplicity the Tb = 0 case, note that the quanta described by these fluxes are the

result of vacuum fluctuations in their native geometries. In particular, on the initial time

slice, these quanta register as vanishing stress-energy, which is to be expected in the Hartle-

Hawking vacuum of AdS2 and the flat half-space vacuum. It is only when these quanta cross

over the AdS2-bath interface that they register as non-vanishing stress energy. Finally, in

the case of nonvanishing bath temperature Tb > 0, the last terms in eqs. (2.24) and (2.26)

can be interpreted as the contribution to the stress-energy of the bath’s thermal radiation.

To determine the f function, we next note that the ADM energy of the AdS2 JT system

E(u) = − φ̄r

8πGN

{f(u), u}. (2.27)

can also be expressed in terms of the Schwarzian of f , we have, from solving eq. (2.22), the

Schwarzian equation

{f(u), u} = −2π2
[

T 2
b + (T 2

1 − T 2
b )e−ku

]

, with k ≡ cGN

3φ̄r

≪ 1 . (2.28)

10This result does not apply in the causal past of the junction point. Further, note that the Schwarzian

is defined by {f(y), y} ≡ f ′′′

f ′ − 3
2

(

f ′′

f ′

)2

.
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From initial conditions f(0) = 0, f ′(0) = 1, f ′′(0) = 0, we can solve this differential equation

to obtain the map between y and x:11

f(u, Tb) =
2

ka

Iν(a) Kν(ae−ku/2) − Kν(a) Iν(ae−ku/2)

I ′
ν(a) Kν(ae−ku/2) − K ′

ν(a) Iν(ae−ku/2)
(2.29)

where

a =
2π

k

√

T 2
1 − T 2

b and ν =
2πTb

k
. (2.30)

The above function is also well-defined and always real for complex a, i.e. T1 < Tb.

Given the map (2.21) and the function f , we may compute the von Neumann entropy

of various intervals in the AdS-bath system by applying the transformation rule (2.9) to

the formulas (2.5) or (2.6) for entropy of intervals in a half-plane.

First, we divide the spacetime of interest into four regions according to

x± ∈



































I post-shock in AdS , x+ ≥ x− ≥ 0 ,

II post-shock in bath , x− ≥ x+ ≥ 0 ,

III pre-shock in AdS , x+ ≥ 0 ≥ x− ,

IV pre-shock in bath , x− ≥ 0 ≥ x+ .

(2.31)

Applying the entropy transformation rule (2.9) to eq. (2.5) with these Weyl factors and

the form (2.21) of the map, we obtain the following formulas for the von Neumann entropy

computed with a single twist operator at x±:

S1pt(x
±) = log g +

c

6
log



























































24ES

cTb

x+ sinh(πTby−)
√

f ′(y−)

x+ − x−
, x± ∈ I ,

12ES

cǫTb

x+ sinh(πTby−)
√

f ′(y+)
, x± ∈ II ,

2 , x± ∈ III ,

sinh[πTb(y− − y+)]

πǫTb
, x± ∈ IV .

(2.32)

Note that in the pre-shock cases, we recover the expected entropy formulas in AdS and a

thermal half-line. In particular, if we take y−−y+

2 → σIR for some IR cutoff σIR, we get the

entropy of the whole thermal half-line:

S 1
2

-line = log g +
c

6

[

2πTbσIR + log

(

1

2πǫTb

)]

. (2.33)

Of course, these three terms are interpreted as: the boundary entropy, the thermal entropy

of the CFT at temperature Tb, and the log divergent contribution associated with the

endpoint of the interval.

11We note that the same differential equation appears in the analysis of [28], although differences arise

since their work involves different boundary conditions for f(u).
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We obtain entropy formulas derived from two-point function by transforming eq. (2.6):

S2pt

(

x±
1 ∈ II, x±

2

)

= log G(η) +
c

6
log































































































2

πǫTb

sinh[πTb(y−
2 − y−

1 )](x+
1 − x+

2 )

x+
2 − x−

2

√

f ′(y−
2 )

f ′(y+
1 )

, x±
2 ∈ I ,

1

πǫ2Tb

− sinh[πTb(y−
1 − y−

2 )](x+
1 − x+

2 )
√

f ′(y+
1 )f ′(y+

2 )
, x±

2 ∈ II ,

24ES

cǫTb

sinh(πTby−
1 )x+

1 x−
2 (x+

1 − x+
2 )

x+
2 (x+

1 − x−
2 )
√

f ′(y+
1 )

, x±
2 ∈ III ,

12πES

cǫ2

−x+
1 Y +

2 (Y −
2 − Y −

1 )η
√

f ′(y+
1 )

× cosh(πTby−
1 ) cosh(πTby+

2 ) cosh(πTby−
2 ) ,

x±
2 ∈ IV ,

(2.34)

where the cross-ratio is determined by

η(x±
1 ∈ II, x±

2 ) =







































Y −
1 (Y −

2 − Y +
2 )

Y −
2 (Y −

1 − Y +
2 )

, x±
2 ∈ IV ,

x+
1 (x+

2 − x−
2 )

x+
2 (x+

1 − x−
2 )

, x±
2 ∈ III ,

1 , x±
2 ∈ I, II .

(2.35)

Note that this agrees with eq. (3.30) of [3] in the limit when Tb → 0 and the x±
1 endpoint is

taken to the AdS-bath boundary. With the holographic formula (2.8) for G, the pre-shock

cases of (2.34) with x±
1 ∈ II become12

S2pt =



















































S1pt(x
±
1 ) + S1pt(x

±
2 ) , if η ≤ η∗

c

6
log





24ES

cǫTb

(x+
2 − x+

1 )x−
2 sinh(πTby−

1 )

(x+
2 − x−

2 )
√

f ′(y+
1 )



 , if η > η∗, x±
2 ∈ III ,

c

6
log





12ES

cπǫ2T 2
b

x+
1 sinh(πTby+

2 ) sinh[πTb(y−
1 − y−

2 )]
√

f ′(y+
1 )



 , if η > η∗, x±
2 ∈ IV .

(2.36)

3 Thermal equilibrium

From eq. (2.28), we see that the main effect of a finite temperature Tb > 0 for the bath is

that the black hole does not evaporate completely, but rather equilibriates with the bath.

12The x2 dependence of the bulk entropy is identical to that found for a bath with vanishing temperature,

e.g., see eqs. (3.2) and (3.3) in [20]. This immediately implies that the position of the quantum extremal

surfaces in the quench and scrambling phases are the same as for the Tb = 0 case.
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That is, it tends towards a stationary black hole with temperature Tb, for which

{f(y), y} = − 2π2T 2
b . (3.1)

Indeed, when T1 = Tb, the black hole does not change at all and instead, after consuming

the shock, the black hole remains a stationary black hole at temperature T1 = Tb. In this

case, f takes same form as for the eternal black hole solution

f(y) =
1

πT1
tanh(πT1y) . (3.2)

Note that, from eq. (2.18), we then have x = Y which agrees with the intuition that the

radiation emitted by the bath mimics the radiation that would have been reflected from

the AdS boundary in the Hartle-Hawking state had the bath not been attached.

The entropy formulas (2.32), (2.34), and (2.36) also become simple. More explicitly,

the one-point function (2.32) reduces to

S1pt(x
±) = log g +

c

6
log



























































24πES

c

x+x−

x+ − x−
, x± ∈ I ,

12πES

cǫ

x+x−

√

[1 − (πT1x+)2][1 − (πT1x−)2]
, x± ∈ II ,

2 , x± ∈ III ,

x− − x+

ǫ
√

[1 − (πT1x+)2][1 − (πT1x−)2]
, x± ∈ IV .

(3.3)

According to the position of endpoints x1, x2, the entanglement entropy based on two-point

function reads

S2pt (x1, x2) =



































































S1pt(x
±
1 ) + S1pt(x

±
2 ) , if η ≤ η∗

c

6
log







24πES

cǫ

x−
1 x−

2 (x+
1 − x+

2 )

(x+
2 − x−

2 )
√

[1 − (πT1x+
1 )2][1 − (πT1x−

1 )2]







, if η > η∗, x±
2 ∈ III,

c

6
log







12πES

cǫ2

x+
1 x+

2 (x−
1 − x−

2 )
√

[1 − (πT1x+
1 )2][1 − (πT1x−

1 )2][1 − (πT1x+
2 )2][1 − (πT1x−

2 )2]







,

if η > η∗, x±
2 ∈ IV,

(3.4)

for x±
1 ∈ I and also

S2pt = log G(η) +
c

6
log















































































2

ǫ

(x+
1 − x+

2 )(x−
2 − x−

1 )

(x+
2 − x−

2 )
√

[1 − (πT1x+
1 )2][1 − (πT1x−

1 )2]
, x±

2 ∈ I ,

1

ǫ2

−(x+
1 − x+

2 )(x−
1 − x−

2 )
√

[1 − (πT1x+
1 )2][1 − (πT1x−

1 )2][1 − (πT1x+
2 )2][1 − (πT1x−

2 )2]
, x±

2 ∈ II ,

24πES

cǫ

x+
1 x−

1 x−
2 (x+

1 − x+
2 )

x+
2 (x+

1 − x−
2 )
√

[1 − (πT1x+
1 )2][1 − (πT1x−

1 )2]
, x±

2 ∈ III ,

12πES

cǫ2

−x+
1 x+

2 (x−
2 − x−

1 )η
√

[1 − (πT1x+
1 )2][1 − (πT1x−

1 )2][1 − (πT1x+
2 )2][1 − (πT1x−

2 )2]
, x±

2 ∈ IV ,

(3.5)
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when x1 ∈ II. As noted below eq. (2.32), the before-shock single-twist entropy formulas are

the standard ones in AdS and the thermal half-line, which are invariant under translations

in time u = y++y−

2 . For the thermal case at hand, the two-twist formulas, with both twists

inserted to the future of the shock, are also time-translation invariant. This can be made

manifest by writing those cases of (3.5) in y± coordinates:

S2pt

(

x±
1 ∈ II

)

=
c

6
log























2 sinh[πT1(y+
2 − y+

1 )] sinh[πT1(y−
1 − y−

2 )]

πT1ǫ sinh[πT1(y+
2 − y−

2 )]
, x±

2 ∈ I ,

sinh[πT1(y+
2 − y+

1 )] sinh[πT1(y−
1 − y−

2 )]

(πT1ǫ)2
, x±

2 ∈ II .

(3.6)

Moreover, the above is also invariant under ‘time-reversal’ u1 − u2 ↔ −(u1 − u2). These

properties will be helpful in finding the late-time QES. Indeed, eq. (3.6) is the same entropy

formula as for an eternally-coupled black hole and bath system, as studied in [19]. For

simplicity, we shall take g = 1 and η∗ = 1/2 in the following sections.

In the following sections, we apply the RT formula to the calculation of entropy for

various subregions in the full system consisting of QML, QMR, the thermal bath, and an

auxiliary system purifying the bath. We begin in section 3.1 by considering the entropy of

QML, the bath system, and the purifier, recovering the Page curve, discussed previously in

section 2 and illustrated in figure 2 — the corresponding bulk RT surfaces are also shown in

figure 4a. Next, in section 3.2, we trace out the majority of the bath, as shown in figure 4b,

finding that only a finite bath interval of some minimal length is required to recover the

black hole interior. Finally, in section 3.3, we evaluate the importance of the bath’s purifier.

In particular, we find that if the purifier is completely traced out, as shown figure 4c, the

black hole interior can no longer be recovered, regardless of the size of the bath interval

that one can access; at the very least, a finite interval of the purifier is required, as shown

in figures 4d and 5.

3.1 Semi-infinite interval of the bath

First, we consider the evolution of (generalized) entropy for the subsystem consisting of

QML, a semi-infinite interval of the bath with endpoint x±
1 after the shock, and the purifier

of the bath. The corresponding HRT surfaces and the time evolution are illustrated in fig-

ure 2, and we shall find three phases for the generalized entropy, corresponding to different

portions of a Page curve. Note that, tracing out the purifier would also produce an infinite

thermal entropy for the semi-infinite bath interval, i.e. the infinite entanglement entropy

between the semi-infinite interval and the purifier.

Initially, in the quench phase, the QES in the gravitating region simply sits at the

bifurcation surface of the original eternal black hole geometry,

x±
QES = ± 1

πT0
. (3.7)

The corresponding generalized entropy is obtained by sum the Bekenstein-Hawking entropy

SBH(T0) =
c(φ0 + 2πT0φr)

12kφr
(3.8)
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Figure 4. Competing channels computing the generalized entropy of various subsystems (solid

red) and the corresponding bulk RT surfaces (dashed red) and entanglement wedges (light red). In

each case, the R-channel where the black hole interior is recoverable or reconstructable is shown

on the left. On the right, we show the N-channel where the interior is non-recoverable or non-

reconstructable. The corresponding generalized entropies for these channels are denoted SR and

SN, respectively. In the top row (a), we consider the generalized entropy of QML, the thermal bath,

and the bath’s purifier. In row (b), we keep only a finite interval [σ1, σ2] of the bath. In row (c), we

further trace out the purifier. Finally, in row (d), we include a finite interval [0, σ̃3] of the purifier.

Note that in this last case, we can also vary ũ3, the time slice of the purifier interval, and we find

the minimal σ̃3 depends on ũ3 — see section 3.3.

and the von Neumann entropy (3.4) evaluated holographically with endpoints x±
1 and x±

QES,

which picks out the η < η∗ = 1/2 channel:

Sgen =SBH(T0) + S1pt(AdS) + S1pt(x
±
1 ) , (3.9)

with S1pt(AdS) and S1pt(x
±
1 ) given by eq. (2.32). Note that, in the η < η∗ channel, the

von Neumann entropy (3.4) (and more generally eq. (2.36)) has no dependence on x±
2 ; this

justifies a posteriori choosing the QES to simply be the classical one at the bifurcation

point. This was also the case in the zero-temperature bath case [20].
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Transitioning to the scrambling phase, the QES jumps from the bifurcation point to

another saddle of generalized entropy, which is still located before the shock but now with

η > η∗ = 1/2. Since the x±
2 dependence of eq. (3.4) (and more generally eq. (2.36)) in this

channel is also identical to the zero temperature case [20], we obtain the same QES:

x+
QES =

1

πT0

[

1 − k

πT0
+ O

(

k2

T 2
0

)]

(3.10)

x−
QES =

1

πT0

[

−1 +
k

πT0

1 + πT0x+
1

1 − πT0x+
1

+ O

(

k2

T 2
0

)]

. (3.11)

Evaluating eq. (3.4) for this QES, one finds

Sgen − SBH(T0) ∼ c

6
log







12ES

cǫT0

x−
1 (1 − πT0x+

1 )
√

[1 − (πT1x+
1 )2][1 − (πT1x−

1 )2]







. (3.12)

Comparing eq. (3.12) with the η < η∗ channel of eq. (3.4), we find that the quench-to-

scrambling transition occurs at the same point as in the zero-temperature bath case:

x+
1 ∼ 1

3πT0
. (3.13)

Note that this is essentially the instant at which the bifurcation point (3.7) reaches η =

η∗ = 1/2. At later times, eq. (3.12) exhibits a growth linear in the physical time u =
y+

1 +y−

1
2 :

Sgen − SBH(T0) ∼ c

6

{

log

[

3ES(T1 − T0)

cǫπT0T 2
1

]

+ 2πT1u

}

(3.14)

with

x±
1 =

1

πT1

[

1 + O

(

k

T1

)]

. (3.15)

We note that this growth has a rate double that of the zero-temperature bath case. Phys-

ically, this can be explained by the fact that, in addition to absorbing radiation from the

AdS black hole, the semi-infinite interval of the bath is also sending radiation into the black

hole which itself (and the purifier of the bath) purifies.

Finally, there is a transition to the late-time phase, with the QES jumping to a saddle

point after the shock in AdS. As noted around eq. (3.6), the relevant post-shock two-point

entropy formula is the same as if the black hole and bath were eternally coupled. Since

the after-shock AdS geometry is also the same as for an eternal black hole, the late-time

generalized entropy is identical to the eternally coupled case studied in [19]. This matching

with the eternally-coupled case suggests that, by the Page time, the black hole and bath

have reached equilibrium.

As in the eternally-coupled case, time translation invariance (in u) simplifies the deter-

mination of the QES. In particular, the QES must be on the same time-slice as
y+

1 +y−

1
2 = u1:

uQES = u1. (3.16)
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Hence, it remains only to determine the spatial location of the QES. Substituting eq. (3.16)

into the entropy formula (3.6) with y±
1 = u ∓ σ1 gives

Sgen =
c

12k

[

φ0

φr
− 2πT1 coth(2πT1σQES)

]

+
c

6
log

[

2 sinh2[πT1(σ1 − σQES)]

πT1ǫ sinh(−2πT1σQES)

]

, (3.17)

in agreement with (19) in [19]. By setting the σQES-derivative of eq. (3.17) to zero, we find

−σQES = σ1 +
1

2πT1
log

(

2πT1

k

)

+
1

T1
O

(

k

T1

)

, (3.18)

reproducing eq. (21) in [19]. Hence the QES sits outside of the black hole horizon.

As an aside, time translation invariance permits a natural measure of proper distance

between the QES and the horizon along a constant time slice. Using eq. (3.18), we have in

units of LAdS:

∫ 1
πT1

tanh(−πT1σQES)

πT1

ds

s
=

ke−2πT1σ1

πT1
+ O

[

(

k

T1

)2
]

, (3.19)

from which we see that the QES is an order k/T1 proper distance outside the horizon.13

Using the location of the QES given by eqs. (3.16) and (3.18), we can evaluate the

generalized entropy of the late time phase. Again, by similarity to the eternally coupled

case, this is a constant:

Sgen (T1, σ1) ∼ SBH(T1) +
c

6

[

log

(

1

πT1ǫ

)

+ 2πT1σ1

]

, (3.20)

Interestingly, the above von Neumann part of the generalized entropy matches the entropy

obtained from placing a twist operator at a large separation σ1 from the boundary of a ther-

mal half-line (see eq. (2.33)) plus S1pt(AdS). Comparing with the generalized entropy given

by eq. (3.14) for the scrambling phase, we see that the transition between the scrambling

and late time phases occurs when y+
1 hits a Page time of

y+
Page ≈ 1

2k

(

1 − T0

T1

)

− 1

2πT1
log

[

3ES(T1 − T0)

cT0T1

]

. (3.21)

For later use, we note that more exact formulas may be obtained in the late time

phase in the simple case where x±
1 is placed on the boundary of AdS2, i.e. we consider the

entanglement wedge of QML plus the entire bath and its purifier. As previous works [3, 20],

we can ignore the correction from the position of the cut-off surface and set x+
1 = x−

1 = t =

f(u) = 1
πT1

tanh (πT1u). With this simplification, one can exactly solve, in x± coordinates,

the equations

k
(

x+ − x−
)2
(

1

x+ − x+
1

− 1

x+ − x−

)

= 1 −
(

πT1x−) 2 ,

k
(

x+ − x−
)2
(

1

x+ − x−
− 1

x−
1 − x−

)

=
(

πT1x+
)

2 − 1 ,

(3.22)

13By measuring the distance (3.19) between the QES and the horizon along a constant Killing time slice,

we have implicitly extended the after-shock geometry to before the shock. The bifurcation surface of the

final stationary black hole does not actually exist in the physical spacetime.
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obtained from minimization of the late-time generalized entropy. These admit two trivial

solutions x±
QES = ± 1

πT1
and two non-trivial ones. Because of the constraints x+

QES > x−
QES >

0, the only relevant solution for the position of QES reads

x+
QES(t) =

√

k2 + π2T 2
1

(

(πT1t)2 − 1
)

+ k
(

(πT1t)2 + 1
)

π2T 2
1

(

π2T 2
1 t2 + 2kt − 1

) ,

x−
QES(t) =

√

k2 + π2T 2
1

(

(πT1t)2 − 1
)

+ k
(

(πT1t)2 + 1
)

π2T 2
1

(

−π2T 2
1 t2 + 2kt + 1

) .

(3.23)

As a consistency check, we can use the time map t = 1
πT1

tanh(πT1u) and find our solu-

tion (3.23) for QES satisfies eq. (3.16):

1

2

(

y+
QES + y−

QES

)

≡ 1

2πT1
arctanh

(

πT1x+
QES

)

+
1

2πT1
arctanh

(

πT1x−
QES

)

= u . (3.24)

Noting that the above solution of QES is not always physical, we need to impose the

restrictions on parameters k, t as

π2T 2
1 t2 + 2kt − 1 > 0 ,

√

k2 + π2T 2
1

(

(πT1t)2 − 1
)

+ k
(

(πT1t)2 + 1
)

> 0 ,
(3.25)

which implies t is extremely near t∞, i.e. late time phase.14 Moreover, it is direct to show

x±
QES(t∞) = t∞ = 1

πT1
and the simple monotonic behavior due to the fact

dx+
QES(t)

dt
=

2k

π2T 2
1 t

(

t
√

k2 + π2T 2
1 + 2

)

+
√

k2 + π2T 2
1 + k(1 − t2π2T 2

1 )
> 0 , (3.26)

from which we verify that the QES is located outside the horizon, as described around

eq. (3.19). (Note that any apparent spatial motion of the QES is purely an artifact of the

choice of coordinates here — due to time translation invariance in u, the QES is spatially

stationary in σ = y−−y+

2 , as indicated in eq. (3.18).) So this is the first difference with the

case under zero temperature bath where the QES is located inside the horizon. With the

exact solution, one can obtain the generalized entropy

Sgen,late(T1) =
φ̄

2GN

(

√

k2 + π2T 2
1 − k log

[

ǫ

(

k +
√

k2 + π2T 2
1

)])

, (3.27)

where the first term is the thermal entropy of a one-sided black hole with temperature

T1 and the second term describes the von Neumann entropy of bulk matter with the

same temperature. It is obvious that the above generalized entropy is exactly a constant,

indicating this is a thermal equilibrium state.

14This is why the small k expansion does not work for x−

QES at late time phase because we have another

much smaller value (1 − πT1t) except for k. For example, 1 − tanh(πT1u)|πT1u=10 ≈ 4 × 10−35 does not

depend on k and is much smaller than k at late time phase.
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3.2 Finite interval of the bath

In this section, we consider the question of whether the interior of the black hole can be

recovered by a finite-sized interval in the bath, together with QML and the bath’s purifier.

We shall write the endpoints of the finite bath interval as y±
1 = u ∓ σ1 and y±

2 = u ∓ σ2

where σ1, σ2 ≥ −ǫ.

To begin, we consider the case where we have access to the entire purifier for the

thermal bath — this is illustrated in figure 4a. (In section 3.3, we shall see that the purifier

is crucial for recovering the black hole interior.) To stand a chance of recovering the black

hole interior, we take y+
1 ≥ y+

Page, with y+
Page given in eq. (3.21). We also take y±

2 to be in

the bath to the future of the shock, as we will see that this is sufficient to recover the black

hole interior.

The two competing channels of generalized entropy in the holographic limit, corre-

sponding to recoverability and non-recoverability of the black hole interior, are15

SR =Sgen
QES−1 + S2−IR, SN =Sgen

QES′′ + S1−2 + S 1
2

-line, (3.28)

where Sgen
i , Si denote generalized and von Neumann entropies calculated with a single

twist operator at x±
i , while Sgen

i−j , Si−j denote generalized and von Neumann entropies

of the interval with endpoints x±
i , x±

j . Further, subscripts QES, QES′′ and IR denote

the late-time QES associated to y±
1 , the (original) bifurcation point, and the IR point at

σ = y−−y+

2 = σIR, respectively. Recall that the entropy S 1
2

-line of the thermal half-line is

given in eq. (2.33). The entropy S2−IR, like S 1
2

-line, is IR divergent as σIR → ∞; below,

these divergences cancel in the differences of the entropies in the distinct channels.

To determine whether the black hole interior is recoverable, we ask whether SR < SN,

or equivalently,

0 > SR − SN

≈ c

6

{

π(T1 − T0)

k
+ 2πT1σ1

+ log





3ES

cπT 2
1

x+
2 (1 − πT1x−

2 )
√

[1 − (πT1x+
1 )2][1 − (πT1x−

1 )2]

(x−
2 − x−

1 )(x+
1 − x+

2 )











,

(3.29)

where we have used eq. (3.20) to approximate Sgen
QES−1, eq. (3.9) for the one-point generalized

entropy at the bifurcation point, and eq. (2.33) for the entropy of the thermal half-line.

The remaining entropies were obtained from the appropriate cases in eqs. (3.5) and (3.4).

(Recall we are taking here y±
2 to the future of the shock.) Since we have y±

1 , y−
2 ≫ 1

πT1
, we

may use the following approximations,

x±
1 ≈ 1

πT1

(

1 − 2e−2πT1y±

1

)

, x−
2 ≈ 1

πT1

(

1 − 2e−2πT1y−

2

)

. (3.30)

15There is in fact another channel where the black hole interior is recoverable, Sgen
QES−1 + S2 + S 1

2
-line,

but comparison of this with SN in eq. (3.28) reduces to a problem where the purifier of the bath has been

traced out — we deal with this case later in this section.
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In this limit of large y±
1 , y−

2 ≫ 1
πT1

, the r.h.s. of eq. (3.29) becomes

SR − SN ≈ c

6

{

π(T1 − T0)

k
− 4πT1σ2 + log

[

6ES

cT1

1

(e−2πT1σ1 − e−2πT1σ2)2

]}

. (3.31)

Hence, the recoverability of the black hole interior is equivalent to σ2 − σ1 > ∆turn, where

∆turn ≈ 1

4πT1

[

π(T1 − T0)

k
+ log

(

6ES

cT1

)]

. (3.32)

Comparing terms in eqs. (3.21) and (3.32) leading order in k, note that ∆turn ≈ y+
Page/2.

3.3 Importance of the bath’s purifier

As hinted earlier, the purifier of the bath is crucial to the reconstruction of the black hole

interior. Let us briefly attempt a similar calculation to the above, now additionally tracing

out this purifier. The generalized entropy for QML and an interval of the bath from y±
1 to

y±
2 then has the competing channels — see figure 4

SR =Sgen
QES−1 + S2, SN =Sgen

QES′′ + S1−2, (3.33)

as illustrated in figure 4c. Now, we take y±
2 to the past of the shock, since we shall momen-

tarily show that, even as the interval is extended by taking σ2 =
y−

2 −y+
2

2 arbitrarily large, the

N-channel with entropy SN will nonetheless remain favorable.16 Using the formulas (3.20)

for Sgen
QES−1, (3.9) for Sgen

QES′′ , (2.32) for S2, and (2.34) for S1−2, we have

SR − SN ≈ c

6

{

π(T1 − T0)

k
+ 2πT1σ1

+ log





c

24π2T1ES

(x+
2 − x−

2 )
√

[1 − (πT1x+
1 )2][1 − (πT1x−

1 )2]

x+
1 x+

2 (x−
2 − x−

1 )











.

(3.34)

Using again the y±
1 , y−

2 ≫ 1
πT1

approximations (3.30), we find

SR − SN ≈ c

6

{

π(T1 − T0)

k
+ 2πT1σ1 + log

(

cT1

12πES

)

+ log

[

x+
2 − x−

2

T1x+
1 x+

2 (e−2πT1σ1 − e−2πT1σ2)

]}

. (3.35)

On the r.h.s. , the first three terms sum to a large positive number (note that the third term,

though negative, scales like the logarithm of the first term). Moreover, the logarithm of the

last term is bounded from below by log π. It follows that SR > SN. We thus conclude that

when the purifier of the bath is traced out, no matter how large an interval of the bath one

has access to, the N-channel is favorable and the black hole interior cannot be recovered.

16If one attempts a similar exercise with y±

2 after the shock, then naively one finds with our entropy

formulas that when this endpoint is placed at O(c/ES) away from the shock, it is possible for Sgen
rec < Sgen

non-rec.

However, this is an artifact of the fact that our setup is incapable of probing distances of such small scales.

Since extending the interval of the bath can only increase the entanglement wedge, the argument presented

in the main text precludes the possibility of the black hole interior being recovered from shorter intervals

which stop to the future of the shock.
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Figure 5. The bath and purifier subsystems. The central panel shows a Penrose diagram of

various coordinate patches of the bath and purifier subsystems. The left panel shows two examples,

sharing the same y−

2 , of an interval [σ1, σ2] of the bath system after the Page time: the shorter

blue interval is just barely above the critical length ∆turn needed to recover the black hole interior;

the green interval is much longer. Red wavy lines show thermal radiation leaving the bath prior

to y− = y−

2 . The right panel shows the corresponding intervals [0, σ̃3] needed in conjunction with

the bath intervals (plus QML) to recover the black hole interior. The phase boundaries of σ̃3 for

recoverability is shown in light blue and green. The dashed wavy lines show the thermal quanta of

the purifier that are most entangled with the radiation marked in the left panel.

A natural follow-up question is whether the black hole interior can be recovered when

one can only access a finite portion of the bath’s purifier at various times. We shall take the

joint system of the bath and its purifier to be in a thermofield double state. Furthermore,

we introduce a new set of coordinates ỹ± = ũ ± σ̃ for the purifier of the bath, where ũ and

σ̃ are analogous to the u and σ coordinates of the bath. These coordinates for the purifier

are related to the coordinates we have been using thus far by

Y ± = − 1

πT1
coth(πT1ỹ±). (3.36)

Note that while πT1Y ± ∈ (−1, 1) provides a coordinate chart which includes the bath,

the coordinate chart of (πT1Y ±)−1 ∈ (−1, 1) includes the purifier of the bath. Moreover,

we have

πT1ỹ = − πT1y +
iπ

2
, dỹ+dỹ− =dy+dy− (3.37)

so that there is no additional Weyl transformation that must be applied to our entropy for-

mulas when endpoints are moved from the bath to its purifier. (Specifically, in (3.3), (3.5),

and (3.4), end-points in the purifier of the bath should be treated as though they were

simply in the bath and to the past of the shock.) The coverage of the Y, y, ỹ coordinates

in the bath and purifier subsystems are summarized in the middle panel of figure 5.

We may then repeat the analysis of section 3.2, now pushing the IR endpoint to a

point ỹ±
3 in the bath’s purifier. That is, we consider whether the black hole interior can be

recovered from QML, an interval of the bath with endpoints y±
1 = u ∓ σ1 and y±

2 = u ∓ σ2,

and an interval of the bath’s purifier stretching from an endpoint ỹ±
3 = ũ3 ± σ̃3 to the
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boundary σ̃ = 0 — see figure 5. In general, we shall find that the size of the purifier

interval required to recover the black hole interior will depend on the time ũ3 at which the

interval is selected.

From sections 3.1 and 3.2, we see that, to have a chance of recovering the black hole

interior, we should take y+
1 > y+

Page and σ2 −σ1 > ∆turn with y+
Page and ∆turn given in (3.21)

and (3.32). For simplicity, we take y±
2 to the future of the shock. The relevant generalized

entropies for the R- and N-channels are,

SR =Sgen
QES−1 + S2−3 , SN =Sgen

QES′′ + S1−2 + S3 , (3.38)

as illustrated in figure 4d. Relating to the problem treated in section 3.2, where ỹ±
3 is

pushed to the IR, in comparing SR and SN, we have the extra contribution

SR − SN − [SR − SN]σ̃3→+∞ =
c

6
log

[

2πT1x+
3 (−x−

2 + x−
3 )

(1 − πT1x−
2 )(x+

3 − x−
3 )

]

. (3.39)

From (3.31), we see that

[SR − SN]σ̃3→+∞ ≈ − 2πcT1

3
(σ2 − σ1 − ∆turn). (3.40)

Applying the approximation (3.30) for x−
2 , we find that the condition SR ≤ SN for the

recoverability of the black hole interior translates to

πT1 − (x−
3 )−1 .

πT1

[

1 − 2e−4πT1(σ2−σ1−∆turn)
]

− (x+
3 )−1

e2πT1(u−σ2+2σ1+2∆turn)
. (3.41)

The r.h.s. , giving the maximal separation of (x−
3 )−1 from past null infinity line (x−)−1 =

πT1 of the bath’s purifier, is largest when (x+
3 )−1 sits on the future null infinity line

(x+)−1 = −πT1. Here,

πT1 − (x−
3 )−1

∣

∣

∣

(x+
3 )−1=−πT1

.
2πT1

[

1 − e−4πT1(σ2−σ1−∆turn)
]

e2πT1(u−σ2+2σ1+2∆turn)
. (3.42)

We see that even this is exponentially suppressed (note u − σ2 + 2σ1 + 2∆turn ≥ 2∆turn

with ∆turn given in (3.32)). In contrast, with appropriate σ2 − σ1 > ∆turn, (x+
3 )−1 can

be pushed far from the future null infinity value −πT1; the largest separation is achieved

when (x−
3 )−1 sits on past null infinity:

πT1 + (x+
3 )−1

∣

∣

∣

(x−

3 )−1=πT1

.2πT1

[

1 − e−4πT1(σ2−σ1−∆turn)
]

. (3.43)

It is also instructive to consider the condition (3.41) in terms of the spatial interval

length σ̃3 taken in the purifier. As we elaborate below, due to the step-like nature of the

tanh function in f , the constraint (3.41) becomes a piece-wise linear constraint on σ̃3 as a

function of ũ3 with interpolation between the pieces on scales of order πT −1
1 .
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Let us consider first the case σ2 −σ1 −∆turn ≪ (4πT1)−1. Then, both (3.42) and (3.43)

are small so that we are in the regime

πT1 − (x−
3 )−1 ≈2πT1e2πT1ỹ−

3 ,

(

ỹ−
3 ≪ − 1

2πT1

)

(3.44)

πT1 + (x+
3 )−1 ≈2πT1e−2πT1ỹ+

3

(

ỹ+
3 ≫ 1

2πT1

)

(3.45)

Note that the bounds given by the r.h.s. ’s of (3.42) and (3.43) are complementary in the

following sense: if πT1−(x−
3 )−1 is much smaller than the r.h.s. of (3.42), then (3.41) reduces

to the constraint that πT1 + (x+
3 )−1 is less than approximately the r.h.s. of (3.43); on the

other hand, if πT1 + (x+
3 )−1 is much smaller than the r.h.s. of (3.43), then (3.41) reduces

to πT1 − x−
3 being smaller than approximately the r.h.s. of (3.42). Considering (3.44)

and (3.45), the interpolation between these two cases occurs on scales of order (πT1)−1 in

ỹ±
3 . We thus find a piecewise null phase boundary for ỹ±

3 :

σ̃3 & − 1

2πT1
log[4πT1(σ2 − σ1 − ∆turn)] +











−ũ3 if ũ3 . −y−

2
2

ũ3 + y−
2 if ũ3 & −y−

2
2

, (3.46)

with interpolation between the pieces occurring on scales of order (πT1)−1 in ũ3. We see

that as σ2 − σ1 approaches the minimum interval length ∆turn of the bath required for

recovery of the black hole interior, σ̃3 diverges logarithmically.

Next, we consider the case where σ2 −σ1 −∆turn ≫ (4πT1)−1. Now, the r.h.s. of (3.43)

need not be small, opening the possibility for a new regime where

πT1 − (x+
3 )−1 ≈2πT1e2πT1ỹ+

3

(

ỹ+
3 ≪ − 1

2πT1

)

(3.47)

but

−ỹ+
3 . σ2 − σ1 − ∆turn (3.48)

so that the bound (3.43) is not yet saturated. Inserting (3.47) into (3.41), we obtain the

phase boundary in an intermediate regime between (3.42) and (3.43). This phase boundary,

at the conclusion of this intermediate regime, i.e. when (3.48) is saturated, ends deep in the

region where (3.47) holds. Finally, plugging (3.47) into (3.43), we obtain a phase boundary

in the complement of (3.48). Altogether, we find

σ̃3 &



























−ũ3 − 2(σ2 − σ1 − ∆turn) if ũ3 +
y−

2
2 < −(σ2 − σ1 − ∆turn)

y−

2
2 − (σ2 − σ1 − ∆turn) if

∣

∣

∣

∣

ũ3 +
y−

2
2

∣

∣

∣

∣

< σ2 − σ1 − ∆turn

ũ3 + y−
2 − 2(σ2 − σ1 − ∆turn) if ũ3 +

y−

2
2 > σ2 − σ1 − ∆turn

, (3.49)

with interpolation on the thermal scale.17 We see that the intermediate case gives the

smallest possible region of the purifier needed for reconstruction of the black hole interior.

17Eq. (3.49) can be condensed into

2σ̃3 & |ỹ+
3 | + |y−

2 + ỹ−

3 | + y−

2 − 4 (σ2 − σ2 − ∆turn) ,

which is similar to the general Tb result in eq. (4.123) with δσ2 → σ2 − σ1 − ∆turn and Tb = Teff = T1. As

noted around (4.123), the assumptions leading to the general result are more constraining.
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Figure 6. The time dependence of effective temperature of black hole, which simply parametrizes

the dynamical behavior of black hole.

For the blue and green bath intervals illustrated in the left panel of figure 5, the

approximate phase boundary (3.49) is highlighted respectively in light blue and light green

in the right panel of figure 5 and examples of minimal-length purifier intervals are shown in

opaque blue and green. The blue case illustrates the phase boundary given by (3.49) for a

bath interval just large enough for (3.49) to be valid (as opposed to (3.46)) — in this limit,

the intermediate piece of (3.49) vanishes. The green case, on the other hand, has a much

larger bath interval. As illustrated in figure 5, (3.49) has the interpretation of giving the

interval of the purifier needed to capture quanta entangled with out-going thermal bath

radiation emitted between times y− = 0 and y− = y−
2 . When the bath interval length

σ2 − σ1 is barely a few thermal lengths greater than the critical value ∆turn (blue case),

nearly all of these quanta must be accessible in the purifier. For much longer bath intervals

(green case), fewer purifier quanta are necessary. We shall comment further on this in

section 5.

4 Taking black holes from the fridge to the oven

In the previous section, we analyzed the two-dimensional black hole coupled to a bath

system with temperature Tb = T1, which together formed a system in thermal equilibrium

as soon as the Page time was reached. Compared to the results from the evaporating black

hole with zero temperature, e.g., [1, 3, 20], we found qualitatively different behavior in the

evolution of the generalized entropy — and, of course, the role of purification of the bath.

In this section, we consider coupling the black hole with temperature T1 after the shock

is absorbed into a thermal bath with a general temperature Tb. The black hole and bath

evolve to reach an equilibrium where the black hole temperature matches Tb. However, the

black hole will decrease or increase in size (and entropy) depending on whether Tb < T1

or Tb > T1. The evolution of the (effective) black hole temperature is shown in eq. (6) for

several cases.

As was explained in section 2.3, the Schwarzian equation (2.28) can be solved for

arbitrary bath temperature to find the time-map function f(u) in eq. (2.29) which reduces
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to the Tb = 0 result of [3] by taking ν = 0.18 Taking the limit ku → ∞, one can also define

the end of the proper time

t∞ =
2

k

Iν(a)

aIν−1(a) − νIν(a)
=

2

ka

Iν(a)

I ′
ν(a)

, (4.1)

which is also the final position of the QES, i.e. x±
QES|u→∞ = t∞. We now stress some

important facts about the above map function from coordinate time t to proper (physical)

time u. First, the function f(u, Tb) is well defined and real for Tb ≤ T1 and also Tb ≥ T1.

Secondly, it is also invariant under the following rescaling

T1 → αT1 , Tb → αTb , k → αk , u → u

α
,

φ̄r

GN

→ φ̄r

α2GN

. (4.2)

In other words, the independent dimensionless parameters in the model are

T1LAdS ,
Tb

T1
, ku ,

k

T1
, (4.3)

besides of φr

GN
. We simply take the radius of AdS as the standard scale by choosing LAdS = 1

and all other parameters can be considered to be normalized by T1. From an energetic

point of view, it is clear that Tb = T1 is a critical temperature for the thermal bath, where

the black hole will neither lose nor absorb energy. From the energy flow equation (2.27)

and Schwarzian equation (2.28), we can define an effective temperature

Teff(u; Tb) =
√

T 2
b + (T 2

1 − T 2
b ) e−ku , (4.4)

which parametrizes the ADM mass of the dynamical black hole at time u by

E(u) =
φ̄rπ

4GN

T 2
eff(u) . (4.5)

Recalling the energy flux (2.24) on the physical boundary x− ≈ t, i.e.

〈Tx−x−〉 = ES δ(t) +
cπ

12

1

(f ′(u))2

(

T 2
b − T 2

eff(u)
)

, (4.6)

we can explain the above three terms as the contributions from the shock wave, thermal

radiation from the coupled bath system at temperature Tb, and Hawking radiation escaped

from the dynamical black hole. As expected, we can also understand the effective temper-

ature as the measure for the temperature of Hawking radiation at time u. For later use, we

also show the numerical plot for the time evolution of effective temperature with various

Tb in figure 6.

18We note that for numerical purposes, the following form of the time-map function

f(u, Tb) =
2

k

Iν(a) Kν(ae−
ku

2 ) − Kν(a) Iν(ae−
ku

2 )

Iν(ae−
ku

2 ) (aKν−1(a) + νKν(a)) + Kν(ae−
ku

2 ) (aIν−1(a) − νIν(a))
,

is easier to deal with than the expression in eq. (2.29). Note that similar expressions appear in [28].
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For Tb < T1, the black hole loses energy via the absorption of Hawking radiation by

the bath and evaporates to a smaller black hole with lower temperature Tb, which is similar

to the model with Tb = 0 as described in [1, 3, 20]. Conversely, a black hole coupled with a

higher temperature bath Tb > T1 absorbs radiation from the bath and approaches another

equilibrium state with temperature Tb when ku ≫ 1. In both cases, for ku → ∞, the system

is thermalized and shows similar qualitative features to the equilibrium case Tb = T1. In

summary, we have the three different dynamical behaviors in the two-dimensional gravity

setup: an evaporating black hole when Tb < T1; a growing black hole when Tb > T1; and

equilibrium when Tb = T1. Note that these outcomes are independent of the temperature

of the original black hole, i.e. T0.

However, diving into the details of the QES and the flow of information, we will see

there are different critical temperatures determining the position of the QES relative to

the final event horizon, as will be explained in section 4.1.3. For this analysis, we ap-

proximate the equations for the generalized entropy and find the approximate solutions for

QES. Making a small k expansion with fixed ku, one can find the following approximation

of f(u):19

f(u)

t∞
≈ tanh

(

2π

k

(

T1 − Teff − Tb log

(

T1 + Tb

Tb + Teff

)

+
ku

2
Tb

))

, (4.8)

which reduces to the equilibrium case with f(u) = 1
πT1

tanh (πT1u) after taking Tb = T1.

Hence the above simplified form approximates the map-function f(u) even for Tb ≥ T1.

From the asymptotic expansion in eq. (4.7), one can also obtain the approximation for the

upper bound of physical time

t∞ ≈ 1

πT1
+

k

4π2T 4
1

(

T 2
1 − T 2

b

)

+ O(k2) . (4.9)

Let us remark that one can further derive several simpler and useful approximations

log

(

t∞ − f(u)

2t∞

)

∼ −4π

k

(

T1 − Teff − Tb log

(

T1 + Tb

Tb + Teff

)

+
ku

2
Tb

)

,

f ′(u) ∼ 2πTeff (t∞ − f(u)) ,

{u, f(u)} = − 1

(f ′(u))2
{f(u), u} ∼ 1

2(t∞ − f(u))2
.

(4.10)

which will be used many times in the following analysis. It is also easy to find that all

the above approximations reduce to the same forms used in [3, 20] upon taking Tb = 0.

The above approximations are still complicated due to the appearance of Teff(u, Tb), we

19In order to do this analytically, we first note the series expansions of Bessel functions [62]

Kν(νz) ∼
ν→∞

√

π

2ν

(

e−νη

(1 + z2)1/4
+ O

(

1

eηνν

))

, Iν(νz) ∼
ν→∞

√

1

2πν

(

eνη

(1 + z2)1/4
+ O

(

eην

ν

))

with η =
√

1 + z2 + log
z

1 +
√

1 + z2
.

(4.7)
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Parameter LAdS k T1 T0 c ǫ φ0 φ̄r

Value 1 1

4096

1

π
63

64π
4096 1

4096
0 1

40962

Table 1. Baseline parameters for all numerical plots in this paper.

can further simplify the above results if we focus on times at the order of the Page time

by taking the early-time limit ku ≪ 1 (linear region).20 In the linear regime, the effective

temperature Teff ∼ T1 and we find the following linear approximations

log

(

t∞ − f(u)

2t∞

)

∼ −2πT1u + O
(

ku2
)

log

(

1

f ′(u)

)

∼ 2πT1u − log (4πT1t∞) ,

(4.11)

where the leading-order contributions are not sensitive to the temperature of the bath Tb

because the black hole does not evaporate very much in this phase. We are also interested

in the late-time region with eku ≫ 1 where we need the following approximations21

log

(

t∞ − f(u)

2t∞

)

∼ 4π

k

(

Tb − T1 + Tb log

(

T1 + Tb

2Tb

)

− ku

2
Tb +

T 2
1 − T 2

b

4Tb
e−ku

)

,

log

(

1

f ′(u)

)

∼ 1

k

(

2πTbku − 4π

(

Tb − T1 + Tb log

(

T1 + Tb

2Tb

)))

− log (4πTbt∞) .

(4.12)

Lastly, we note that the coefficient of the linear term changes to 2πTb whereas, which

is expected because the temperature of the black hole at late time (eku ≫ 1) is close to

Tb. Instead of analytical approximations, we also performed numerical calculations for

all the results as the double-check for these approximations in the following analysis. For

convenient comparisons with the results at Tb = 0, all numerical plots are done by choosing

the numerical parameters listed in table 1, which are the same as those chosen in [20].

4.1 QES and Page curve

In the following section, we first consider the generalized entropy of the subsystem QMR,

which is the same with that of subsystem consisting of QML, the thermal half-line and

another half-line containing the purification. That is, we would like to find the position of

the QES, i.e. x±
QES, in the late-time phase when we anchor the endpoint x±

1 on the boundary

between AdS and flat spacetime. The generalized entropy reads

Sgen,late(Tb) =
φ̄r

4GN

[

2
1 − (πT1)2x+

QESx−
QES + k

2 I
(

x+
QES, x−

QES; x−
QES

)

x+
QES − x−

QES

+2k log





2

ǫ

sinh
(

πTb

(

y−
1 − y−

QES

))

πTb

(x+
QES − x+

1 )

(x+
QES − x−

QES)

√

f ′(y−
QES)

f ′(y+
1 )







 ,

(4.13)

20In the later, we will find that our most analytical approximations (at leading order) in the linear region

present linear behaviors in time. One can consider some transition point ku ∼ 1
#

as the endpoint for the

linear region.
21Note that the ku → ∞ and the Tb → 0 limits of eq. (4.7) do not commute.
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with the integral term defined as

I(x+, x−; x) =

∫ x

0

(

x+ − t
)

(

x− − t
)

(

{u, t} − 2

(

πTb

f ′(u)

)2
)

dt ,

with {u, t} − 2

(

πTb

f ′(u)

)2

=

(

1

f ′(u)

)2

2π2
(

T 2
1 − T 2

b

)

e−ku .

(4.14)

In order to minimize the generalized entropy, we need to solve the differential equations

∂±Sgen = 0. Explicitly, we have

0 = 2
(

πT1x−
QES

)2 − 2 − kI
(

x−
QES, x−

QES; x−
QES

)

+ 2k
(

x+
QES − x−

QES

)2
(

1

x+
QES − x+

1

− 1

x+
QES − x−

QES

)

,

0 = 2 − 2
(

πT1x+
QES

)2
+ kI

(

x+
QES, x+

QES; x−
QES

)

+ 2k
(

x+
QES−x−

QES

)2
(

πTb

tanh(πTb(y−
QES−y−

1 ))

1

f ′(y−
QES)

+
1

x+
QES−x−

QES

+
1

2

f ′′(y−
QES)

(f ′(y−
QES))2

)

.

(4.15)

To solve these equations, we will need the approximation for the time-map function f(u)

in eq. (4.8) (and it’s subsequent limits in eqs. (4.10), (4.11) and (4.12)), but we still need

to carefully deal with the integral term that originates from the backreaction of the dilaton

in the JT gravity. From the late time limit of eq. (4.15) we find

I∞ ≡ I(t∞, t∞; t∞) =
2

k

(

(πT1t∞)2 − 1
)

, (4.16)

which is the leading-order contribution to the integral at late times because the position

of QES should be located near t∞, i.e. x+
QES ∼ t∞ ∼ t ∼ x−

QES. As before, we start from

considering the generalized entropy of the subsystem consisting of QML and the whole bath

(with its purification) by taking x1 on the conformal boundary of AdS

x+
1 ≈ t ≈ x−

1

(

i.e. y+
1 ≈ u ≈ y−

1

)

, (4.17)

where we ignored the correction at the order O(ǫf ′(u)).22

4.1.1 Turn on the temperature of bath

From the intuition derived from studying the Tb = 0 case in refs. [3, 20], we expect the

position of the QES after the Page time to satisfy

0 < x+
QES − t∞ < t∞ − t ≪ t∞ − x−

QES ≪ t∞ . (4.18)

We will therefore solve the extremal equations (4.15) by expanding around t∞. With the

help of the approximations in eqs. (4.10), we can approximate the integral

I
(

x−
QES, x−

QES; x−
QES

)

∼ I∞ − (t∞ − x−
QES)∂−I

(

x−
QES, x−

QES; x−
QES

)

∼ 2

k

(

(πT1t∞)2−1
)

+(t∞−x−
QES) log

(

t∞ − x−
QES

t∞

)(

1 − T 2
b

T 2
eff(vQES)

)

.

(4.19)

22Recall the point on AdS boundary at proper time u is defined by t = f(u) =
x+

1
+x−

1

2
, s =

x+

1
−x−

1

2
≈

ǫf ′(u).
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where for ∂−I
(

x−
QES, x−

QES; x−
QES

)

≡ dI
(

x−

QES
,x−

QES
;x−

QES

)

dx−

QES

, we used the approximation

∫ x−

QES

0
2
(

x−
QES − t

)

(

{u, t} − 2

(

πTb

f ′(u)

)2
)

dt

≈
∫ x−

QES

0

(

t∞ − t + x−
QES − t∞

)

(t∞ − t)2

(

1 − T 2
b

T 2
eff(u)

)

dt .

(4.20)

However, it is not easy to perform the above integral of t due to the appearance of time u.

Instead, we apply the middle value theorem and find

∂−I
(

x−
QES, x−

QES; x−
QES

)

≈
∫ x−

QES

0

1

(t∞ − t)

(

1 − T 2
b

T 2
eff(u)

)

dt

≈ −
(

1 − T 2
b

T 2
eff(vQES)

)

log

(

t∞ − x−
QES

t∞

)

,

(4.21)

where vQES ∈
[

0, y−
QES

]

is referred to as the middle value for the t integral from 0 to x−
QES.

Similarly, we can obtain the other integral I
(

x+
QES, x+

QES; x−
QES

)

by

∫ x−

QES

0

(

(t∞ − x+
QES)2 − 2(t∞ − x+

QES)(t∞ − t) + (t∞ − t)2
)

(

{u, t} − 2

(

πTb

f ′(u)

)2 )

dt

∼ (t∞ − x+
QES) log

(

t∞ − x−
QES

t∞

)(

1 − T 2
b

T 2
eff(vQES)

)

+ I∞ − 1

2
(t∞ − x−

QES)

(

1 − T 2
b

T 2
eff(y−

QES)

)

, (4.22)

where we have ignored the first integral at the order O((x+
QES − t∞)2), used mean value

theorem for the second integral again with the same middle value vQES as before and

considered the third integral as a function of x−
QES with its Taylor expansion around x−

QES ∼
t∞ as

∫ x−

QES

0
(t∞ − t)2

(

{u, t} − 2

(

πTb

f ′(u)

)2
)

dt ∼ I∞ − 1

2
(t∞ − x−

QES)

(

1 − T 2
b

T 2
eff(y−

QES)

)

.

(4.23)

Although we can not decide the middle value for any y−
QES, it is easy to find Teff(vQES) ∼ T1

at the linear region with ku ≪ 1.

Combining our assumptions (4.18) and the approximations of the integrals in eqs. (4.19)

and (4.22), we can approximate the equations for QES by much simpler forms

4πT1

t∞ − x−
QES

(

πT1t∞ +
k

4πT1
log

(

t∞ − x−
QES

t∞

)(

1 − T 2
b

T 2
eff(vQES)

))

≈ 2k

x+
QES − t

,

4πT1

(

x+
QES − t∞

)

(

πT1t∞ +
k

4πT1
log

(

t∞ − x−
QES

t∞

)(

1 − T 2
b

T 2
eff(vQES)

))

≈ k

2

(

t∞ − x−
QES

)

Γeff(y−
QES) ,

(4.24)
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where we have defined

Γeff(y−
QES) ≡

(

1 − Tb

Teff(y−
QES)

)2

, (4.25)

and only keep the leading-order contributions. The non-negative coefficient Γeff approaches

zero as the black hole reaches thermal equilibrium with the bath. For later use, we also

present the numerical plot for Γeff for various temperature in figure 9.

With the above equations, it is straightforward to find the solutions, i.e. the location

of QES

x+
QES ≈ t∞ +

Γeff

4 − Γeff
(t∞ − t) ,

x−
QES ≈ t∞ − 8πT1

k(4 − Γeff)
(t∞ − t)

(

πT1t∞ +
k

4πT1
log

(

t∞ − x−
QES

t∞

)(

1 − T 2
b

T 2
eff(vQES)

))

.

(4.26)

Assuming the time delay u − y−
QES is not large (i.e. k(u − y−

QES) ≪ 1), one can use the

approximation

log

(

t∞ − f(y−
QES)

t∞ − f(u)

)

≈ −4π

k

(

Teff(u) − Teff(y−
QES) − Tb log

(

Tb + Teff(u)

Tb + Teff(y−
QES)

)

− k

2
(u − y−

QES)

)

∼ 2πTeff(y−
QES)(u − y−

QES) ∼ 2πTeff(u)(u − y−
QES) ,

(4.27)

and further simplify the position of the QES to

y−
QES ≈ u − uHP

uHP =
1

2πTeff(u)
log

[

8πT1

k(4 − Γeff(u))

(

1 +
k

4πT1
log

(

t∞ − t

t∞

)

(

1 − T 2
b

T 2
eff(vQES)

))]

,

(4.28)

where the second term can be understood as the Hadyen-Preskill time, as will be explained

later. It is noted that the time scale uHP is not constant in general because the black hole

is also dynamical. For Tb = 0, the solutions reduce to

y−
QES(Tb = 0) ≈ u − 1

2πT1e− k
2

u
log

(

8πT1e− k
2

u

3k

)

, (4.29)

which is in agreement with the results of [3].23 Similarly to the zero temperature bath case,

the QES moves towards the horizon at x+ = t∞. However, we want to stress the importance

23Here we explicitly write the right side as a function of time u which should be understood as the

leading-order contribution. To be more precise, we can also use e
k

2
y−

QES rather than e
k

2
u.
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of the role of the non-zero factor Γeff that captures the speedup of the equilibration process

because the thermal bath also emits radiation to the AdS region when Tb 6= 0.

Furthermore, we can also compare our new solutions with the explicit and linear solu-

tion found in [20]. Focusing on the Page transition within the linear region, we can further

simplify the results for the position of QES and explicitly obtain

x+
QES ≈ t∞ +

Γ0

4 − Γ0
(t∞ − t) , Γ0 =

(

1 − Tb

T1

)2

,

y−
QES ≈ u − 1

2πT1
log

(

8πT1

k(4 − Γ0)

)

, ku ≪ 1 (linear region) ,

(4.30)

where we can rewrite the time delay

uHP(ku ≪ 1) =
1

2πT1
log

(

8πT1

k (4 − (1 − Tb/T1)2)

)

, (4.31)

as the Hadyen-Preskill time in linear region. It is also easy to check that the above results

are reduced to the linear results presented in [20] by setting Tb = 0, i.e. Γeff = 1.

After finding the position of the QES, we are able to consider the evolution of the

generalized entropy (4.13). The generalized entropy is dominated by the classical area

term from the dilaton

φ ≈ 2φ̄r

(

1 − (πT1)2x+
QESx−

QES + k
2 I
(

t∞, x−
QES; x−

QES

)

t∞ − x−
QES

)(

1 − x+
QES − t∞

t∞ − x−
QES

)

∼ 2φ̄r

t∞ − x−
QES

[

1 −
(

πT1t∞
)2 − (πT1)2t∞

(

x+
QES − t∞

)

− (πT1)2t∞(x−
QES − t∞)

+
k

2

(

I∞ +
(t∞ − x−

QES)

2

(

1 − T 2
b

T 2
eff(vQES)

)

log

(

t∞ − x−
QES

t∞

))]

∼ φ̄r

(

2(πT1)2t∞ +
k

2

(

1 − T 2
b

T 2
eff(vQES)

)

log

(

t∞ − x−
QES

t∞

)

− kΓeff(y−
QES)

4

)

,

(4.32)

which is approximated by the value of dilaton on the horizon at x+
QES = t∞. Recall that

Γeff(y−
QES) is given in eq. (4.25). Comparing the area term (without divergences associated

with short range entanglement)

SφQES
=

φ

4GN

∼ c

12k

(

2πT1 +
k

2

(

1 − T 2
b

T 2
eff(vQES)

)

log

(

t∞ − x−
QES

t∞

))

, (4.33)

with the time delay in position of QES, i.e. eq. (4.28), we can rewrite the time shift as

uHP ≈ 1

2πTeff(u)
log

(

SφQES

c

)

+ O(1) ≈ 1

2πTeff(u)
log

(

S(u) − S0

c

)

, (4.34)

where we have restored the extremal entropy S0 ≡ φ0

4GN
(see (2.10)) in the complete entropy

S(u) of our dynamical black hole. Here we can explain the entropy S(u) as the density

of state at time u and take S0 as the ground state entropy associated with the value

φ0. As discussed in [3], the time delay uHP appearing in y−
QES can be understood as the

Hayden-Preskill time.
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Figure 7. The Page curve of generalized entropy around Page transition from scrambling phase

to late-time phase for different bath temperatures. The solid lines represent the analytical results

at the scrambling phase and the dashed lines indicate the numerical results for the late-time phase

which are also approximated by solutions (4.26) and their approximate generalized entropy (4.36).

Note that the black dashed line shows the generalized entropy at equilibrium case, which is the

constant given in eq. (3.27).

4.1.2 Page transition

The subleading term of the generalized entropy is the bulk entropy

4GN

φ̄r

Sbulk =



2k log





2

ǫ

sinh
(

πTb

(

u − y−
QES

))

πTb

(x+
QES − t)

(x+
QES − x−

QES)

√

f ′(y−
QES)

f ′(u)







 (4.35)

∼ 2k

(

log

(

8

(4 − Γeff)ǫ

sinh (πTbuHP)

πTb

)

− πTeffuHP +
kuHP

4T 2
eff

(T 2
1 − T 2

b )e−ku

)

,

which remains constant in the linear region with ku ≪ 1. As expected, it also reproduces

the results in [20] after fixing Tb = 0. In order to derive the Page time, we can also

explicitly write generalized entropy at late time phase in the linear region

Sgen,late(ku ≪ 1) ≈ φ̄r

4GN

[

2πT1 − kπT1

(

1 − T 2
b

T 2
1

)

(u − uHP) (4.36)

+ 2k log

(

8

(4 − Γ0)ǫ

sinh (πTbuHP)

πTb

)

− 2kπTeffuHP + O(k2 log k)

]

,

which displays linear decrease (increase) of the generalized entropy after the Page transition

for Tb < T1 (Tb > T1). Given the fact that the time delay uHP is a constant when Tb = T1,

it is obvious that the entropy Sgen,late also reduces to a constant when Tb = T1 (see

eq. (4.28)), which is the same as the result derived in eq. (3.27) for the equilibrium case.

Shortly before the Page time, we can obtain the generalized entropy in the scrambling
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phase with 1 ≪ πT1u and ku ≪ 1 by

Sgen,scrambling ≈ φ̄r

4GN

(

2πT0 + 2k log

(

24πEs

ǫc

sinh π(Tbu)

πTb

1
√

f ′(u)

)

+ κ

)

≈ φ̄r

4GN

(

2πT0 + 2kπ(Tb + T1)u + 2k log

(

12Es

ǫcTb

)

+
k2u

2

(

1 − T 2
b

T 2
1

)

(1 − uπT1) + κ

)

.

(4.37)

where we put all other contributions in SBulk into κ which approaches a constant when

t = f(u) → t∞.24 The leading-order terms of the generalized entropy in the scrambling

phase (4.37) are a constant related to the entropy of the original black hole and two

linearly increasing terms, i.e. 2kπ(T1 + Tb), due to the entanglement of radiation escaping

from the non-zero temperature bath and black hole, respectively. Because the temperature

of black hole is approaching Tb, we will show later that the linear increase is replaced by

2kπ(T1 +T1) term.25 As a result, the generalized entropy at the scrambling phase increases

indefinitely while that of the late time phase asymptotes to the entropy of a black hole

with temperature Tb, we expect there is a phase transition (Page transition) between them

when Sgen,scrambling = Sgen,linear. This transition occurs at the Page time

uPage(Tb) ≈ 2

4 − Γ0

T1 − T0

kT1
+

1 − T 2
b

T 2
1

4 − Γ0
uHP + O(1) , (4.38)

which decreases with the increase of Tb for Tb < T1, reaches a minimum at Tb = T1 and

then increases for larger Tb. In contrast, the generalized entropy at the Page time

Sgen(uPage) ≈ φ̄r

4GN

2π

(

T0 +
2(T1 − T0)

3 − Tb
T1

+ · · ·
)

, (4.39)

increases with the increase of Tb. These linear behaviors are explicitly shown in the figure 7.

As a comparison, we represent the Page transition at linear region with Tb ≥ T1.

Lastly, we add that the expressions for the Page time in eq. (4.38) and the Page entropy

in eq. (4.39) diverge for Tb → 3T1. This is an artifact of approximating the coefficient Γeff

defined in eq. (4.25) by Γ0 =
(

1 − Tb
T1

)2
. However, if we include the subleading terms in

Γeff , we find that both of these quantities remain finite. We return to discuss this point in

section 4.1.4.

4.1.3 Approach equilibrium

For the equilibrium situation studied in [19], the QES sat outside of the horizon, and

resulting in part of the quantum extremal island being located outside the black hole. The

same behaviour was found in section 3 — see eq. (3.18) — where the bath temperature

24The analysis for the scrambling phase is similar to that in [20]. See the section 2.2.2 for more details.
25Technically, this is due to the approximations for log 1√

f ′(u)
for different time regions, see (4.11)

and (4.12).
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Figure 8. The numerical results from solving QES equations for the deviation of QES from

horizon, i.e.
(

x+
QES − t∞

)

, at a fixed time slice u = 40 (after Page transition) with different bath

temperatures Tb.

matches that of the black hole after it has absorbed the shockwave. Therefore in the

present case where the two temperatures do not match, we still expect that as the black

hole approaches its final equilibrium, i.e. in the late time phase with Teff ≈ Tb, the QES

will move outside of horizon at some critical temperature.26

Ultimately, we wish to track the position of the QES for a black hole as a function of

boundary time u starting with a temperature T1 and the bath at some fixed temperature

Tb. However, the analysis is simplified by asking how with fixed u and T1, the position

of the QES moves as we vary the bath temperature Tb. With this approach, we can find

different phases according to the position of QES as a function of the boundary time u

• Inside horizon: Tc1(u) < Tb < Tc2(u) ,

• On the horizon: Tb = Tc1(u) or Tb = Tc2(u) ,

• Outside horizon: Tb < Tc1(u) or Tb > Tc2(u) ,

where the critical temperatures Tc1(u) and Tc2(u) will be derived in the following — see

eq. (4.45).

If we extend the position (4.26) of the QES to the equilibrium case with Γeff = 0, we

find the QES is located on the horizon at x+ = t∞, which is not what we found in section 3.

Recalling the simplified solutions for QES (4.24), it is obvious that the non-negative term

on the right-hand side, i.e.
k

2

(

t∞ − x−
QES

)

Γeff(y−
QES) , (4.40)

implies we always have x+
QES ≥ t∞. The solution to this puzzle is simple: all the ap-

proximations used in the previous analysis for the QES are based on the assumptions in

26Similar behaviour was found in [28].
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eq. (4.18), which are invalid when Tb is extremely near T1. Technically speaking, it is

traced back to the fact that Γeff =
(

1 − Tb
Teff

)2
around this narrow region suppresses the

leading-order contribution. In order to find the critical temperature for the transition

of QES, we need to track the (some) sub-leading contributions which compete with the

leading-order terms when Γeff ∼ k. Although it is not easy to perform the integral I to

next order, we can determine these corrections by perturbing from the equilibrium case at

Tb = T1 because the critical temperature should satisfy T1 − Tc ∼
√

k. In other words, we

can approach the critical temperature from regular Tb and from T1 = Tb and look for all

necessary corrections.

Instead of directly solving the QES equations for the equilibrium case, we can approx-

imate the two equations (3.22) with x±
1 = t by

4πT1(t∞ − x−
QES)

(

1 +
x−

QES − t∞

t∞

)

≈ 2k
(

t∞ − x−
QES

)2

(

1

x+
QES − t

− 1

t∞ − x−
QES

)

,

−→ x+
QES − t ∼ k

2πT1

(

t∞ − x−
QES

)

,

(4.41)

and

4πT1

(

x+
QES − t∞

)

≈ 2k
(

x+
QES − x−

QES

)2

×
(

1

t∞ − x−
− x+

QES − t∞

(t∞ − x−
QES)2

− 1

t∞ − x−
+

t − t∞

(t∞ − x−
QES)2

)

< 0

≈ 2k
(

t − x+
QES

)

+ 4k
x+

QES − t∞

t∞ − x−
QES

(t − x+
QES)

−→ x+
QES − t∞ ∼ k

2πT1

(

t − x+
QES

)

−→ x+
QES ∼ t∞ − k

2
(t∞ − t) , (4.42)

where the leading-order contribution
(t∞−x−

QES
)2

t∞−x−

QES

(positive) vanishes and we have to keep

the next order correction t − x+
QES (negative). The fact that the sub-leading term has the

opposite sign to the (almost vanishing) leading term is what positions the QES outside the

horizon, in contrast with the cases when Tb is not perturbatively close to T1. From this

lesson, we also need to keep that correction for Γ ∼ k where the leading order is competing

with the sub-leading order. Adding this correction to (4.24), we need to correct the right

side of the second equation by

k

2

(

t∞ − x−
QES

)

Γ(y−
QES) −→ k

2

(

t∞ − x−
QES

)

Γ(y−
QES) + 2k

(

t − x+
QES

)

, (4.43)

and arrive at
2

x+
QES − t

(

x+
QES − t∞

)

≈ 1

2

(

1 − Tb

Teff(y−
QES)

)2

− k

πT1
, (4.44)

which now agrees with the results of section 3.

Comparing with the results of section 3, we can interpret the Γ term as a correction

from equilibrium results, which is reinforced by the fact that Γ approaches zero as the
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Figure 9. The time evolution of function Γeff(u) for various bath temperature.

system thermalizes. We can expect that further corrections we missed should be only at

the order O(Γ × k) ∼ k2. The critical temperatures of Tb for which the QES changes

position with respect to the event horizon are given by

Tc1(u) ≈
(

1 −
√

2k

πT1

)

Teff(y−
QES) ,

Tc2(u) ≈
(

1 +

√

2k

πT1

)

Teff(y−
QES) ,

(4.45)

which define a small region of temperatures where the QES is located outside the horizon.

Lastly, we mention that since Teff approaches Tb as the system thermalizes, even when

Tb is far from T1, the QES will eventually cross the event horizon for late enough times.

This is to be expected since, as we claimed before, for ku → ∞, the system behaves as the

equilibrium case studied in section 3. Indeed, when

ku & log





∣

∣

∣

∣

∣

1 − T 2
1

T 2
b

∣

∣

∣

∣

∣

√

πT1

8k



 , (4.46)

the QES is located outside the event horizon. By these times, the effective temperature

is very close to the bath temperature Teff ≈ Tb

(

1 ±
√

2k
πT1

)

, where the sign is determined

by whether Tb is greater or smaller than T1, and the correction parameter Γeff ≈ 2k
πT1

is

perturbatively small. For bath temperatures that are very close to T1,

|Tb − T1|
T1

.

√

2k

πT1
e

T1−T0
2T1 , (4.47)

the QES is already outside of the event horizon by the Page time in eq. (4.38).

4.1.4 Overheated black holes

In the previous subsections, we derived the leading order expressions of the position of QES

and discussed the importance of the subleading corrections when the bath temperature
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Figure 10. The Page transition with “critical” bath temperature at Tb = 3T1.

approaches T1 with Γ ∼ k ∼ 0 because x+
QES − t∞ changes its sign after the transition

point at Tc1 and Tc2 . Although we claim our previous approximations apply for arbitrary

temperatures, it is obvious that our solution (4.26) appears singular at Γ = 4 and further

it appears the sign of x+
QES − t∞ changes. It may appear that we have to consider next

order corrections at another “critical temperature”, i.e.

Tb = 3T1 , with Γ0 =

(

1 − Tb

T1

)2

= 4 . (4.48)

However, this is incorrect. The next order of correction can not help to solve this problem.

Aside from x+
QES, the solutions for y−

QES, x−
QES (see eqs. (4.26) and (4.28)) show more problems

because they are not well-defined when Γ ≥ 4. At linear order, the generalized entropy in

the late-time phase of the overheated black holes increases very rapidly, as can be seen by

the coefficient of the linear term (see (4.36))

kπT1

(

T 2
b

T 2
1

− 1

)

. (4.49)

This rate of increase in generalized entropy may appears larger than that in the scrambling

phase where the speed is dominated by linear term (see (4.37))

2kπ(T1 + Tb)u (ku ≪ 1) , or 4kπTbu (eku ≫ 1) , (4.50)

where one contribution of (2kπTbu) comes from the radiation from bath and the other

(2kπT1u and 2kπTbu) from the black hole (for which Teff ∼ T1 at early times and Teff ∼ Tb

for late times). One may wonder whether that means we can find a critical temperature Tc

above which a Page transition doesn’t occur because the generalized entropy in late-time

phase increases faster than that from the scrambling phase. The answer is again no.

All of the above questions or puzzles are actually due to the invalidity of the leading-

order contributions in the linear region for overheated black holes. Our complete solutions

are valid for arbitrary temperatures Tb outside of the critical region close to T1 discussed

in the previous section where subleading terms become important. One key ingredient to
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consider is that Γeff approaches zero with time, see the figure 9. For example, we always

have Γeff(Tb = 3T1) < 4 for u > 0. So there is no such new critical temperature at Tb = 3T1.

Another important fact is the delay of Page time with an increase of |Tb − T1|. Compared

to the Page time at Tb = T1, the Page time with Tb > # T1 is pushed to a later time that

guarantees we have Γeff (u = uPage) < 4. One might also wonder whether this time delay is

really physical and why we should have a restriction on the initial time for the solutions

at late-phase. Let’s remark this restriction is reminiscent of what we have seen in the

zero bath-temperature case and also the equilibrium case. More explicitly, the equilibrium

case also presents this similar restriction on time u, i.e. the inequality (3.25). The final

ingredient that prevents the late time solutions in eq. (4.26) from becoming singular is

the high bath-temperature itself because it creates a new and large coefficient T 2
b /T 2

1 that

enhances the next-order corrections to the linear region. For example, we can see those

effects from the expansion of Γeff , i.e.

Γeff(u) =

(

1 − Tb

Teff(u)

)2

≈
(

1 − Tb

T1

)2

− Tb(T1 − Tb)2(T1 + Tb)

T 4
1

ku + · · · , (4.51)

where the second order correction cannot be simply ignored for large Tb/T1. To verify

that there is no divergence, we show the Page transition using numerics for the “critical

temperature” Tb = 3T1 in figure 10. We also compare the position of the QES using our

approximation (4.26) with numerical results and they fit well as for the small Tb cases.

4.1.5 Page curve and thermalization

So far, we have focused on the evolution of the generalized entropy of the evaporating black

hole up to times comparable with the Page time. As we will now show, we can also use

the position of the QES in eq. (4.26), to find a full Page curve from u = 0 to the late

time regime with eku ≫ 1. The expected behavior of the generalized entropy Sgen,late at

late times is that the subleading corrections slow down the linear decrease (Tb < T1) or

increase (Tb > T1) of the generalized entropy, which will eventually approach a constant

Sgen,late(Tb) corresponding to the entropy of a black hole with temperature Tb, as derived in

eq. (3.27). However, we cannot simply substitute solution into the definition of generalized

entropy to derive its time evolution due to the absence of approximation for the middle

value vQES at late times.

Instead of considering the generalized entropy itself, we can take the time derivative

of Sgen,late

(

u, x+
QES, x−

QES

)

as defined in (4.13)

4GN

φ̄r

dSgen,late

du
= 2k



−πTb
cosh

(

πTb(y−
QES − u)

)

sinh
(

πTb(y−
QES − u)

) − 1

2
∂u
(

log f ′(u)
)

+
f ′(u)

t − x+
QES



 , (4.52)

where we have used the facts

∂Sgen,late

∂x+
QES

= 0 ,
∂Sgen,late

∂x−
QES

= 0 , (4.53)
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Figure 11. The schematic diagram for Page curve of black hole coupled with a thermal bath at

different temperatures. The red, black, and blue solid lines show the Page curve for a growing black

hole with Tb > T1, an external black hole at equilibrium status with Tb = T1, and an evaporating

black hole with Tb < T1, respectively. The corresponding dashed lines present the generalized

entropy at the late-time region, whose behavior is dominated by the linear term 4πTbku as discussed

around (4.50).

from the definition of QES. The time derivative in eq. (4.52) can be further simplified by

taking the limits

πTb coth
(

πTb(u − y−
QES)

)

≈ πTb ,

−1

2
∂u
(

log f ′(u)
)

≈ πTeff(u) + k
Teff

2 − T 2
b

4Teff
2 ,

f ′(u)

t − x+
QES

≈ − f ′(u)

t∞ − t

4 − Γeff

4
≈ πTeff(u)

Γeff − 4

2
,

(4.54)

to obtain
dSgen,late

du
≈ − φ̄r

4GN

(

1 − T 2
b

Teff
2(u)

)

kπTeff(u) . (4.55)

Taking a linear approximation of eq. (4.55) agrees with the results found in the previous

section — see eq. (4.36). Furthermore, since Teff approaches Tb for late times (eku ≫ 1) the

time derivative obviously decays to zero in this limit, implying the generalized entropy in

the late-time region is indeed approaching a constant. We can then rewrite our generalized

entropy at time u in late time phase in integral form

Sgen,late(u) ≈ Sgen(uPage) − φ̄r

4GN

∫ u

uPage

(

1 − T 2
b

Teff
2(ũ)

)

kπTeff(ũ)dũ , (4.56)
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where the start point is the generalized entropy at Page time Sgen(uPage) that has been

derived at (4.39) in the linear region. Fortunately, the above integral is fully analytical and

can be performed to yield

Sgen,late(u) ≈ Sgen(uPage) +
φ̄r

4GN

(2π Teff(u) − 2π Teff(uPage)) ,

2πTeff (uPage) ≈ 2πT1 − kπT1

(

1 − T 2
b

T 2
1

)

uPage .

(4.57)

The dominant term is nothing but the black hole entropy with temperature Teff , i.e.

Sgen,late(u) ∼ φ(u)

4GN

∼ 2πTeff(u)φ̄r

4GN

, (4.58)

and the extra contributions from the leading order of the bulk entropy are all encoded in the

value at Page time. Finally, combining with the generalized entropy at scrambling phase

Sgen,scrambling(u ≫ 1) ≈ φ̄r

4GN

(

2πT0 + 2k log

(

24πEs

ǫc

sinh π(Tbu)

πTb

1
√

f ′(u)

)

+ κ

)

, (4.59)

we found the expected Page curve by taking eq. (4.57) as the generalized entropy for

the late-time phase. After quench-phase, the generalized entropy is decided by that in the

scrambling phase and then jumps to the late-time phase after Page time. Finally, we remark

that the generalized entropy at scrambling phase Sgen,scrambling represents the fine-graining

entropy because its increase is dominated by the increase of entanglement entropy from

these thermal radiations emitting from the thermal bath and black hole itself. Whereas, the

generalized entropy at the late-time phase obviously denotes the coarse-graining entropy,

i.e. the area of the dynamical black hole, as shown in (4.58). As a summary, we show a

diagram to presents the information about Page curve derived in the last several subsections

in figure 11.

In this subsection, we focused on the QES and generalized entropy of the subsystem

consisting of QML, the complete thermal bath, and its purification. Similar to the analysis

in section 3.1 for T1 = Tb (see section 3.1 in [20] for the case with zero bath temperature), we

can consider a smaller subsystem by cutting a bath interval [0, σ1], corresponding to shifting

the anchor point x±
1 away from AdS2 boundary into the bath with choosing y±

1 = u ∓ σ1.

However, it is not easy to perturbatively solve the QES in general because our order

assumption (4.18) may break. Instead, we can begin with assuming another order condition

0 < x+
QES − t∞ < t∞ − x+

1 ≪ t∞ − x−
QES ≪ t∞ . (4.60)

Naively, the above condition requires that we do not put the anchor point near the shock

wave in order to guarantee x+
1 = f(u − σ1) ≈ t∞. In other words, we can generalize the

approximations in this subsection to the case with x1 near AdS2 boundary. In most places,

we only need to change u, t to u−σ1, x+
1 . Finally, one can obtain the corresponding QES as

x+
QES ≈ t∞ +

Γeff

4 − Γeff

(

t∞ − x+
1

)

,

x−
QES ≈ t∞ − 8πTeff

k(4 − Γeff)

(

t∞ − x+
1

)

,
(4.61)
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from which we can find the y−
QES is shifted in the way of

y−
QES ≈ u − σ1 − uHP . (4.62)

Further, it is consistent with our numerical results and also the zero bath temperature case

which is studied in section 3.1 of [20].

4.1.6 Simpler derivation of QES

In the above, we followed the analysis in [3, 20] to derive the position of QES as shown in

eq. (4.26). However, there is one undetermined middle value vQES appearing in many ex-

pressions due to integral over the dilaton profile (2.14). Comparing the results in eqs. (4.58)

and (4.33), one finds the identify

2πTeff(u) ∼ 2πTeff(y−
QES) ∼ 2πT1 +

k

2

(

1 − T 2
b

T 2
eff(vQES)

)

log

(

t∞ − x−
QES

t∞

)

, (4.63)

where corrections of order k are ignored. With the above approximation, we can simplify

our results, e.g., by using Teff(y−
QES) rather than vQES. To confirm our result, we can derive

the position of QES in a more direct way. It is based on the observation in [28, 63] that

the dilaton profile can be expressed without any integrals as27

φ(x±) = φr

(

2f ′(y−)

x+ − x−
+

f ′′(y−)

f ′(y−)

)

, (4.64)

when the components of the stress tensor, 〈Tx+x+〉 and 〈Tx+x−〉 vanish. Correspondingly,

we can rewrite the solution (4.15) from extremizing the generalized entropy as

0 =
1

φr

∂φ(x±
QES)

∂x+
QES

+ 2k

(

1

x+
QES − x+

1

− 1

x+
QES − x−

QES

)

,

0 =
1

φr

∂φ(x±
QES)

∂x−
QES

+ 2k







πTb

tanh
(

πTb(y−
QES−y−

1 )
)

1

f ′
(

y−
QES

) +
1

x+
QES−x−

QES

+
1

2

f ′′(y−
QES)

(

f ′(y−
QES)

)2






.

(4.65)

Noting the small k expansion leads to the approximation f ′(y) ≈ 2πTeff(y) (t∞ − f(y))

and our ordering condition (4.18), it is straightforward to find the derivatives of dilaton

are approximated by

1

φr

∂φ(x±)

∂x+
QES

≈ 4πTeff(y−
QES)

t∞ − x−
QES

,

1

φr

∂φ(x±)

∂x−
QES

≈ −4πTeff(y−
QES)

x+
QES − t∞

(t∞ − x−
QES)2

+
T ′

eff(y−
QES)

(t∞ − x−
QES)Teff(y−

QES)
,

(4.66)

27We thank Tim Hollowood and Prem Kumar for bringing this simple result to our attention. This

expression is also discussed in detail in section 3.9 in their recent paper [28].
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where we note the fact that T ′
eff(y) = ∂yTeff(y) = −k

T 2
eff

−T 2
b

2Teff
. Combining the above expres-

sions with the approximations for the bulk entropy at x±
1 = t, one can find the QES is

determined by

4πTeff(y−
QES)(x+

QES − t) ≈ 2k(t∞ − x−
QES) ,

4πTeff(y−
QES)(x+

QES − t∞) ≈ k

2
Γeff(y−

QES)(t∞ − x−
QES) .

(4.67)

which is exactly equivalent to our result in eq. (4.24) after substituting eq. (4.63). Finally,

we can find the position of QES as

x+
QES ≈ t∞ +

Γeff

4 − Γeff
(t∞ − t) ,

x−
QES ≈ t∞ − 8πTeff

k(4 − Γeff)
(t∞ − t) ,

(4.68)

which is the same as (4.26). One can also easily find an approximation for dilaton profile

φ(x±
QES) ≈ φr

(

2f ′(y−
QES)

t∞ − x−
− 2πTeff(y−

QES)

)

≈ 2πTeff(y−
QES)φr , (4.69)

where we ignored the derivative term T ′
eff(y−

QES) as being order k.

4.2 Information flow

In the previous section, we studied the generalized entropy of QML plus the whole bath and

its purification. (Of course, since the entire system is in a pure state, we could also think

of this more simply as the entropy of QMR.) In this section, we chop parts of the (purified)

bath and discuss which intervals, together with QML, are essential to having the ability to

recover the information in the interior of the black hole. In contrast to the semi-infinite

interval case studied in the previous section where the bulk entropy is described by the

two-point function on the UHP, the generalized entropy instead has one more endpoint,

i.e. x±
2 (or y±

2 = u ∓ σ2) as the right end-point of the finite bath interval which can be

used with QML to recover the black hole interior. According to the position of x±
2 after or

before the shock, we can divide the generalized entropy into two cases.

We begin by examining the case where the end-point x±
2 is located after the shock, i.e.

x+
2 > 0 or y+

2 = u − σ2 > 0. Similarly to the equilibrium case studied in section 3, we have

two competing channels. The N-channel (where the black hole interior is non-recoverable)

has the QES at the bifurcation point x±
QES′′ = ± 1

πT0
, and the generalized entropy for this

channel showing in figure 4c is given by

4GN

φ̄r

SN(y+
2 ≥ 0) ≡ 4GN

φ̄r

(

Sgen
QES′′ + S1−2

)

= 2πT0 + 2k log 2 + 2k log





1

ǫ2

sinh
(

πTb(y−
2 − y−

1 )
)

πTb

x+
1 − x+

2
√

f ′(y+
1 )f ′(y+

2 )



 ,

(4.70)
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where φQES′′ = 2πT0φ̄r. When this channel is preferred, the entanglement wedge of the

bath interval plus QML does not contain the interior of the black hole. The R-channel

(where the interior is recoverable) instead has the QES at the same location as the late-

time phase QES. Correspondingly, the generalized entropy for this R-channel corresponding

to figure 4c reads

4GN

φ̄r

SR(y+
2 ≥ 0) ≡ 4GN

φ̄r

(

Sgen
QES−1 + S2

)

=
φQES

φ̄r

+ 2k log





2

ǫ

sinh
(

πTb(y−
QES − y−

1 )
)

πTb

x+
1 − x+

QES

x+
QES − x−

QES

√

f ′(y−
QES)

f ′(y+
1 )





+ 2k log





12πEs

cǫ

sinh
(

πTby−
2

)

πTb

x+
2

√

f ′(y+
2 )



 . (4.71)

Evidently, when the R-channel is preferred, the entanglement wedge of the corresponding

bath region plus the QML system includes the interior of the black hole. To find the

transition where the bath interval (plus QML) is able to reconstruct the black hole interior,

we require i.e.
4GN

φ̄r

(SN − SR) ≥ 0 , (4.72)

or equivalently

2k log





c

6πEsǫ

(x+
1 − x+

2 ) sinh
(

πTb(y−
2 − y−

1 )
)

x+
2

√

f ′(y+
1 ) sinh(πTby−

2 )



 ≥ 4GN

φ̄r

Sgen,late(σ1) − 2πT0 , (4.73)

where we rewrite the left side as the simple part because Sgen,late with σ1 = 0 has been

discussed in the last section. We will focus on analyzing the left-hand side of eq. (4.73) in

the following calculations.

When the right end-point y+
2 ≤ 0 is before the shock, we have two similar competing

channels for the generalized entropy

4GN

φ̄r

SN(y+
2 ≤ 0)

≡ 4GN

φ̄r

(

Sgen
QES′′ + S1−2

)

= 2πT0 + 2k log 2 + 2k log





12πEs

cǫ2

x+
1 sinh

(

πTb(−y+
2 )
)

sinh
(

πTb(y−
2 − y−

1 )
)

(πTb)2
√

f ′(y+
1 )



 ,

(4.74)

and also

4GN

φ̄r

SR(y+
2 ≤ 0) ≡ 4GN

φ̄r

(

Sgen
QES−1 + S2

)

. (4.75)

with

4GN

φ̄r

S2 = 2k log





1

ǫ

sinh
(

πTb(y−
2 − y+

2 )
)

πTb



 . (4.76)
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y2(u)

Δy2

Figure 12. The yellow lines show the finite bath interval with Tb ≤ Tp at a fixed time slice u

which has the ability to reconstruct the black hole interior with only including QML but not the

purifier. The blue shadow region presents the expected region where we can put the endpoint of the

finite bath interval, i.e. y2, and make the subsystem recover the information of black hole. Left: the

simple shock wave as a line. Right: the regularized shock wave as a small region indicated by the

pink shadow. The yellow curve presents the endpoint y+
2 of the minimal bath interval approaches

a constant ∆y2 derived in (4.102) with the evolution of time.

The condition for the bath interval to have ability to reconstruct the interior of black hole

when the right end-point is located before the shock is then given by

2k log







24πEs

cǫ

x+
1 sinh

(

πTb(−y+
2 )
)

sinh
(

πTb(y−
2 − y−

1 )
)

√

f ′(y+
1 )πTb sinh

(

πTb(y−
2 − y+

2 )
)






≥ 4GN

φ̄r

Sgen,late(σ1) − 2πT0 .

(4.77)

Lastly, we remark that the N-channel and R-channel show the same divergence 2k log
(

1
ǫ2

)

,

so the AdS cutoff ǫ is exactly canceled in the comparison and does not play an important

role in the following calculations.

4.2.1 Regularization of shock wave

Before we discuss the condition for the finite bath-interval plus QML (as shown in the

figure 4c) to reconstruct the black hole interior, we can roughly estimate the region for y2

that makes the above equalities hold by looking at the divergence structure of SN −SR with

endpoint y2 at special points. We will encounter an apparent paradox that will require a

careful regularization for the region of the shock wave with the help of parameter Es/c.

Explicitly, we can take the endpoint y2 to the IR cut-off, i.e. the limit σ2 → ∞. It not

hard to find the two competing channels show similar divergence

4GN

φ̄r

SN(y+
2 ≤ 0) −→ 4kπTbσ2 + 4k log

(

1

ǫπTb

)

,

4GN

φ̄r

SR(y+
2 ≤ 0) −→ 4kπTbσ2 + 4k log

(

1

ǫπTb

)

,

(4.78)

for thermal bath with nonzero Tb. However, with the bath at zero temperature, the
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divergence takes a different form in these two channels

4GN

φ̄r

SN(y+
2 ≤ 0) −→ 4k log

(

σ2

ǫ

)

,

4GN

φ̄r

SR(y+
2 ≤ 0) −→ 2k log

(

2σ2

ǫ

)

+ 2k log

(

ℓ

ǫ

)

,

(4.79)

where ℓ is some finite length-scale. This difference in the divergence structure makes the

R-channel preferred when y2 is around the IR cut-off in the bath and guarantees the

purification of the thermal bath is not necessary for the interior reconstruction.

Now let us consider the limit of taking y2 near the shock wave at σshock = u, i.e. y+ = 0.

We have to consider approaching the shock from the region before the shock or after the

shock. Under the limit y+
2 → 0−, one can find

4GN

φ̄r

SN(y+
2 ≤ 0) −→ 2k log

(

−y+
2

πTbǫ2

)

,

4GN

φ̄r

SR(y+
2 ≤ 0) −→ 2k log

(

sinh (2πTbσ2)

(πTbǫ)2

)

,

(4.80)

which implies the N-channel is preferred (log(−y+
2 ) → −∞)28 when y+

2 < 0 is located in

the region around the shock. On the other hand, the limit y+
2 → 0+ (or x+

2 → 0+) leads

us to

4GN

φ̄r

SN(y+
2 ≥ 0) −→ 2k log

(

ℓ̄2

ǫ2

)

,

4GN

φ̄r

SR(y+
2 ≥ 0) −→ 2k log

(

x+
2

ǫ

)

+ 2k log

(

1

πTbǫ

)

,

(4.81)

where ℓ̄ is some finite length-scale.For the zero bath temperature case, the divergence

structure is the same.29 From the simple lesson coming from these divergences, it is obvious

that the R-channel is preferred when y+
2 is located in the region near the shock but after

the shock wave. This region for y2 which allows the bath interval plus QML to recover the

interior of the black hole is shown in the left diagram in figure 12. This conclusion meets

an obvious paradox because we can contain a larger part of the bath by moving the right

end-point of the interval from the after-shock region to the pre-shock region. The above

analysis implies that adding more bath interval surprisingly makes one lose the ability to

recover the black hole interior.

However, the above paradox appears just because we consider the shock-wave as a line

located at σshock = u. More precisely, the generalized entropy for the R and N-channel

around the shock wave is disconnected. In order to solve this problem, we have to regularize

the region of the shock wave and simultaneously make the generalized entropy a continuous

28Taken at face value, the generalized entropy in the N-channel becomes negative for sufficiently small

|y+
2 |. This is another hint that the shockwave needs to be regularized.
29The 1

πTb
in the last logarithm is replaced by some finite length scale ℓ̃ when Tb = 0.
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function. In other words, we need to consider the entropy from one-point and two-point

functions

before-shock y+
2 < 0 after shock y+

2 > 0

S2 log

(

1
ǫ

sinh(πTb(y−

2 −y+
2 ))

πTb

)

log

(

12πEs
cǫ

sinh(πTby−

2 )
πTb

x+
2

√

f ′(y+
2 )

)

S12 log

(

12πEs
cǫ2

x+
1 sinh(πTb(−y+

2 )) sinh(πTb(y−

2 −y−

1 ))
(πTb)2

√

f ′(y+
1 )

)

log

(

1
ǫ2

sinh(πTb(y−

2 −y−

1 ))
πTb

x+
1 −x+

2
√

f ′(y+
1 )f ′(y+

2 )

)

The identifications

S2,before(y
+
2 → −0) = S2,after(y

+
2 → +0) ,

S12,before(y
+
2 → −0) = S12,after(y

+
2 → +0) ,

(4.82)

fixes the two boundaries of shock-wave region as

1 =
12πEs

c

x+
2

f ′(y+
2 )

, y+
2 → +0

12πEs

c

sinh(−πTby+
2 )

πTb
= 1 , y+

2 → −0 .

(4.83)

Recalling the property of f(u) such as f ′(0) = 1, x = f(y) ∼ 0 ∼ y, we can take the energy

of shock wave Es as a regulator and regularize the shock wave as a small region defined by

y+
shock ≡

[

− c

12πEs
,

c

12πEs

]

=

[

− k

(T 2
1 − T 2

0 )π2
,

k

(T 2
1 − T 2

0 )π2

]

, (4.84)

which is independent of the temperature of bath as expected.

After identifying this small region as the shock-wave, we can take out this part from the

bath interval and then make the generalized entropy connected when we move the endpoint

y2 from the after-shock region to the pre-shock region. The connectivity guarantees that

we do not have the paradox about the ability of bath interval to recover the information

of the black hole interior anymore. More explicitly, we will discuss this problem in detail

in the next subsections.

4.2.2 Need for the purification

The conditions for a finite bath interval plus QML in a zero temperature bath to reconstruct

the interior of the black hole were discussed in [20]. Moreover, we found in section 3 that

the equilibrium case with Tb = T1, even the whole semi-infinite bath interval with QML

does not contain the appropriate information to reconstruct the interior of the black hole.

Rather we had to also include its purification (or at least a portion of the latter). In

the previous section, we have seen the difference in divergence structure between a non-

zero temperature bath and that with zero temperature when y2 approaches the IR cut-off

between the bath and its purification. The smaller divergence of the leading term (4.78)

in a zero-temperature bath guarantees we can use the whole bath interval y2 → ∞ with
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QML to reconstruct the interior of the black hole. Obviously, this is expected because

this subsystem as one part of the bipartite pure system will be able to reconstruct its

complementary part, i.e. the black hole interior, after Page transition. A natural question

is whether all bath intervals with non-zero temperature Tb require a part of the purification

in order to reconstruct the black hole interior. In this subsection, we show that only the

bath interval with a temperature higher than the critical temperature Tp in eq. (4.91)

requires its purification.

To this end, we consider large bath intervals by putting the left end-point after the

shock and the right end-point before the shock and focus on the inequality in eq. (4.77).

The left-hand side of the inequality monotonically increases with y+
1 = u − σ1 (u ≥ uPage)

and the right-hand side decreases, so the weakest condition for that inequality is choosing

σ1 = 0, i.e. anchoring the initial point of bath interval at AdS boundary, which satisfies

our physical expectation. Let’s move on to the condition for y+
2 by considering figure 4c

and the corresponding conditions in eq. (4.77), i.e.

2k log





24πEs

cǫ

x+
1 sinh

(

πTb(−y+
2 )
)

sinh (πTbσ2)
√

f ′(y+
1 )πTb sinh (2πTbσ2)



 ≥ 4GN

φ̄r

Sgen,late − 2πT0 , (4.85)

with σ1 = 0. Again, it is straightforward to show

∂σ2





sinh
(

πTb(−y+
2 )
)

sinh (πTbσ2)

πTb sinh (2πTbσ2)



 =
1

2

cosh(πTbu)

cosh2(πTbσ2)
> 0 , (4.86)

which implies the maximum of the left-hand side in above inequality is the value at the

limit σ2 → ∞. As expected, the weakest condition for the bath interval plus QML to have

enough information about the black hole interior is if we consider the entirety of the bath

with σ1 = 0 and σ2 → ∞. The condition to recover the interior of the black hole is then

given by

Max = 2k log

(

12Es

cǫTb

f(u)e−πTbu

√

f ′(u)

)

≥ 4GN

φ̄r

Sgen,late − 2πT0 . (4.87)

It is useful to notice that the right-hand side decreases with time u and the left-hand side

increases for Tb < T1 and decreases for Tb > T1.30 As a result, the inequality cannot hold

for Tb > T1 because the maximum of the left-hand side is bounded by 2k log
(

12Est∞

cǫTb

)

.

This implies that in the setup where the bath heats up the black hole (Tb > T1), the bath

and QML systems are never able to reconstruct the black hole interior. We now focus on

the evaporating black hole model (Tb < T1) and take the late-time approximation (4.12)

at eku ≫ 1 for which the l.h.s. gives a constant

2k log

(

12Est∞

cǫTb

)

− k log (4πTbt∞) + 4π

(

T1 − Tb − Tb log

(

T1 + Tb

2Tb

))

. (4.88)

30It is easy to show that from the approximation (4.11) and (4.12) because the dominated term for

k log
(

1
f ′(u)

)

involve from 2kπT1u to 2kπTbu.
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Correspondingly, the r.h.s. reaches its minimum at the same late-time limit

4GN

φ̄r

Sgen,late − 2πT0 ≈ 2π (Tb − T0) + 2k log

(

1

πTbǫ

)

. (4.89)

The inequality from generalized entropy in eq. (4.87) then yields the condition for the

temperature of bath

Tb .
2T1 + T0

3
− 2Tb

3
log

(

T1 + Tb

2Tb

)

+
k

3π
log

(

6Es

cT1

√

T1

Tb

)

. (4.90)

Finally, we can find the critical temperature of bath is

Tp ≈ T1 − 1

2
(T1 − T0) +

k

2π
log

(

6Es

cT1

)

, (4.91)

which defines the lowest bath temperature for which the purification of the bath is needed

to reconstruct the interior of the black hole. It is interesting to note that the critical

temperature is also near T1 due to the ansatz T0 ∼ T1. However, it is different from

the critical temperatures Tc1 and Tc2 in eq. (4.45) because the former depends on T0, the

temperature of original black hole, while Tc1 and Tc2 are independent of T0.

To summarize, a bath with a temperature Tb < Tp admits finite bath intervals plus

QML to reconstruct the interior of the black hole. When the temperature of the bath

increases beyond Tp, even the whole semi-infinite bath interval plus QML does not have

enough information for interior reconstruction if part of the purification is not included.

Lastly, we can also change the left end-point σ1 rather than taking it to the AdS boundary

(σ1 → 0) and do a similar late-time approximation to obtain the constrains on bath tem-

perature. As expected, we find a stronger condition and get a smaller critical temperature

Tp(σ1) ≈ 1

2
(T1 + T0) − 2kT1σ1 +

k

2π
log

(

6Es

cT1

)

, with kσ1 ≪ 1 , (4.92)

for the reconstruction of information in black hole. We should also note the chopping off

too much of the bath interval by taking the initial point from σ1 = 0 to a finite one also

may make the thermal bath interval plus QML lose essential information to reconstruct

the black hole interior if σ1 is too large. The size of the bath interval we can ignore is also

restricted by

σ1 .
1

4kTb

(

2T1 + T0 − 3Tb − Tb log

(

T1 + Tb

2Tb

))

+
1

4πTb
log

(

6Es

cT1

√

T1

Tb

)

, (4.93)

where we have assumed the bath temperature is not too small.

4.2.3 Finite Bath interval

In this subsection, we will assume the bath temperature is lower than the critical Tp and

discuss how much bath interval needed in order to reconstruct the black hole interior and

in particular, what is the closest we can bring the right end-point σ2 to the AdS boundary

and still reconstruct the black hole interior. The two competing channels are described in
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figure 4c.This analysis can be understood as an extension of the late-time protocol of [20] to

the thermal bath model. Let’s first assume we only need the bath interval after the shock

to which the radiation of black hole escapes. Taking the time slice at u after the Page time

and putting the left end-point of the bath interval at the AdS boundary (σ1 = 0), the bath

interval we are looking for satisfies eq. (4.73)

2k log

(

c

6πEsǫ

(t − x+
2 ) sinh (πTbσ2)

x+
2

√

f ′(u) sinh(πTb(u + σ2))

)

≥ 4GN

φ̄r

Sgen,late − 2πT0 , (4.94)

which imposes a constrain on the size of the bath interval, i.e. the value of σ2(u). Assuming

we can have πT1y+
2 ≫ 1 (or f(y+

2 ) ≈ t∞) and still stay at the linear-region with ku < 1,

we can recall the approximation again

2k log

(

sinh (πTbσ2)

sinh(πTb(u + σ2))

)

≈ −2kπTbu

2k log

(

t − x+
2

x+
2

)

≈ log

(

t∞ − f(y+
2 )

t∞

)

∼ −4kπT1(u − σ2) ,

2k log

(

1
√

f ′(u)

)

≈ 2kπT1u − k log (4πT1t∞) ,

4GN

φ̄r

Sgen,late ≈ 2πT1 − kπT1(u − uHP)

(

1 − T 2
b

T 2
1

)

+ O(k log(· · · )) .

(4.95)

Then the above inequality leads us to

σ2(u) &
T1 − T0

2kT1
+

u

4

(

1 +
Tb

T1

)2

+
uHP

4

(

1 − T 2
b

T 2
1

)

, (4.96)

or equivalently

y+
2 (u) ≡ u − σ2 .

u

4

(

3 − 2
Tb

T1
− T 2

b

T 2
1

)

− T1 − T0

2kT1
− uHP

4

(

1 − T 2
b

T 2
1

)

, (4.97)

which constrains the size of the bath interval able to reconstruct the black hole interior.

By setting Tb = 0, we recover the results reported in [20] (see eq. (3.61) and eq. (3.62)).

It is also clear that the thermal bath with Tb & T1 obviously breaks the that inequality,

implying we cannot find a bath interval with only QML able to recover the information in

the black hole. This conclusion is consistent with that found in the previous subsection.

However, we also want to stress the validity of the condition (4.97). One can find the

critical value around the Page time is not physical, i.e.

y+
2

∣

∣

uPage
≈ T1 − T0

2kT1







3 − 2Tb
T1

− T 2
b

T 2
1

3 + 2Tb
T1

− T 2
b

T 2
1

− 1






. 0 . (4.98)

This invalidity implies the condition (4.97) is only valid for time slices after the Page time

with exp (πT1(u − uPage)) ≫ 1. To be precise, the reason is we can only find a small
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Figure 13. Left: the final position of the null surface y+
2 , i.e. (4.102) as the endpoint of bath

interval with the ability to reconstruct the information of the interior of black hole. Right: the

bath temperature dependence of the minimal length k∆σturn, i.e. (4.111), that is necessary for the

reconstruction of the interior of black hole.

y+
2 ≪ 1

πT1
instead of y+

2 ≫ 1
πT1

as a solution around Page time. However, the value is so

small that it is actually located in the shock-wave region. As a result, it means we cannot

find a bath interval able to reconstruct the black hole interior with only the region after

the shock wave at the Page time. One can look at the eq. (3.59) in [20] as an example of

this. The calculation is similar and we do not repeat it here because the value of small y+
2

in that region is not really physical after the regularization of the shock-wave. After the

Page time, the critical y+
2 will exponentially increase and move quickly to the linear region

as shown in eq. (4.97). The allowed region for the endpoint of y+
2 is shown in the right plot

in figure 12.

Taking the lesson from the zero-temperature case, we can expect that the linear growth

of y+
2 is suppressed with the time evolution and finally y+

2 (u) will approach a null surface.

In order to show that explicitly, we should take the late-time (eku ≫ 1) approximation in

eq. (4.12) and use the following approximations

2k log

(

t − x+
2

x+
2

)

≈ log

(

t∞ − f(y+
2 )

t∞

)

∼ −4kπTby+
2 + 8π(Tb − T1)

(

1 − e−ky+
2 /2
)

,

4GN

φ̄r

Sgen,late

(

eku ≫ 1
)

≈ 4GN

φ̄r

Sgen,late(Tb) ≈ 2πTb + 2k log

(

1

πTbǫ

)

, (4.99)

where we also keep the second-order contribution e−ky+
2 /2 because the condition eky+

2 ≫ 1

is not guaranteed. Combining all these approximations, the condition (4.94) becomes

kTby+
2 + 2 (Tb − T1) e−ky+

2 /2 . −
(

T1 − T0 + Tb

2
+ Tb log

(

T1 + Tb

2Tb

))

− k

2π
log

(

6Es

cT1

√

Teff

T1

)

. (4.100)

When Tb = 0, we get the final null surface for critical y+
2 as

y+
2

(

eku ≫ 1
)

∣

∣

Tb=0
≈ 2

k
log

(

4T1

2T1 − T0

)

, (4.101)
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Figure 14. The yellow shadow denotes the minimal bath region including a full half-line as the

purification of thermal bath for reconstructing the interior of the black hole. The yellow lines

represent the necessary bath region at a fixed time slice after Page transition. Left: the equilibrium

case with Tb = T1. Right: non-equilibrium case where k δσ(u) increases with the time evolution

and approaches a constant ∆σturn defined in eq. (4.111).

which agrees with the result in [20]. For non-zero Tb, the analytical solution is written as

y+
2

(

eku ≫ 1
)

≈
X + 2Tb W

(

e
−

X
2Tb (T1−Tb)

kTb

)

kTb
= ∆y2 , (4.102)

where X represents the right side in (4.100) and W (z) is the Lambert W-function or

product logarithm defined by z = W (z)eW (z). As a summary, the time dependence of

y+
2 (u) is shown in the right plot in figure 12. It is clear that the constant ∆y2 indicates

how much early radiation is not necessary in the reconstruction of black hole interior.

Lastly, we show the numerical plot for position of the final null surface as a function of

Tb/T1 in figure 13. As expected, it decays with the increase of Tb and stops at a point

extremely near T1 because the value at Tb = T1, i.e. −T1−T0
T1

is smaller than zero.

4.2.4 The role of purification

In the previous subsection, we focused on a finite bath interval with the bath temperature

lower than the critical temperature Tp derived in eq. (4.91) because we wanted to omit

the purification of the bath itself. To reconstruct the black hole interior at higher bath

temperatures, i.e. to observe a Page transition, we need to include (a portion of) the pu-

rification. For simplicity, we take one endpoint of the finite bath interval on AdS boundary

with σ1 = 0 and ask how large the bath interval [0, σ2] needs to be to reconstruct the black

hole interior. Concretely, we consider the purified bath interval with temperature Tb > 0

and discuss the condition for QML, a finite bath interval [0, σ2] (where partial Hawking

radiations reside) and the full purification to reconstruct the interior of the black hole.31

31The Tb → 0 limit has some subtleties here. The “purification” of the bath with zero temperature is a

pure state coupled to the bath system by direct product. Thus, the purification of the bath does not help

with interior reconstruction because it is a fully unentangled region and the corresponding R-channel is

defined by SR = Sgen
QES−1 + S2 + S 1

2
-line, which cannot be derived from (4.103) by taking the limit Tb → 0.

The reason is that, for Tb = 0, the holographic (3D) spacetime for bath interval and its purification is
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Similar to the equilibrium case shown in eq. (3.28), the two competing channels showing

to figure 4b are defined as

SR = Sgen
QES−1 + S2−IR , SN = Sgen

QES′′ + S1−2 + S 1
2

-line . (4.103)

where the condition for reconstruction is decided by SN −SR ≥ 0. Most pieces in the above

two equations have been discussed in the last subsection (see eqs. (4.70) and (4.71)) in

details except for

S 1
2

-line =
c

6
log

(

sinh (2πTbσIR)

πTbǫ

)

≈ c

6

(

2πTbσIR + log

(

1

2πǫTb

))

,

S2−IR =
c

6
log





12πEs

c (ǫπTb)2

x+
2 sinh

(

πTby+
IR

)

sinh
(

πTb(y−
2 − y−

IR)
)

√

f ′(y+
2 )



 .

(4.104)

In the limit σIR → ∞, we can rewrite that extra term as

S2−IR ≈ c

6



2πTbσIR + log

(

1

2πǫTb

)

− 2πTby−
2 + log





12πEs

cǫ

x+
2 sinh

(

πTby−
2

)

πTb

√

f ′(y+
2 )







 ,

(4.105)

where we pick up a time slice after the Page transition, the first two terms denoting the

thermal entropy of a half-line can compensate the same divergence appearing in S 1
2

-line and

the last term is the same as the one-point function contribution S2 appearing in the case

without purification, i.e. eq. (4.71). Physically, we can explain the third term 2πTby−
2 as

the entanglement from the thermal radiation generated by the thermal bath. That extra

term is traced back to the inclusion of the purification and the negative sign reflects the

fact that the bath interval is entangled with its purification. As a result, we can expect

the introduction of purification can help fulfill the condition for reconstruction as we will

show below.

First, let’s work on the simple linear region with ku ≪ 1. Adding the new contribu-

tions (4.104) in eq. (4.94) and taking the linear approximations in eq. (4.95) again, the

condition SN − SR ≥ 0 can be rewritten as a restriction on the length of the finite bath

interval ∆σ = σ2, i.e.

σ2(u) &
T1 − T0

2k (T1 + Tb)
+

T1

4(T1 + Tb)

(

u

(

1 − Tb

T1

)2

+ uHP

(

1 − T 2
b

T 2
1

))

+
log

(

6Es
cT1

)

2π(T1 + Tb)
+ · · · , (4.106)

where we also have assumed πT1y+
2 ≫ 1 (or f(y+

2 ) ≈ t∞). Comparing to the finite

bath interval without purification, i.e. eq. (4.96), we see that introducing the purification

decreases the minimal length of the necessary bath interval for reconstructing the interior

defined by two separated regions rather than a smooth and connected spacetime, as in the Tb 6= 0 case,

where the entanglement between two regions glues the spacetime. However, note that the naive Tb → 0

limit would leave one IR divergent term since SN − SR ∼ c
6

log l̄
σIR

.
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of the black hole, and also slows down the speed of its linear increase with time. More

importantly, it also makes the subsystem consisting of QML, a finite bath interval [0, σ2]

(with only a fraction of the Hawking radiation) and the purification have the ability to

recover the information of the black hole even when Tb > Tp. As the unreliability of

the linear approximations in the overheated case, we should remark that we also need

to consider some corrections for the above approximate σ2(u) if the temperature of the

thermal bath is too high, i.e. Tb & 3T1.

As one might expect, for much larger times, the linear increase of σ2(u) breaks down.

Since the black hole eventually equilibrates with the bath, we expect qualitatively similar

behavior to the equilibrium case of section 3, that is, we expect ∆σ = σ2 to approach half

the (equilibrium) Page time as in eq. (3.32). To derive this explicitly, we focus on the time

derivative of the critical length denoted by ∂uσ∗
2(u) directly. Noting the time evolution of

the generalized entropy at late-time phase (after Page transition) has been shown in (4.55),

we explicitly start from the approximation of SR − SN = 0 by

2k

(

2πTby−
2 + log

(

c

6πEsǫ

(f(u) − x+
2 ) sinh (πTbσ2)

x+
2

√

f ′(u) sinh(πTb(u + σ2))

))

≈ 4GN

φ̄r

Sgen,late − 2πT0 ,

(4.107)

and obtain the differential equation

4
(

Teff(y+
2 ) + Tb

)

∂uσ∗
2 ≈ −Teff(u)

(

1 − T 2
b

T 2
eff(u)

)

− 2Tb − 2Teff(u) + 4Teff(y+
2 ) + O(k)

≈ Teff(u)

(

1 − Tb

Teff(u)

)2

, (4.108)

where we denoted the solution of SR −SN = 0 as σ∗
2(u) and mainly used the approximation

f ′(u) ∼ 2πTeff(u) (t∞ − f(u)) and associated approximations derived in eqs. (4.10). To

double check, we can focus on the linear region with Teff ≈ T1 again and obtain

∂uσ∗
2(u) ≈ T1

4 (T1 + Tb)

(

1 − Tb

T1

)2

, (4.109)

which agrees with eq. (4.106) as expected. On the other hand, it is also obvious that the

time derivative at late time region approaches zero, i.e.

∂uσ∗
2

∣

∣

eku≫1
−→ 0 , (4.110)

because of the simple approximation Teff

(

eku ≫ 1
)

≈ Tb for the effective temperature. In

other words, the evolution towards equilibrium pushes the minimal length ∆σ2 to be a

constant, which exactly matches what was shown in the equilibrium case in eq. (3.32). As

a result, we can find the minimal length ∆σ2 with purification should approach a constant

whereas the lightcone coordinate y+
2 = u−σ2 reaches a constant as indicated in eq. (4.102)

if we do not include the purification. We sketch a plot to illustrate the time dependence

of ∆σ2(u) when the purification is included in figure 14. More explicitly, we apply the
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late-time approximation with eku ≫ 1 on SN − SR ≥ 0 and derive the constraint

σ2

(

eku ≫ 1
)

&
1

4kTb

(

2T1 − Tb − T0 − 2Tb log

(

T1 + Tb

2Tb

))

+
log

(

6Es
cT1

√

Tb
T1

)

4πTb
≡ ∆σturn .

(4.111)

As expected, it returns to the result shown in eq. (3.32) for the equilibrium case by setting

Tb = T1. As a final remark, we point out that the minimum of the dimensionless length scale

k∆σturn (at leading-order) is realized at the near-equilibrium case with Tb = T1

(

2T1
T0

− 1
)

.

A simple numerical plot is also shown in the right figure 13. The interesting feature we

want to highlight is that when the black hole is evaporating, we need more bath interval

to recover the interior of the black hole, while a thermalized black hole requires less bath

interval in which less of the outgoing Hawking radiation is located.

In the above, we have seen how including the entire purification of the thermal bath

allows for the reconstruction of the black hole interior. The next natural question is how

much of purifier is really necessary for this reconstruction, as was considered in section 3.3

for the equilibrium case. In order to investigate that question, we consider a subsystem

with QML, a bath interval [0, σ2] and a finite interval [0, σ̃3] in the purification (on the time

slice ũ3). As shown in figure 4d, the generalized entropy for the two competing channels

are defined as

SR = Sgen
QES−1 + S2−3 , SN = Sgen

QES′′ + S1−2 + S3 , (4.112)

where the three endpoints are taken as a point on the AdS boundary with y±
1 = u (i.e.

σ1 = 0), the bath point y±
2 = u∓σ2 in the region II and the point with ỹ±

3 = ũ3 ± σ̃3 in the

purification region, respectively. As before, the two terms Sgen
QES−1, Sgen

QES′′ + S1−2 are given

by eqs. (4.71) and (4.70), respectively. We only need to consider two new ingredients, i.e.

S3 =
c

6
log

(

sinh (2πTbσ̃3)

πTbǫ

)

,

S2−3 =
c

6
log





12πEs

c (ǫπTb)2

x+
2 cosh

(

πTbỹ+
3

)

cosh
(

πTb(y−
2 + ỹ−

3 )
)

√

f ′(y+
2 )



 .

(4.113)

which can be derived from the counterparts with point y±
3 in the region IV by the map

πTbỹ±
3 = iπ

2 − πTby±
3 . First of all, it is easy to find that we can retrieve the results in the

last subsection (see (4.104)) where we include the full purification region, by pushing the

third point σ̃3 to the IR cut-off surface with σ̃3 → σIR ∼ +∞ (i.e. approaching the null

surface in the spacetime of bath’s purifier). More explicitly, we can define the difference

due to the finite σ̃3, i.e.

(SN − SR) − (SN − SR)
∣

∣

σ̃3→∞
=

c

6
log





sinh (2πTbσ̃3)

2eπTby−

2 cosh
(

πTb(ỹ+
3 )
)

cosh(πTb(y−
2 + ỹ−

3 ))



 ,

(4.114)

as ∆SNR-NR. Equipped with the above difference for the two configurations in figures 4c

and 4d , we can discuss the result of cutting part of the purification in the reconstruc-

tion. Noting that the dependence on σ̃3 only appears on ∆SNR-NR, one can easily find the
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derivative of SN − SR satisfies

∂ (SN − SR)

∂σ̃3
=

∂ (∆SNR-NR)

∂σ̃3

=
c

6

(

2 coth(2πTbσ̃3) − tanh
(

πTb(ỹ+
3 )
)

+ tanh
(

πTb(y−
2 + ỹ−

3 )
))

≥ 0 ,

(4.115)

due to the simple facts that coth x ≥ 1 for x ≥ 0 and | tanh x| ≤ 1. The above positive

derivative shows that SN − SR monotonically increases with the increase of σ2, implying

that it is easier to reconstruct the black hole interior by including a larger interval in the

bath. We can then rewrite the condition for this subsystem to reconstruct the black hole

interior as

SN − SR = (SN − SR)
∣

∣

σ̃3→∞
+ ∆SNR-NR ≥ 0 , (4.116)

where (SN − SR)
∣

∣

σ̃3→∞
is positive if and if the condition in eq. (4.96) or (4.111) is satisfied.

Because the maximum of ∆SNR-NR is defined as σ̃3 → ∞ and is zero, we always have

∆SNR-NR < 0 for a finite σ̃3, indicating that we need to include more bath interval than the

critical length σ∗
2(u) (derived in eq. (4.96) or (4.111)) in order to make the channel with a

finite portion of the purification recoverable. Recalling the σ2-dependence of (4.107), we

can find the following decomposition

SN − SR ≈ c

6

(

2πTby−
2 + log

(

c

6πEsǫ

(f(u) − x+
2 ) sinh (πTbσ2)

x+
2

√

f ′(u) sinh(πTb(u + σ2))

))

+ ∆SNR-NR + · · · ,

(4.117)

where we ignored the extra terms without dependence on σ2, σ̃3. Then we can simply

take the results in the above subsection to derive the necessary conditions for σ2 and σ̃3.

However, it is more convenient to define the length of the finite bath interval beyond the

critical value as32

δσ2 = σ2 − σ∗
2(u) , (4.118)

which helps us to show the effect of including more bath interval and cutting part of the

bath purifier. It is straightforward to rewrite the necessary condition (4.116) to support

the recoverable channel for the linear region (ku ≪ 1) as

2π (T1 + Tb) δσ2 + log





sinh (2πTbσ̃3)

2eπTby−

2 cosh
(

πTb(ỹ+
3 )
)

cosh(πTb(y−
2 + ỹ−

3 ))



 ≥ 0 , (4.119)

by noting the approximation (4.95) and its result (SN − SR)
∣

∣

σ̃3→∞
= c

3π(T1+Tb)δσ2. Notic-

ing the other approximation (4.12) and the simple relation (SN − SR)
∣

∣

σ̃3→∞
= 2cπ

3 πTbδσ2

in the late-time region, one can find the condition for reconstructing the interior of black

hole reads

4πTbδσ2 + log





sinh (2πTbσ̃3)

2eπTby−

2 cosh
(

πTb(ỹ+
3 )
)

cosh(πTb(y−
2 + ỹ−

3 ))



 ≥ 0 , (4.120)

32We hide the complicated expressions which are not shown in (4.117) by using σ∗
2(u). For the equilibrium

case discussed in section 3.3, we considered a more general set-up with δσ2 = σ2 − σ1 − ∆turn where the

critical value is just the constant ∆turn.
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whose further reductions depend on the sign of the terms inside cosh functions and are

similar to what have done in section 3.3. For example, if we assume all length scales on the

above are larger than 1
πTb

, we can simply find the length of extra bath interval [σ∗
2(u), σ2]

is constrained by

δσ2 &



















Tb

2(T1 + Tb)

(

|ỹ+
3 | + |y−

2 + ỹ−
3 | + y−

2 − 2σ̃3

)

, if ku ≪ 1

1

4

(

|ỹ+
3 | + |y−

2 + ỹ−
3 | + y−

2 − 2σ̃3

)

, if eku ≫ 1

. (4.121)

Then it is easy to find that the r.h.s. of the above equation can be reduced to four cases

where one of them vanishes, implying we need to consider the regime with 2π(T1+Tb)δσ2 ≪
1, and other three cases at late-time region retrieve the results derived in (3.49). Finally, we

also comment the above linear dependence would like appear for the time region between

the two limits due to the complicate dependence of entropy on σ2. However, if we only

focus on a small perturbation with δσ2/σ∗
2 ≪ 1, (Teff + Tb)δσ2 ≫ 1, we can calculate the

derivate of (SN − SR)
∣

∣

σ̃3→∞
with respect to σ2 and find the following expected result

2(Teff(y+
2 ) + Tb)δσ2 & Tb

(

|ỹ+
3 | + |y−

2 + ỹ−
3 | + y−

2 − 2σ̃3

)

, (4.122)

where the two terms on the r.h.s. describe the entropy of radiation located on the small

region [σ∗
2, σ2] and emitted from the black hole and the thermal bath, respectively.

Starting from the subsystem with QML, bath interval with the critical bath length σ∗
2

and all purification, the above inequalities in eqs. (4.121) and (4.122) tell us how much bath

interval we need to include if we want to exclude part of the purification in σ̃ = [σ̃3, σ̃IR].

Needless to say, we can interpret these inequalities in the opposite way, e.g., 33

2σ̃3 & |ỹ+
3 | + |y−

2 + ỹ−
3 | + y−

2 − 2
Teff(y+

2 ) + Tb

Tb
δσ2 . (4.123)

Then we can learn how much bath’s purifier is necessary for reconstruction for a fixed

bath interval [0, σ2] plus QML. In particular, we specify an interval in the purifier by both

its length σ̃3 and the time slice ũ3 on which it is placed in the spacetime of purification

region. First, we observe from (4.123) if |ũ3| is very large both of the two expressions with

absolute values on the right-hand side would be very large. That is, for very large |ũ3|, we

would need a large interval in the purifier with σ̃3 ∼ |ũ3| to recover the black hole interior.

Varying over the time slice ũ3, we find that the “optimal purifier” with smallest length is

determined by

σ̃3 ≈ 1

2
y−

2 − Teff(y+
2 ) + Tb

2Tb
δσ2 , with

∣

∣

∣

∣

ũ3 +
1

2
y−

2

∣

∣

∣

∣

≤ Teff(y+
2 ) + Tb

2Tb
δσ2 . (4.124)

We note that this expression simply reduces to the equilibrium case shown in the second

case in eq. (3.49) after taking either the late-time limit or setting Tb = T1. Hence the

33Although eqs. (3.49) and (4.123) look very similar, it is important to keep in mind that the assumptions

leading to the two results are different. While for eq. (3.49) we simply needed to assume that all lengths

we are dealing with are larger than the thermal scale, for eq. (4.123) we further needed to restrict to the

cases where δσ2 ≪ σ2.
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present results are analogous to those illustrated for the equilibrium case in figure 5. That

is, from eq. (4.124), the optimal purifier lies anywhere on a band of time slices centered at

ũ3 = −y−
2 /2 and with width ∆ũ3 =

Teff(y+
2 )+Tb

2Tb
δσ2. In this band, the length of the purifier

interval is given by the expression above. Therefore when δσ2/σ2 is small, the optimal

purifier is simply an interval of length σ̃3 = y−
2 /2 on the time slice ũ3 = −y−

2 /2.

In this subsection, we have discussed the necessity of the thermal bath’s purification

when the bath temperature is beyond the critical temperature and also the constrain on

the length of the bath interval and its purifier. To complete the explorations on the role of

purification, the last question we ask is what is the minimal length of the bath’s purifier. Of

course, we have shown it is zero when Tb ≤ Tp. For a bath system with higher temperature,

it is natural to expect that the length of the bath’s purifier is minimal when the entire bath

interval is included in the subsystem for reconstruction. Making some more efforts, one

can find that expectation is true by showing ∂σ1 (SN − SR) ≤ 0 and ∂σ2 (SN − SR) ≥ 0. It

means that the best for reconstruction is including all the bath interval with σ ∈ [0, σIR].

In the limit σ2 → σIR ∼ +∞, one can read the entropy two completing channels as

SR = Sgen
QES−1 + S3−IR , SN = Sgen

QES′′ + S1−IR + S3 , (4.125)

where the entropy for the two-point function S1−IR is defined in (4.74) with taking σ1 =

0, σ2 = σIR and the last new ingredient S3−IR is derived as

S3−IR =
c

3
log

(

sinh (πTb(σ̃IR − σ̃3))

πTbǫ

)

. (4.126)

Similar to the calculations for critical temperature, one can find the condition SN − SR is

rewritten as

2k



log





6Es

c

x+
1 sinh(πTb(−y+

IR)) sinh(πTb(yIR − y−
1 ))

√

f ′(y+
1 )



+ 4πTbσ̃3 − 2πTbσ̃IR





& 2π (Teff (u) − T0) ,

(4.127)

where we can easily see that more purification interval is more helpful for the reconstruction.

Taking σ1 = 0 and late-time limit eku ≫ 1, we can finally find the minimal purifier is

constrained by

σ̃3 &
1

4kTb

(

3Tb − 2T1 − T0 + 2Tb log

(

T1 + Tb

2Tb

))

− 1

4πTb
log

(

6Es

cT1

√

T1

Tb

)

+ · · · , (4.128)

which is irrelevant to the choice of ũ3. And note that the r.h.s. is positive when Tb & Tp

as we illustrated around (4.91).

5 Summary and discussion

In this paper, we continued our investigation [20] of the AEM4Z model [1, 3] describing

a joining quench in a doubly-holographic framework. The most interesting questions con-

cern the two-dimensional dynamics describing black hole evaporation (or growth). Invoking
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holographic duality (twice), the generalized entropy becomes purely geometric and its eval-

uation is tractable in this dynamical setup. In the three-dimensional holographic dual, the

black hole geometry contains a Planck brane where Jackiw-Teitelboim gravity is local-

ized. At finite temperature, there is a new ingredient: a horizon in the three-dimensional

bulk, beyond which the second asymptotic boundary purifies the two-dimensional ther-

mal state in the bath. Despite this difference, we have shown that the Page curve still

exhibits three distinct phases (quench, scrambling, and late-time equilibration), as in the

zero-temperature case. However, there are several new qualitative features in both the

scrambling and late-time phase.

As in the zero temperature case, the quantum extremal surface remains at the bifur-

cation point in the initial quench phase and then jumps out from the original horizon in

the scrambling phase where the generalized entropy shows a(n almost) linear increase with

the physical time. From the first holographic level, the increase in entropy is due to the

two-way exchange of quanta between the bath and black hole, which is why the linear

increase is proportional to T1 + Tb. From the perspective of the doubly holographic model,

the increase in generalized entropy is related to the end-of-the-world brane falling deeper

into the bulk towards the horizon of the three-dimensional black hole.

After the Page time, the system enters the late-time phase in which the black hole

approaches an equilibrium state with the black hole. However, the evolution of the black

hole is determined by the temperature of the thermal bath. For a bath with a temperature

which matches that of the post-quench black hole Tb = T1, this equilibration is immediate

and the generalized entropy is constant throughout this phase. For a lower temperature

bath with Tb < T1, the black hole evaporates and loses some of its mass, similar to the

zero temperature case in [1, 3, 20]. Since the black hole not only emits Hawking radiation

but also receives the thermal radiation from the bath, the black hole can also grow when

the bath temperature satisfies Tb > T1. At the extremely late time, the system will

finally equilibrate with the bath temperature, and the entanglement entropy approaches

its equilibrium value. Figure 11 illustrates these three possible scenarios.

We also found that the position of the late-time extremal surface relative to the event

horizon of the black hole depends on the temperature of the bath. In the evaporating black

hole models (with a bath at zero temperature) of [1, 3, 20], the late-time extremal surface

lies inside the horizon — in fact, it lies inside the horizon throughout the entire evolution

of the black hole. Correspondingly, the information of the region outside of the black

hole could not be reconstructed by QML+ bath. On the other hand, in the equilibrium

configuration studied in [19], the extremal surface is located outside of the event horizon.

The equilibrium case studied in section 3 reproduces this behavior with the QES located

outside the event horizon — see eq. (3.18). Hence in these cases, the information just

outside of the event horizon could be reconstructed by QML+ bath after the Page time.

Moreover, at any temperature, the black hole eventually equilibrates with the bath, and

the system is qualitatively similar to the equilibrium case. Indeed, for any temperature,

after a time of ku ≥ log
(∣

∣

∣1 − T 2
1

T 2
b

∣

∣

∣

√

πT1
8k

)

, the late-time extremal surface crosses the horizon

and stays outside as the system equilibrates. Furthermore, for black hole temperatures T1
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very close to the bath temperature Tb, i.e. |Tb−T1|
T1

≤
√

2k
πT1

exp
[

T1−T0
2T1

]

, the QES is already

outside of the event horizon at the Page time. One may ask why the behaviour of our

black holes where only one side is in equilibrium with the bath matches that of the eternal

two-sided black holes studied in [19], where there is an equilibrium with a thermal bath on

both sides. However, this is relatively obvious from the holographic perspective since the

HRT surfaces are really probing identical portions of the three-dimensional bulk geometry

in the island phase for both cases.

As noted above, the appearance of QES outside of the horizon was first found in [19] for

an eternal AdS2 black hole coupled with a thermal bath. This same behavior was also seen

in higher dimensional holographic systems [17, 36]. A similar phenomenon is also found

at black holes in asymptotically flat spacetime, e.g., [23, 27]. A dynamical QES crossing

the horizon (similar to our present results) was also found for an evaporating black hole

in JT gravity [28]. As discussed around eq. (3.19), while the QES may extend outside of

the horizon, it is never very far from the horizon. These results may imply that we should

consider some quantum corrections to the event horizon in order to extend the boundary of

the interior of black hole, e.g., taking the stretched horizon [64] as a surrogate for the event

horizon. Then the QES can be seen to stay outside the classical event horizon but inside

the stretched horizon [23]. However, let us add that in the higher dimensional holographic

systems studied in [16, 17], this effect can be understood in terms of entanglement wedge

nesting [65, 66]

After deriving the Page curve with three phases as shown in figure 11, we further

focused on investigating the ability of various subsystems consisting of QML and different

parts of the bath interval to reconstruct the black hole interior — see figure 4 for the

competing channels for every case. As we first demonstrated in the equilibrium case of

section 3, the reconstruction of black hole interior always requires at least part of the

purification of the bath. Of course, the key difference from the scenario with the evaporating

black hole coupled to a zero temperature bath [1, 3, 20] is that our bath here begins in

a mixed state before the quench whereas in the previous studies the bath begins in a

pure state (i.e. the CFT vacuum). Hence, part of the purification of the bath becomes

essential for interior reconstruction when the bath temperature is higher than the critical

temperature Tp ∼ 1
2 (T1 + T0) . T1, as given in eq. (4.91). This requirement arises for two

reasons: first, the thermal bath radiation in the interval containing the Hawking radiation

must be purified to distill information about the black hole interior. Second, after the

quench, thermal radiation from the bath falls into the black hole entangling the black hole

interior with radiation in the purifier. That is, part of the entanglement initially shared

between the bath and its purifier is transferred to the black hole interior and the purifier. So

information about the black hole interior is spread to the purification although, of course,

none of the Hawking radiation enters this region.

A simple example where the importance of the purifier was seen was the case where

the black hole and the bath were in equilibrium, i.e. with Tb = T1 > Tp. In this case, the

reconstruction of the black hole interior with QML, a finite bath interval [σ1, σ2] at some

time u, and a restricted portion [0, σ̃3] of the purifier at another time ũ3 was considered
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in section 3.3. There, the bound (3.49) on the purifier interval size σ̃3 necessary for recon-

struction can be given a physical interpretation in figure 5 as the requirement that [0, σ̃3]

captures purifier quanta entangled with out-going thermal bath radiation in 0 < y− < y−
2 ,

shown in red in the left panel of figure 5. Given the thermofield double preparation of the

bath and purifier, the relevant purifier quanta are those marked by dashed wavy lines in

the right panel of figure 5. The bound (3.49) then corresponds to the minimal interval in

the purifier which captures these quanta. Namely, if the bath interval has a length that

is only above-critical by a few thermal lengths, then the requisite purifier interval must

capture essentially all of the quanta marked in the right panel of figure 5, e.g., see the blue

interval. If the bath interval exceeds the critical length with a large margin σ2 −σ1 −∆turn,

then the amount of the marked quanta that must be captured by the purifier interval is

reduced proportionately, e.g., see the green interval. This discussion, however, leaves open

the question of why the 0 < y− < y−
2 section of bath thermal radiation is important to

begin with. One might argue that the bath radiation in y−
1 < y− < y−

2 obfuscates the

Hawking radiation captured by the bath interval [σ1, σ2], so that purifying this section of

bath thermal radiation is beneficial. One may also argue that 0 < y− < y−
QES contains

thermal bath radiation eaten by the quantum extremal island, so its purifier would contain

information about the island. But, it also seems that the bath radiation in the in-between

range y−
QES < y− < y−

1 is not pertinent. In particular, if one is free to discard the purifier

quanta for this radiation, then it should be possible to reduce the interval length of [0, σ̃3]

beyond what is allowed by (3.49) in some cases where σ2 − σ1 exceeds ∆turn by many

thermal lengths.

One may ask why the previous effects are not always important. That is, why is there a

critical bath temperature Tp below which no portion of the purifier is needed to recover the

black hole interior. Certainly, there are many physical effects that come into play here, e.g.,

the redundancy of the encoding of the black hole interior in the Hawking radiation [20], but

remarkably the critical temperature Tp can be derived with the following simple intuitive

argument:34 Recall that in the usual black hole evaporation (with Tb = 0), the Page phase

arises when the naive entropy of the Hawking radiation exceeds the Bekenstein-Hawking

entropy of the black hole. Of course, we now understand that this conflict is resolved by the

formation of a quantum extremal island, and hence a portion of the black hole interior is

reconstructable in this phase. When the black hole is coupled to a finite temperature bath,

the appearance of the critical temperature Tp indicates that islands form for lower bath

temperatures but not for higher temperatures, when keeping track of modes in the mixed

state of the bath (along with QML). But in turn, we can understand this as indicating that

for Tb < Tp, one reaches an inconsistency where the naive entropy of the bath (including

the Hawking radiation and also QML) exceeds the entropy of the black hole and the bath

purifier. But no such inconsistency arises for Tb > Tp. Examining this latter perspective

in more detail below then allows us to derive the critical temperature Tp.

That is, we consider the necessity of islands at late times in the evolution of the system.

First, we observe that the (coarse-grained) Bekenstein-Hawking entropy provides a bound

34This argument and the following calculations are similar in spirit to the calculations in appendix B

of [2]. We thank Geoff Penington for discussing this point with us.
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on the (fine-grained) entropy of QMR, with35

SQMR
. SUV + SBH(Teff) −−−→

u→∞
SUV + SBH(Tb) . (5.1)

Here, SUV denotes a UV-divergent contribution due to the separation between QMR and

the bath, Teff is the effective temperature (4.4) of the JT black hole on the right, and SBH

is the Bekenstein-Hawking entropy (3.8). The argument now proceeds as follows: purity

of the complete system, including the bath’s purifier, demands

SQML∪ bath = SQMR∪ bath ≤ SQMR
+ Sbath , (5.2)

where bath denotes the bath’s purifier. Here, the inequality follows from the subadditivity

of entanglement entropy. Now let us begin by assuming the absence of any islands, in

which case,

SQML∪ bath ≈ SBH(T0) + Sbath . (5.3)

Note that here, we are implicitly including the entire bath region and so we must regulate

the size of the latter to avoid having an IR divergence in Sbath. Further, combining the

bound (5.1) with the subadditivity inequality in eq. (5.2), we also have

SQMR∪ bath ≤ SQMR
+ Sbath . SUV + SBH(Tb) + Sbath . (5.4)

It remains to approximate the difference Sbath − Sbath. Just after the joining quench, Sbath

can be expressed as the sum of three contributions: Sbath, the UV contribution SUV, and

a shock contribution,36 i.e.

Sbath(u = 0) = Sbath + SUV + Sshock , where Sshock ≈ c

6
log

ES

c T1
. (5.5)

Now while Sbath remains constant, Sbath changes37 due both to the absorption of Hawking

radiation at temperature Teff and the loss of thermal radiation to the black hole (purified

by quanta in Sbath) at temperature Tb. To be precise, we have

∂uSbath ≈ πc

6
(Teff − Tb) . (5.6)

35Violation of the Bekenstein area bound in the island region is a necessary condition for the appearance

of QEIs [67]. In the following argument, we begin by assuming that it holds and so no QEI forms, even in

the far future.
36To obtain the following expression for Sshock, we may compare, for example, the x± ∈ II and x± ∈ IV

cases of eq. (2.32). Further, we have chosen 1/T1 to be a ‘typical’ length scale for the x+ coordinate. Other

choices differing by O(1) factors from this will not significantly modify the result of this argument.
37Alternatively, one may discard from this argument, all of the ‘bystander’ thermal quanta entangled to

each other in the bath and purifier regions, which have not yet fallen into the black hole. In this case, Sbath

and S
bath

both increase, respectively due to the absorption of Hawking radiation and being entangled with

bath radiation lost to the black hole. What is important is that the difference ∂u(Sbath − S
bath

) evolves

according to the r.h.s. of (5.6).
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Now combining eqs. (5.5) and (5.6), we find at late times

lim
u→∞

Sbath − Sbath ≈ SUV + Sshock +
πc

6

∫ ∞

0
du (Teff − Tb) (5.7)

≈ SUV +
c

6
log

ES

c T1
+

πc

6k

[

T1 − Tb + O

(

(T1 − Tb)2

T1

)]

Finally, combining eqs. (5.3) and (5.4) together with eq. (5.7), we find that our assumption

of no islands leads to

Tb &
T0 + T1

2
+

k

2π
log

ES

cT1
, (5.8)

where we recognize the r.h.s. as the expression (4.91) for Tp. Thus, Tp corresponds to the

bath temperature above which the inequality (5.2) can be satisfied at late times without

introducing any island. Conversely, to satisfy the entropy bound (5.2) for Tb < Tp, an island

must be introduced at sufficiently late times and as a result, the black hole interior may

be reconstructed from QML and the bath alone, without the bath’s purifier. Alternatively,

for Tb > Tp, reconstructing the black hole interior requires additional information from

the purification. This argument provides further intuition for understanding the critical

temperature Tp than perhaps offered by the initial calculations leading up to (4.91) in

section 4.2.2.

Furthermore, for the lower bath temperatures Tb < Tp, we found that with the sub-

system comprising only QMLand a finite bath interval, as shown in figure 4c, it is possible

to reconstruct the black hole interior in section 4.2.3. The length of the minimal bath in-

terval for reconstruction increases with the physical time and approaches a linear increase

as shown in eqs. (4.96) and (4.102), and as summarized in figure 12. After including the

purification in the subsystem as presented in figures 4b and 4d, we considered the recon-

struction of the black hole interior in section 4.2.4 with a general bath temperature Tb, i.e.

interior reconstruction also becomes possible for Tb > Tp. We first found that the black

hole interior is reconstructable with any bath interval above the shock-wave with a length

larger than ∆turn ∼ T1−T0
4kT1

, given in eq. (3.32) for the equilibrium case. For the evapo-

rating and thermalized black hole, the interval length required for interior reconstruction

increases with time as shown in (4.108). Since late time behavior should be similar to the

equilibrium case, one finds as expected, the minimal interval length for late times asymp-

totes to a finite constant which is defined as ∆σturn in eq. (4.111). The two above results

are illustrated in figure 14.

Recent explorations on QES and Page curves inspire the island formula for the quantum

systems coupled to gravity [1]. Although we do not explicitly apply the island formula in

our analysis, it is clear that the island region emerges in the recoverable channel, as shown

in figure 4. Without knowledge of the island formula, we can also derive the same results

and desired Page curve because we can apply the RT formula in the doubly holographic

models. In other words, RT formula knows about the existence of the island. On the other

hand, it is also possible to get the right answer by noting the entropy of a subsystem in a

pure state equals the entropy of its complementary part. For example, we can easily find
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that the entropy of QMR after Page transition is defined by SQES−1 with y1 on the AdS

boundary. Taking the pure state as the whole system, we simply know SQES−1 also defines

the generalized entropy of QML, entire bath interval, and its purification (see figure 4a ),

which implies the Page curve for that subsystem. However, this approach does not work

for mixed states because the entropy of a subsystem in a mixed state generally does not

agree with the entropy of its complementary part. Let’s construct a mixed state as an

example by tracing out the bath’s purification. Then the complementary subsystem of

QMR consists of QML and only the entire bath interval. Correspondingly, the generalized

entropy of this complementary system is defined by the minimal entropy between the two

channels (see figure 4c with σ2 → σIR )

SN = Sgen
QES′′ + S 1

2
-line , No Island ,

SR = Sgen
QES−1 + SIR , With Island .

(5.9)

It is obvious that neither of the above two terms equals the entropy of QMR, i.e. Sgen
QES−1.

More importantly, we have shown SN is always preferred when Tb & Tp, which indicates

the entanglement wedge of the corresponding subsystem with QML and any thermal bath

interval does not contain the island region.

As a final remark, let us comment on an important lesson from our results for the

reconstruction of the black hole interior. It is obvious that the emitted Hawking radiation

carries out information about the black hole. Although all the Hawking radiation is only

stored in the finite interval [0, σshock(u)), our studies on the reconstruction for a black hole

coupled to a finite temperature bath indicate that the information describing the black

hole interior is not contained solely within this part of the bath (along with QML). Rather

we see that in this situation, the black hole and Hawking radiation (i.e. [0, σshock(u)), the

bath region) are entangled with a complicated environment comprising QML, the remaining

bath interval and the bath purifier, and hence the information about the black hole interior

is distributed in a complicated way over the whole system. Of course, as identified above,

the new physical mechanism contributing to the information flow in the present situation is

the incoming radiation falling from the bath onto the black hole, which entangles the black

hole interior with the purifier (and possibly distant regions in the finite temperature bath).

For example, we found that when the bath temperature satisfies Tb > Tp, reconstruction

always needs the purification even if we already have all of the Hawking radiation and QML.

On the other hand, we also found that the QML plus only a smaller bath interval [0, σ2(u)]

with eπT1(u−uPage) ≫ 1 and σ2 < σshock(u) is also sufficient to recover the information of

the black hole interior when Tb < Tp in section 4.2.3 (see the right panel of figure 12).

This means that we actually do not require all of the Hawking radiation. The information

inherited in the ignorable (early-time) Hawking radiation located at [σ2, σshock] is shared

by other parts of the system. This reflects the redundancy of the encoding of the black

hole interior in the Hawking radiation discussed in [20].
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