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Evaporation of a thin droplet on a thin substrate with a high
thermal resistance
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Glasgow G1 1XH, United Kingdom
2School of Engineering, The University of Edinburgh, The King’s Buildings, Mayfield Road,
Edinburgh EH9 3JL, United Kingdom
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A mathematical model for the quasisteady evaporation of a thin liquid droplet on a thin substrate
that incorporates the dependence of the saturation concentration of vapor at the free surface of the
droplet on temperature is used to examine an atypical situation in which the substrate has a high
thermal resistance relative to the droplet �i.e., it is highly insulating and/or is thick relative to the
droplet�. In this situation diffusion of heat through the substrate is the rate-limiting evaporative
process and at leading order the local mass flux is spatially uniform, the total evaporation rate is
proportional to the surface area of the droplet, and the droplet is uniformly cooled. In particular, the
qualitative differences between the predictions of the present model in this situation and those of the
widely used “basic” model in which the saturation concentration is independent of temperature are
highlighted. © 2009 American Institute of Physics. �DOI: 10.1063/1.3121214�

I. INTRODUCTION

The evaporation of a liquid droplet on a substrate is a
fundamental fluid mechanics problem arising in a wide vari-
ety of physical contexts ranging from the domestic to the
industrial and the geophysical. In recent years new develop-
ments in a number of technological applications involving
droplet evaporation, notably cooling, desalination, DNA
mapping and gene-expression analysis, coating, and pattern-
ing have helped to inspire renewed interest in this fascinating
problem.

In many physical contexts diffusion of liquid vapor in
the atmosphere above the droplet is the rate-limiting evapo-
rative process, and there is now a considerable body of lit-
erature concerned with both experimental investigations and
theoretical analysis of this situation, including the work of
Picknett and Bexon,1 Bourgès-Monnier and Shanahan,2 Dee-
gan et al.,3,4 Hu and Larson,5–8 Poulard et al.,9,10 Popov,11

Sultan et al.,12 Grandas et al.,13 Shahidzadeh-Bonn et al.,14

Guéna et al.,15–18 Xu and Luo,19 and Ristenpart et al.20 Much
of the previous theoretical work has focused on this situa-
tion, using what we refer to as the “basic” model in which
the saturation concentration of vapor at the free surface of
the droplet is independent of temperature. Recently David
et al.21 and Dunn et al.22,23 conducted a series of physical
experiments using a variety of liquids on a variety of sub-
strates and showed that the thermal conductivity of the sub-
strate has a strong influence on the total evaporation rate;
moreover, Dunn et al.22,23 showed that this behavior can be
captured by an improved mathematical model that incorpo-
rates the dependence of the saturation concentration of vapor
on temperature.

In the present paper we use this improved model to ex-
amine an atypical situation in which the substrate has a high
thermal resistance relative to the droplet �i.e., it is highly
insulating and/or is thick relative to the droplet� so that dif-
fusion of heat through the substrate �rather than diffusion of
vapor in the atmosphere� is the rate-limiting evaporative pro-
cess. In particular, we highlight the qualitative differences
between the predictions of the improved model in this situ-
ation and those of the basic model.

II. THE MATHEMATICAL MODEL

Adopting the mathematical model proposed by Dunn

et al.22,23 �who also verified the model by comparison with

the experimental results of David et al.21� we consider the
quasisteady evaporation of a thin pinned axisymmetric
sessile droplet with constant radius R of liquid with constant
density �, surface-tension �, specific heat capacity cp, and
thermal conductivity k on a thin horizontal substrate of con-
stant thickness hs with constant density �s, specific heat ca-
pacity cp

s , and thermal conductivity ks. The atmosphere sur-
rounding the droplet and the substrate is assumed to be at
constant atmospheric temperature Ta and pressure pa. Re-
ferred to cylindrical polar coordinates �r ,� ,z� with origin on
the substrate at the center of the droplet and with the z axis
perpendicular to the substrate, the shape of the free surface
of the droplet at time t is denoted by z=h�r , t�, the upper
surface of the substrate by z=0, and the lower surface of the
substrate by z=−hs, as shown in Fig. 1. The volume of the
droplet is denoted by V=V�t�, the contact angle at the contact
line r=R by �=��t�, and the initial value of the contact angle
at t=0 by �0=��0�.

Both the droplet and the substrate are assumed to be thin
relative to the radius of the droplet, i.e., �0�1 and hs /R
�1, but no assumption is made about their relative thick-

a�Author to whom correspondence should be addressed. Electronic mail:
s.k.wilson@strath.ac.uk. Telephone: � 44 �0� 141 548 3820. Fax: � 44 �0�
141 548 3345.
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nesses, i.e., no assumption is made about the size of hs /�0R.
Since both the droplet and the substrate are thin, their tem-
peratures, denoted by T=T�r ,z , t� and T s=T s�r ,z , t�, satisfy
�2T /�z2=0 and �2T s /�z2=0, and the local evaporative mass
flux from the droplet, denoted by J=J�r , t���0�, satisfies the
local energy balance LJ=−k�T /�z on z=h for r�R, where
L is the latent heat of vaporization. Hence, assuming that
both the temperature and the heat flux are continuous be-
tween the droplet and the wetted part of the substrate, and
that the lower surface of the substrate is at the atmospheric
temperature Ta, we have simple explicit solutions for the
temperature of the droplet and the substrate �in terms of the
as yet unknown mass flux J�, namely

T = Ta − LJ� z

k
+

hs

ks�, T s = Ta −
LJ

ks �z + hs� . �1�

Assuming that the transport of vapor in the atmosphere is
dominated by diffusion �see, for example, Ref. 11�, the con-
centration of vapor in the atmosphere above the droplet and
the substrate, denoted by c=c�r ,z , t�, satisfies Laplace’s
equation, �2c=0. Since the droplet is thin we may impose
the boundary conditions on the free surface of the droplet on
z=0 �rather than on z=h� and solve Laplace’s equation in the
half-space z	0.

At the free surface of the droplet we assume that the
atmosphere is saturated with vapor so that c=csat�T� on z
=0 for r�R, where the saturation concentration csat=csat�T�
is assumed to be a linearly increasing function of tempera-
ture given by

csat�T� = csat�Ta� + csat� �Ta��T − Ta� , �2�

in which the dash denotes differentiation with respect to ar-
gument �i.e., csat� �Ta�=dcsat /dT evaluated at T=Ta�. On the
dry part of the substrate there is no mass flux, i.e., �c /�z
=0 on z=0 for r	R, and far from the droplet the concentra-
tion of vapor approaches its ambient value, i.e., c

→Hcsat�Ta� as �r2+z2→
, where H �0�H�1� is the rela-
tive saturation of the atmosphere far from the droplet. Once c
is known the mass flux from the droplet is given by
J=−D�c /�z on z=0 for r�R, where D is the coefficient of
diffusion of vapor in the atmosphere, and hence using Eqs.
�1� and �2� we find that c satisfies

c = csat�Ta� + LDcsat� �Ta��h

k
+

hs

ks� �c

�z
on z = 0

for r � R . �3�

A standard result from the theory of gases �see, for example,
Ref. 24� is that D is inversely proportional to pa, i.e., D
=Drefpref / pa, where Dref and pref are reference values of D
and pa, respectively. Note that pa enters the model only via
this expression for D.

To simplify the subsequent presentation we nondimen-
sionalize and scale r with R, z in the droplet with �0R, z in
the substrate with hs, z in the atmosphere above the droplet
and the substrate with R, h with �0R, V with �0R3, � with �0,
T and T s with Ta, c−Hcsat�Ta� with �1−H�csat�Ta�, J with
D�1−H�csat�Ta� /R, and t with ��0R2 /D�1−H�csat�Ta�. Here-
after all quantities will be nondimensionalized and scaled
appropriately unless stated otherwise.

Assuming that the droplet is sufficiently small that
surface-tension effects dominate gravitational effects then it
has the simple quasistatic parabolic shape h=��1−r2� /2 with
volume V=�� /4, where ��0�=1 and V�0�=� /4. The total
evaporation rate is given by

−
dV

dt
= 2��

0

1

Jrdr , �4�

where J is given by

J = −
�c

�z
on z = 0 for r � 1. �5�

The concentration of vapor in the atmosphere c satisfies
�2c=0 in z	0 subject to the mixed boundary conditions

c = 1 + 
C�h + S�
�c

�z
on z = 0 for r � 1, �6�

�c

�z
= 0 on z = 0 for r 	 1, �7�

and c→0 as �r2+z2→
, where


C =
�0LDcsat� �Ta�

k
and S =

khs

�0Rks �8�

are nondimensional measures of the variation of saturation
concentration with temperature and of the relative thermal
resistance of the droplet and the substrate, respectively. The
boundary condition �6�, the nondimensional version of Eq.
�3�, which incorporates the variation of the saturation con-
centration with temperature given in Eq. �2� and hence
couples the problem for the concentration of vapor to that for
the temperature, is a key difference between the present
model and the basic model used by several previous authors.
Once c and hence J are known, the temperature of the drop-
let and the substrate are given by Eq. �1� to be

T = 1 − EJ�z + S�, T s = 1 − EJS�z + 1� , �9�

where

−hs

O

z

r

Substrate

Droplet

Atmosphere
Mass Flux J

θ

R

Temperature Ta, Pressure pa

Temperature Ta, Pressure pa

FIG. 1. Geometry of the problem.
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E =
�0LD�1 − H�csat�Ta�

kTa
�10�

is a nondimensional measure of the evaporative cooling. In
particular, Eq. �9� describes the evaporative cooling of the
droplet and the substrate below the droplet.

Before investigating the behavior of the model in the
situation in which the substrate has a high thermal resistance
relative to the droplet �corresponding to the limit S→
� in
Sec. III, in Secs. II A and II B we briefly examine the behav-
ior of the model when S=O�1� in the two extreme cases in
which the saturation concentration is independent of tem-
perature �i.e., 
C=0� and in which the saturation concentra-
tion is strongly dependent on temperature �i.e., 
C→
�.

A. The special case �C=0

In the special case in which the saturation concentration
is independent of temperature, corresponding to 
C=0, the
present model reduces to a trivial generalization �namely, to
the case in which D is a known function of pa� of the basic
model. Specifically, the boundary condition �6� reduces to
simply c=1 on z=0 for r�1 so that the problem for the
concentration of vapor is decoupled from that for the tem-
perature. The solution for c=O�1� is well known and can be
expressed in several equivalent forms including

c =
2

�
�

0


 J0��r�sin��R�e−�z

�
d� , �11�

where Jn�·� denotes a Bessel function of the first kind of
order n, and hence from Eq. �5�

J =
2

��1 − r2
. �12�

From Eq. �4�

−
dV

dt
= 4, �13�

and hence V=� /4−4t and �=1–16t /�, and, in particular,
the droplet completely disappears at t=� /16. From Eq. �9�

T = 1 −
2E�z + S�
��1 − r2

, T s = 1 −
2ES�z + 1�
��1 − r2

. �14�

In particular, the local mass flux and the temperatures in both
the droplet and the substrate are all integrably singular at the
edge of the droplet.

B. The limit �C\�

In the opposite extreme in which the saturation concen-
tration is strongly dependent on temperature, corresponding
to the limit 
C→
, the boundary condition �6� becomes
�c /�z=−2 / ��1−r2+2S�
C�+O�1 /
C2� on z=0 for r�1.
Although the leading order solution for c=O�1 /
C� cannot
readily be expressed in closed form, we can immediately
deduce that

J =
2

�1 − r2 + 2S�
C
+ O� 1


C2� . �15�

From Eq. �4�

−
dV

dt
=

2�


C
log�1 + 2S

2S
� + O� 1


C2� , �16�

showing that the first order total evaporation rate is a mono-
tonically decreasing function of S, and hence

V =
�

4
−

2�


C
log�1 + 2S

2S
�t + O� 1


C2� �17�

and

� = 1 −
8


C
log�1 + 2S

2S
�t + O� 1


C2� . �18�

From Eq. �9�

T = 1 −
2E�z + S�

�1 − r2 + 2S�
C
+ O� 1


C2� , �19�

T s = 1 −
2ES�z + 1�

�1 − r2 + 2S�
C
+ O� 1


C2� . �20�

In particular, it is interesting to note from Eq. �19� that the
temperature of the free surface of the droplet is given by T
=1−E /
C+O�1 /
C2� which is, rather unexpectedly, spa-
tially uniform and constant in time up to O�1 /
C2�.

III. THE LIMIT S\�

In general, the model described in Sec. II has to be
solved numerically, as Dunn et al.22,23 did. However, in the
situation in which the substrate has a high thermal resistance
relative to the droplet �i.e., it is highly insulating and/or is
thick relative to the droplet�, corresponding to the limit S
→
, we can obtain the asymptotic solution to the problem
by seeking an expansion for c in the form

c = c0 +
c1


CS
+

c2


C2S2 + O� 1

S3� , �21�

where the factors of 
C=O�1� have been included to sim-
plify the subsequent presentation, with corresponding expan-
sions for all the other dependent variables.

A. Zeroth order

At zeroth order in 1 /S we find immediately that c0=0,
J0=0, and dV0 /dt=0, and hence V0=� /4 and �0=1, show-
ing that according to the present model there is, as expected,
no evaporation from a droplet on a perfectly thermally resist-
ing substrate.

B. First order

At first order in 1 /S we find immediately that J1=1 and

−
dV1

dt
= 2��

0

1

J1rdr = � , �22�

and hence V1=−�t and �1=−4t, and from Eq. �9�
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T0 = 1 −
E


C
, T 0

s = 1 −
E�z + 1�


C
. �23�

In other words, the first order mass flux is spatially uniform
and constant in time and gives rise to linear decreases in both
the volume and the contact angle in time at first order. More-
over, the leading order temperature in both the droplet and
the substrate are constant in time, but whereas the tempera-
ture in the droplet is spatially uniform �i.e., the droplet is
uniformly cooled� that in the substrate below the droplet de-
creases linearly with z from the atmospheric value of unity at
z=−1 to the droplet value of 1−E /
C at z=0.

The first order concentration, c1=c1�r ,z�, satisfies
�2c1=0 subject to

�c1

�z
= 	− 1 on z = 0 for r � 1,

0 on z = 0 for r 	 1,

 �24�

and c1→0 as �r2+z2→
. Fortunately, this problem for c1

can be solved explicitly �see, for example, Ref. 25� to yield

c1�r,z� = �
0


 J0��r�J1���e−�z

�
d� , �25�

where again Jn�·� denotes a Bessel function of the first kind
of order n. Figure 2 shows contours of c1 in the atmosphere
above the droplet and the substrate, and, in particular, illus-
trates that c1�1 /2�r2+z2 as �r2+z2→
. Evaluating c1 on
r=0 yields c1�0,z�=�1+z2−z, while evaluating c1 on z=0
yields

c1�r,0� =
2

�
� � E�r� for r � 1,

rE�1

r
� −

�r2 − 1�
r

K�1

r
� for r 	 1, 


�26�

where K�·� and E�·� are complete elliptic integrals of the first
and second kind, respectively, defined by

K�r� = �
0

1 d�

�1 − �2r2�1 − �2
, E�r� = �

0

1 �1 − �2r2

�1 − �2
d� .

�27�

In particular, we find that c1�r ,0�=1−r2 /4+O�r4� as r→0+,

c1�r,0� =
2

�
+

r − 1

�
�1 + log

�r − 1�
8

�
+ O��r − 1�2log�r − 1�� as r → 1, �28�

showing that c1�r ,0� is continuous with a logarithmic singu-
larity in slope at the edge of the droplet, and

c1�r,0� =
1

2r
+

1

16r3 + O� 1

r5� as r → 
 . �29�

Figure 3 shows a plot of c1�r ,0� as a function of r.

C. Second order

At second order in 1 /S we find that

J2 = − �2E�r�
�

+
�1 − r2�
C

2
� ��0� �30�

and

−
dV2

dt
= 2��

0

1

J2rdr = − �8

3
+

�
C

4
� ��0� , �31�

and hence

V2 = �8

3
+

�
C

4
�t �32�

and

z

r
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FIG. 2. Plot of the contours of c1�r ,z� in the atmosphere above the droplet
and the substrate.
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FIG. 3. Plot of c1�r ,0� as a function of r.
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�2 = � 32

3�
+ 
C�t . �33�

In particular, from Eq. �30� we find that

J2 = − �2 + 
C

2
� + �1 + 2
C

4
�r2 + O�r4� as r → 0+,

�34�

and

J2 = −
2

�
+

1 − r

�
�log

1 − r

8
+ 1 − �
C�

+ O��1 − r�2log�1 − r�� as r → 1−, �35�

showing that J2 remains finite but has a logarithmic singu-
larity in slope at the edge of the droplet. Figure 4 shows a
plot of J2 as a function of r for a range of values of 
C.
From Eq. �9�

T1 = − E�z − �2E�r�
�
C

+
1 − r2

2
�� �36�

and

T 1
s = E�z + 1��2E�r�

�
C
+

1 − r2

2
� . �37�

In other words, the second order mass flux is negative and
spatially nonuniform but constant in time and gives rise to
linear increases in both the volume and the contact angle in
time at second order.

The second order concentration, c2=c2�r ,z�, satisfies
�2c2=0 subject to

�c2

�z
= �2E�r�

�
+

�1 − r2�
C

2
on z = 0 for r � 1,

0 on z = 0 for r 	 1,



�38�

and c2→0 as �r2+z2→
. This problem for c2 cannot
readily be solved in closed form, but fortunately, as we have
already seen, we do not need to determine c2 in order to
obtain J and dV /dt to O�1 /S2� and T and T s to O�1 /S�.

D. Range of validity of the asymptotic solution

In order to determine the range of validity of the present
asymptotic solution Fig. 5 shows a plot of −dV /dt as a func-
tion of S for a range of values of 
C comparing the present
asymptotic solution and the exact numerical solutions calcu-
lated using a finite-element method implemented using the
MATLAB-based numerical analysis package COMSOL MULTI-

PHYSICS �formerly FEMLAB� as described by Dunn et al.22,23

In particular, Fig. 5 confirms that the present asymptotic so-
lution is indeed in good agreement with the exact solution
provided that S is sufficiently large, and that, as expected,
what precisely “sufficiently large” means depends on the
value of 
C.

IV. DISCUSSION

While the present nondimensional presentation is math-
ematically very convenient it obscures the way the variables
depend on the original physical quantities, and so it is en-
lightening to write the asymptotic solution described in Sec.
III in dimensional terms as follows:

c = Hcsat�Ta� +
ksR�1 − H�csat�Ta�

LhsDcsat� �Ta� �
0


 J0��r�J1��R�e−�z

�
d�

+ O��0Rks

khs �2

, �39�

J =
ks�1 − H�csat�Ta�

Lhscsat� �Ta� �1 − 	 2kE�r/R�

��0LDcsat� �Ta�

+
R2 − r2

2R2 
�0Rks

khs � + O��0Rks

khs �3

, �40�

T = Ta −
�1 − H�csat�Ta�

csat� �Ta� �1 + � z

�0R
− 	 2kE�r/R�

��0LDcsat� �Ta�

+
R2 − r2

2R2 
��0Rks

khs � + O��0Rks

khs �2

, �41�

T s = Ta −
�1 − H�csat�Ta�

csat� �Ta�
� z

hs + 1��1 − 	 2kE�r/R�

��0LDcsat� �Ta�

+
R2 − r2

2R2 
�0Rks

khs � + O��0Rks

khs �2

, �42�
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FIG. 4. Plot of J2 as a function of r for 
C=0.1, 1, and 10.
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FIG. 5. Plot of −dV /dt as a function of S for 
C=0.1, 1, and 10 comparing
the present asymptotic solution and the exact numerical solutions.
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V =
��0R3

4
−

�ksR2�1 − H�csat�Ta�
�Lhscsat� �Ta�

��1 − 	 8k

3��0LDcsat� �Ta�
+

1

4
�0Rks

khs �t + O��0Rks

khs �3

,

�43�

and

� = �0 −
4ks�1 − H�csat�Ta�

�LhsRcsat� �Ta�

��1 − 	 8k

3��0LDcsat� �Ta�
+

1

4
�0Rks

khs �t + O��0Rks

khs �3

.

�44�

As several previous authors have described, the widely
used basic model �i.e., the special case 
C=0� in which
diffusion of vapor in the atmosphere is the rate-limiting
evaporative process predicts that the local mass flux �12� is
integrably singular at the contact line r=R, and, from Eq.
�13�, gives rise to the well-known prediction for the total
dimensional evaporation rate

−
dV

dt
=

4RD�1 − H�csat�Ta�
�

, �45�

which is proportional to R �i.e., proportional to the circum-
ference of the droplet�. The present analysis reveals that the
corresponding predictions in two rather different situations in
which diffusion of heat through the substrate �rather than
diffusion of vapor in the atmosphere� is the rate-limiting
evaporative process are qualitatively different from that of
the basic model. At leading order in the limit of strongly
temperature-dependent saturation concentration �i.e., in the
limit 
C→
 with S=O�1�� the local mass flux �15� is finite
everywhere across the surface of the droplet and, from Eq.
�16�, gives rise to the total dimensional evaporation rate

−
dV

dt
�

2�kR�1 − H�csat�Ta�
�L�0csat� �Ta�

log��0Rks + 2khs

2khs � , �46�

which has a more complicated “R log R” dependence on R.
At leading order in the limit of a substrate with a high ther-
mal resistance relative to the droplet �i.e., in the limit S
→
 with 
C=O�1�� the present asymptotic solution shows
that the local mass flux �40� is spatially uniform, giving rise
to the total dimensional evaporation rate

−
dV

dt
�

�ksR2�1 − H�csat�Ta�
�Lhscsat� �Ta�

, �47�

which is proportional to R2 �i.e., proportional to the surface
area of the droplet�. In particular, the prediction of the basic
model for dV /dt is independent of L, k, ks, and hs �i.e.,
independent of the thermal properties of both the droplet and
the substrate and of the thickness of the substrate�, whereas
the leading order predictions for dV /dt in both the limit of
strongly temperature-dependent saturation concentration and
the limit of a substrate with a high thermal resistance are
independent of D.

As with any mathematical model, there are a number of
conditions restricting the validity of the present analysis. For
the mathematical model of Dunn et al.22,23 used in the
present work to hold we require that fluid inertia is negli-
gible, i.e.,

�0
2�UR

�
� 1, �48�

that thermal advection is negligible, i.e.,

�0
2�cpUR

k
� 1, �49�

where U is a characteristic radial velocity, that the tempera-
ture in the droplet is quasisteady, i.e.,

�cp��0R�2

kT
� 1, �50�

that the temperature in the substrate is quasisteady, i.e.,

�scp
shs2

ksT
� 1, �51�

that the diffusion in the atmosphere is quasisteady, i.e.,

R2

DT
� 1, �52�

where T is the characteristic lifetime of the droplet, that grav-
ity effects are negligible in the droplet, i.e.,

�gR2

�
� 1, �53�

and that the thermal conductivities of both the fluid and the
substrate are greater than that of the surrounding air, denoted
by kair, i.e.,

k,ks � kair. �54�

In addition, for the simplified version of the model used in
the present work to hold we require that both the droplet and
the substrate are thin �i.e., that the thicknesses of both the
droplet and the substrate are small relative to the radius of
the droplet�, i.e.,

�0 � 1 and
hs

R
� 1. �55�

Finally, for the large-S asymptotic analysis described in Sec.
III to hold we require that

S =
khs

�0Rks � 1 with 
C =
�0LDcsat� �Ta�

k
= O�1� . �56�

In practice, in typical experimental situations not all of
these conditions will, in general, be satisfied. However, it is
possible to imagine atypical �but still physically realizable�
situations in which all of the conditions are reasonably well
satisfied. For example, consider a thin droplet of water with
radius R=5�10−4 m and contact angle �0=0.1 on a thin
substrate of a poor conductor such as polypropylene of thick-
ness hs=10−4 m evaporating into an atmosphere of air with
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H=0.4 at Ta=295 K and reduced pressure pa=9.98 kPa.
Using typical parameter values taken from Refs. 22 and 23
and the references therein, namely �=998 kg m−3, L=2.45
�106 m2 s−2, �=9.62�10−4 kg m−1 s−1, cp=4.18
�103 m2 s−2 K−1, k=0.604 kg m s−3 K−1, �=7.25
�10−2 kg s−2, csat�Ta�=1.94�10−2 kg m−3, csat� �Ta�=1.11
�10−3 kg m−3 K−1, and D=2.44�10−4 m2 s−1, together
with typical parameter values for polypropylene,
namely �s=910 kg m−3, cp

s =1.9�103 m2 s−2 K−1,
ks=0.12 kg m s−3 K−1, the characteristic lifetime of the
droplet in the large-S asymptotic limit is

T =
��0R2

D�1 − H�csat�Ta�
S
C =

�Lhscsat� �Ta��0R

ks�1 − H�csat�Ta�
� 10 s,

�57�

and hence a characteristic radial velocity is U=R /T�5
�10−5 m s−1. Using these parameter values the left hand
sides of conditions �48�–�53� are small, specifically 3
�10−4, 2�10−3, 2�10−3, 0.01, 1�10−4, and 0.03, respec-
tively. Furthermore, condition �54� holds because the con-
ductivities of both the droplet and the substrate are signifi-
cantly greater than that of air �typically 0.02 kg m s−3 K−1�.
In addition, condition �55� holds because both �0=0.1 and
hs /R=0.2 are small, while Eq. �56� yields S�10 and 
C
�0.1, which Fig. 5 indicates is just in the asymptotic regime.
Clearly it is also possible to imagine other situations with
somewhat larger values of S, but the foregoing suggests that
the present asymptotic analysis is relevant to a physically
realistic situation that could be realized in the laboratory us-
ing the approach and techniques used by, for example, David
et al.21

ACKNOWLEDGMENTS

All four authors acknowledge valuable discussions with
Dr. Samuel David �formerly at the School of Engineering
and Electronics, University of Edinburgh� during the course
of the present work, which is part of a larger project in drop-
let evaporation supported by the United Kingdom Engineer-
ing and Physical Sciences Research Council via joint Grant
Nos. GR/S59444 �Edinburgh� and GR/S59451 �Strathclyde�.

1R. G. Picknett and R. Bexon, “The evaporation of sessile or pendant drops
in still air,” J. Colloid Interface Sci. 61, 336 �1977�.

2C. Bourgès-Monnier and M. E. R. Shanahan, “Influence of evaporation on
contact angle,” Langmuir 11, 2820 �1995�.

3R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A.

Witten, “Capillary flow as the cause of ring stains from dried liquid
drops,” Nature �London� 389, 827 �1997�.

4R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A.
Witten, “Contact line deposits in an evaporating drop,” Phys. Rev. E 62,
756 �2000�.

5H. Hu and R. G. Larson, “Evaporation of a sessile droplet on a substrate,”
J. Phys. Chem. B 106, 1334 �2002�.

6H. Hu and R. G. Larson, “Analysis of the microfluid flow in an evaporat-
ing sessile droplet,” Langmuir 21, 3963 �2005�.

7H. Hu and R. G. Larson, “Analysis of the effects of Marangoni stresses on
the microflow in an evaporating sessile droplet,” Langmuir 21, 3972
�2005�.

8H. Hu and R. G. Larson, “Marangoni effect reverses coffee-ring deposi-
tions,” J. Phys. Chem. B 110, 7090 �2006�.

9C. Poulard, G. Guéna, A. M. Cazabat, A. Boudaoud, and M. Ben Amar,
“Rescaling the dynamics of evaporating drops,” Langmuir 21, 8226
�2005�.

10C. Poulard, G. Guéna, and A. M. Cazabat, “Diffusion-driven evaporation
of sessile drops,” J. Phys.: Condens. Matter 17, S4213 �2005�.

11Y. O. Popov, “Evaporative deposition patterns: spatial dimensions of the
deposit,” Phys. Rev. E 71, 036313 �2005�.

12E. Sultan, A. Boudaoud, and M. Ben Amar, “Evaporation of a thin film:
diffusion of the vapour and Marangoni instabilities,” J. Fluid Mech. 543,
183 �2005�.

13L. Grandas, C. Reynard, R. Santini, and L. Tadrist, “Experimental study of
the evaporation of a sessile drop on a heated wall. Wetting influence,” Int.
J. Therm. Sci. 44, 137 �2005�.

14N. Shahidzadeh-Bonn, S. Rafaï, S. A. Azouni, and D. Bonn, “Evaporating
droplets,” J. Fluid Mech. 549, 307 �2006�.

15G. Guéna, C. Poulard, M. Voué, J. De Coninck, and A. M. Cazabat,
“Evaporation of sessile liquid droplets,” Colloids Surf. A 291, 191 �2006�.

16G. Guéna, C. Poulard, and A. M. Cazabat, “The leading edge of evapo-
rating droplets,” J. Colloid Interface Sci. 312, 164 �2007�.

17G. Guéna, C. Poulard, and A. M. Cazabat, “Evaporating drops of alkane
mixtures,” Colloids Surf. A 298, 2 �2007�.

18G. Guéna, P. Allançon, and A. M. Cazabat, “Receding contact angle in the
situation of complete wetting: Experimental check of a model used for
evaporating droplets,” Colloids Surf. A 300, 307 �2007�.

19X. Xu and J. Luo, “Marangoni flow in an evaporating water droplet,”
Appl. Phys. Lett. 91, 124102 �2007�.

20W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone,
“Influence of substrate conductivity on circulation reversal in evaporating
drops,” Phys. Rev. Lett. 99, 234502 �2007�.

21S. David, K. Sefiane, and L. Tadrist, “Experimental investigation of the
effect of thermal properties of the substrate in the wetting and evaporation
of sessile drops,” Colloids Surf. A 298, 108 �2007�.

22G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, “A
mathematical model for the evaporation of a thin sessile liquid droplet:
Comparison between experiment and theory,” Colloids Surf. A 323, 50
�2008�.

23G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, “The
strong influence of substrate conductivity on droplet evaporation,” J. Fluid
Mech. 623, 329 �2009�.

24R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and
Liquids, 4th ed. �McGraw-Hill, New York, 1987�.

25J. R. Ockendon, S. D. Howison, A. A. Lacey, and A. B. Movchan, Applied
Partial Differential Equations �Oxford University Press, Oxford, 1999�,
pp. 179–181.

052101-7 Evaporation of a thin droplet on a thin substrate Phys. Fluids 21, 052101 �2009�

Downloaded 21 Jun 2013 to 129.215.19.194. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/0021-9797(77)90396-4
http://dx.doi.org/10.1021/la00007a076
http://dx.doi.org/10.1038/39827
http://dx.doi.org/10.1103/PhysRevE.62.756
http://dx.doi.org/10.1021/jp0118322
http://dx.doi.org/10.1021/la047528s
http://dx.doi.org/10.1021/la0475270
http://dx.doi.org/10.1021/jp0609232
http://dx.doi.org/10.1021/la050406v
http://dx.doi.org/10.1088/0953-8984/17/49/015
http://dx.doi.org/10.1103/PhysRevE.71.036313
http://dx.doi.org/10.1017/S0022112005006348
http://dx.doi.org/10.1016/j.ijthermalsci.2004.07.002
http://dx.doi.org/10.1016/j.ijthermalsci.2004.07.002
http://dx.doi.org/10.1017/S0022112005008190
http://dx.doi.org/10.1016/j.colsurfa.2006.07.021
http://dx.doi.org/10.1016/j.jcis.2006.06.023
http://dx.doi.org/10.1016/j.colsurfa.2006.12.008
http://dx.doi.org/10.1016/j.colsurfa.2007.02.009
http://dx.doi.org/10.1063/1.2789402
http://dx.doi.org/10.1103/PhysRevLett.99.234502
http://dx.doi.org/10.1016/j.colsurfa.2006.12.018
http://dx.doi.org/10.1016/j.colsurfa.2007.09.031
http://dx.doi.org/10.1017/S0022112008005004
http://dx.doi.org/10.1017/S0022112008005004

