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Abstract

This work assesses Lagrangian droplet evaporation models frequently used in
spray combustion simulations, with the purpose of identifying the influence
of modeling decisions on the single droplet behavior. Besides more simplis-
tic models, the evaluated strategies include a simple method to incorporate
Stefan flow effects in the heat transfer (Bird’s correction), a method to con-
sider the interaction of Stefan flow with the heat and mass transfer films
(Abramzon-Sirignano model), and a method to incorporate non-equilibrium
thermodynamics (Langmuir-Knudsen model). The importance of each phe-
nomena is quantified analytically and numerically under various conditions.
Evaporation models ignoring Stefan flow are found to be invalid under the
studied conditions. The Langmuir-Knudsen model is also deemed inadequate
for high temperature evaporation, while Bird’s correction and the Abramzon-
Sirignano model are identified as the most relevant for numerical studies of
spray combustion systems. Latter is the most elaborate model studied here,
as it considers Reynolds number effects beyond the empirical correlation of
Ranz and Marshall derived for low-transfer rates. Thus, the Abramzon-
Sirignano model is identified as the state of the art alternative in the scope
of this study.
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1. Introduction

Spray combustion simulations overwhelmingly use an Eulerian-Lagrangian
approach to account for the gas and liquid phase respectively. [1] In this ap-
proach, the liquid droplets are represented by point particles, that move
independently in the computational domain interacting with the gas phase.
This modeling strategy is known to be valid in the dilute spray regime, where
the liquid volume fraction is below 0.001. [2] A crucial aspect besides the
kinematic modeling of these computational particles, is the heat and mass
transfer process resulting in the evaporation of the fuel that ultimately feeds
the reacting front in combustion simulations.

Various strategies have been developed to account for droplet evaporation
considering different aspects of heat and mass transfer. Miller et al. [3] intro-
duced a unified framework of different evaporation models, and conducted a
comparative study. However, as the models were developed under easily mea-
surable conditions, corresponding to rather large droplets (∼ 1 mm), their
direct application to spray combustion could be questionable under certain
conditions, where droplet diameters are rather small (∼ 1 µm..10 µm). The
main issue is the homogeneity in the interior of these droplets. While, in
measurements of 1 mm droplets, temperature variations inside the droplet
are important, in the range of interest these can be negligible. The topic
enjoys renewed interest, prompted by the recent experimental investiga-
tion of Verdier et al. [4] using Global Rainbow Thermometry to character-
ize the mean droplet temperatures in a complex lab-scale n-heptane spray
flame. This flame was numerically investigated in the Workshop on Measure-
ment and Computation of Turbulent Spray Combustion by different groups
[5, 6, 7, 8, 9, 10] using Lagrangian droplet models for the evaporating spray
cloud. Specifically, Noh et al. [6] compared various evaporation models fol-
lowing Miller et al. [3], using large-eddy simulation (LES) to asses the droplet
temperature predictions. These studies provide an overview of the state of
the art of spray combustion simulations of gas turbine model combustors,
however the underlying behavior of the droplet evaporation models requires
further studying.

The objectives of the present work are i) to clarify the definition of evapo-
ration models from first principles using a film theory approach, ii) to provide
further understanding on the behavior of the evaporation models under re-
alistic flame-like conditions, iii) to quantify the error made by the models
and the relative importance of specific models, and finally iv) to study the
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behavior of fuels characterized by different volatility. Latter aspect is evalu-
ated by using OME1 (dimethoxymethane, formerly methylal), and 3 alkanes:
n-heptane, n-decane, and n-dodecane, that have a boiling point of 315.0 K,
371.5 K, 447.5 K, and 489.5 K respectively. In this aspect, OME1 is espe-
cially interesting, as it is a high volatility fuel showing the distinctive effects
of high evaporative mass flux even in moderate temperature environments.

In section 2, the models are presented and analyzed under different seen
gas conditions in subsections 3.1 and 3.2 in terms of equilibrium temperatures
(wet-bulb conditions) and single droplet simulations respectively. Finally
conclusions are drawn.

2. Lagrangian droplet modeling

Fuel droplets are commonly modeled in CFD calculations, as stand-alone
Lagrangian particles interacting with the gas phase. In this framework, the
heat and mass transfer is usually treated as an exchange, between the prac-
tically infinite gas phase, and the spherical particle. These assumptions are
justified in the dilute spray regime, where the direct influence of droplet
to droplet interactions is negligible. Furthermore, the length scale of the
droplets in typical spray combustion systems is of O (10 µm), that is below
the smallest length scales of thermo-chemical nonhomogenities associated to
the flame thickness: O (100 µm) [11, §5.1.2], thus the far-field behavior of
the gas phase may be regarded homogeneous with respect to the droplets.

Many widely applied models study the phenomenon of evaporation based
on film theory. Film theory postulates that the differences between interface
and bulk states diminish in a finite δM and δT thickness for the mass and
thermal transfer respectively. Figure 1 summarizes four theoretical scenarios
for the treatment of heat and mass transfer between a spherical particle and
its surroundings. The illustrated scenarios include Mass Transfer (MTD) and
Thermal Transfer (TTD) solely due to Diffusion, and Mass Transfer (MTS)
and Thermal Transfer (TTS) including the convective effect of Stefan flow:
the blowing effect of intense evaporation. Stefan flow is an important phe-
nomena affecting rapidly evaporating droplets, as it obstructs heat transfer
from the high temperature gas to the droplet interface. In this work, both
heat and mass transfer are studied under the quasi-steady state assump-
tion, postulating that the boundary layer surrounding the droplet reaches its
steady conditions infinitely fast. This relaxation is characterized by a time
scale corresponding to unity Fourier number: Fo = tDt,m

d2p
, where t is the time
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Figure 1: Summary of different droplet heat and mass transfer model problems: a) Mass
Transfer solely due to Diffusion (MTD), b) Thermal Transfer solely due to Diffusion
(TTD), c) Mass Transfer including the convective effect of Stefan flow (MTS), d) Thermal
Transfer including the convective effect of Stefan flow (TTS).

scale, Dt,m = O (10 mm2/s) is the thermal diffusivity in the mixture, and dp
is the droplet diameter. The relaxation to the steady state profiles is two
orders of magnitude faster, than the evaporation process itself, as discussed
in subsection 3.2.

2.1. Quasi-steady heat and mass transfer around a sphere

This subsection presents the modeling framework of heat and mass trans-
fer, that is subsequently used in the definition of the evaporation models and
their analysis. The heat and mass fluxes are derived in an isolated manner,
allowing the step-by-step construction of the evaporation models, and the
detailed insight in their behavior.

The diffusive mass flux across gas phase boundary layer surrounding the
droplet is proportional to the gradient of the volatile species. For a species f
with mass fraction Yf dissolved in a bath gas b of mass fraction Yb = 1− Yf

the Hirschfelder’s law defines the diffusive mass flux as:

Φ
diff
M,f = −ρmDm∇Yf , (1)
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where ρm is the density of the mixture, and Dm is the mass diffusion coeffi-
cient of species f in the mixture. Furthermore, in case the gas mixture has
a net mass flux ΦM , species f and b are also transported by convection:

Φ
conv
M,f = YfΦM . (2)

This latter flux is the one related to Stefan flow, i.e.: the net mass flux
caused by the vapor leaving the droplet surface. The convective mass flux is
negligible at low evaporation rates, but it is relevant under flame-like condi-
tions, especially for highly volatile fuels. In the evaporation of single com-
ponent droplets, the net mass flux is the mass flux of the volatile species:
ΦM = ΦM,f , under the assumption that the bath gas is practically insoluble
in the liquid droplet.

Similarly, the diffusive flux of heat is given by Fourier’s law of heat con-
duction:

Φ
diff
T = −λm∇T, (3)

where λm is the thermal conductivity in the gas mixture. However, to deter-
mine the convective heat transport, the net mass flux is used again creating
a coupling between the heat and mass transfer. The enthalpy of the volatile
component is defined using a first order approximation using the definition
of specific heat. Thus, the convective heat flux is:

Φ
conv
T = cp,vap,mΦM,f (T − T0) , (4)

where cp,vap,m is the specific heat of the vapor of species f , and T0 is an
appropriately chosen reference temperature.

The problems illustrated in Fig.1 are rotationally symmetric, thus only
the radial components of fluxes are non-zero. Under the quasi-steady as-
sumption, mass and energy conservation implies that the surface integral of
the radial mass and thermal fluxes ΦM,f,r and ΦT,r are constant within the
film on concentric spheres:

ṁr = 4r2πΦM,f,r = const., (5)

Q̇r = 4r2πΦT,r = const. (6)

Assuming ρmDm = const. and λm = const., the above two equations form
ODEs for the unknowns: Yf(r) and T (r) respectively, with the boundary
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conditions:

Yf(rp) = Yf,i, Yf(rBL,M) = Yf,s, (7)

T (rp) = Tp, T (rBL,T ) = Ts, (8)

where rp is the droplet radius, rBL,M = rp + δM and rBL,T = rp + δT are the
outer film radii of mass and thermal transfer, Yf,i is the vapor mass fraction
on the droplet interface, Yf,s is the seen vapor mass fraction (far-field), Tp is
the droplet temperature, and Ts is the seen gas temperature. The solutions of
Eq. (5)-(8) are presented in Tab. 1. The temperature profile in the presence
of Stefan flow (TTS) is derived below, while the other three solutions are
rather straightforward and can be found in the literature. [12]

MTD Y MTD
f = Yf,i + (Yf,s − Yf,i)

1
r
− 1

rp
1

rBL,M
− 1

rp

MTS
1− Y MTS

f

1− Yf,i

=

(

1− Yf,s

1− Yf,i

)

1
rp

− 1
r

1
rp

− 1
rBL,M

TTD T TTD = Tp + (Ts − Tp)

1
r
− 1

rp
1

rBL,T
− 1

rp

TTS T TTS = Tp + (Ts − Tp)
e
Ξ1

r − e
Ξ1

rp

e
Ξ1

rBL,T − e
Ξ1

rp

Table 1: Solution profiles in the four studied cases of droplet heat and mass transfer, with

Ξ1 =
cp,vap,m

cp,mLem
1

1/rp−1/rBL,M
ln

(

1−Yf,i

1−Yf,s

)

, assuming constant gas phase properties.

To the authors’ knowledge, the Stefan flow effects on heat transfer in a
spherically symmetric systems are often taken to be the same as those derived
in Cartesian coordinates for a flat plate without separate derivations. [3, 12]
It is found, as shown below, that the same correction factor (often known as
Bird’s [12] correction) is used in spherical and Cartesian coordinates.

In the presence of Stefan flow, the radial energy flux is composed by the
diffusive and convective fluxes:

Φ
TTS
T,r = −λm

dT

dr
+ cp,vap,mΦM,f,r(r) (T − T0) . (9)
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Thus, energy conservation is described by the following ordinary differential
equation:

d

dr

(

r2
dT

dr
+ Ξ1T + Ξ2

)

= 0, (10)

where Ξ1 and Ξ2 are constants using the solution of mass transfer in the

presence of Stefan flow: Ξ1 = cp,vap,m
cp,mLem

1
1/rp−1/rBL,M

ln
(

1−Yf,i

1−Yf,s

)

, and Ξ2 =

− cp,vap,m
cp,mLem

1
1/rp−1/rBL,M

ln
(

1−Yf,i

1−Yf,s

)

T0, where cp,m is the specific heat of the gas

mixture, and Lem = λm

cp,mρmDm
is the mass based Lewis number of the vapor

in the bath gas. After performing the variable transformation: θ = T−Tp

Ts−Tp
,

the temperature and its derivative are: T = Tp + θ (Ts − Tp), and dT
dr

=
(Ts − Tp)

dθ
dr

. Eq. (10) can be written as:

d

dr

(

r2
dθ

dr
+ Ξ1θ + Ξ∗

2

)

= 0, (11)

where Ξ∗
2 is a constant. Eq. (11) is a separable differential equation, with the

general solution: θ = C1,T e
Ξ1

r + C2,T , where C1,T and C2,T are integration
constants subject to boundary conditions. By imposing the boundary con-
ditions: θ(rp) = 0, θ(rBL,T ) = 1, one achieves: C1,T =

(

eΞ1/rBL,T − eΞ1/rp
)−1

and C2,T = −C1,T e
Ξ1/rp , thus the temperature profile in steady state is T TTS

as shown in Tab. 1 for the TTS case.

MTD ṁMTD
r = πρmDmdp (Yf,i − Yf,s)

2

1− rp
rBL,M

MTS ṁMTS
r = πρmDmdp ln

(

1−Yf,s

1−Yf,i

) 2

1− rp
rBL,M

TTD Q̇TTD
r = πλmdp (Tp − Ts)

2

1− rp
rBL,T

TTS Q̇TTS
r = πλmdp (Tp − Ts)

2
Ξ1

rp

1− e
Ξ1

rBL,T
−
Ξ1

rp

Table 2: Radial heat and mass flow rates with and without Stefan flow, with Ξ1 =
cp,vap,m

cp,mLem
1

1/rp−1/rBL,M
ln

(

1−Yf,i

1−Yf,s

)

, assuming constant gas phase properties
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The radial heat flux is given by substitution to Eq.(9), and can be ex-
pressed using T0 = Tp:

Φ
TTS
T,r = −λm

(

dT

dr
+

Ξ1

r2
(T − T0)

)

= −λm (Ts − Tp)
1

r2
−Ξ1e

Ξ1

rp

e
Ξ1

rBL,T − e
Ξ1

rp

. (12)

Finally the heat transfer rate is given by Eq.(6):

Q̇TTS
r = πλmdp (Tp − Ts)

(

2
Ξ1

rp

)/(

1− e
Ξ1

rBL,T
−
Ξ1

rp

)

. (13)

Additionally, the total radial mass and heat transfer from the droplet to the
far field are presented in Tab. 2.

To evaluate the transfer rates, one needs to know the mass and heat
transfer film thickness. These thicknesses are commonly inferred from the
empirical heat transfer correlations of spheres, which do not include Stefan
flow. The correlations are formulated to find the Nusselt number Num,0 =

2
(

1− rp
rBL,T

)

such, that: Q̇TTD
r = πλmdp (Tp − Ts)Num,0. Thus, the film

thickness is: δT = dp/ (Num,0 − 2).
Frössling [13] introduced an empirical correlation to assess Nusselt num-

bers of spheres in forced convection in the form:

Num,0 = 2 + CRe1/2m Pr1/3m , (14)

with C = 0.552, Ranz and Marshall [14] reported C = 0.6 in their empir-
ical study. Throughout this work C = 0.6 is retained in accordance with
the Ranz-Marshall model. The heat and mass transfer film thicknesses are
treated analogously:

δT = 1
0.6

Pr−1/3
m Re−1/2

m dp; δM = 1
0.6

Sc−1/3
m Re−1/2

m dp, (15)

where Prm = cp,mµm

λm
is the Prandtl number in the heat transfer film, Scm =

µm

ρmDm
is the Schmidt number of the vapor in the mass transfer film, and

Rem = ρm|us|dp
µm

is the Reynolds number of the moving droplet with the gas
phase viscosity: µm, and the slip velocity between the moving droplet and the
gas phase: us. The mass transfer film thickness corresponds to a Sherwood
number of:

Shm,0 =
2

1−
rp

rBL,M

= 2 + 0.6Re1/2m Sc1/3m . (16)
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Finally, it is implicitly assumed that the gas phase material properties
are constant across the film around the droplet in the models described in
this section. However these properties vary in function of the temperature
and composition in reality. To overcome this difficulty, the assumption of
the existence of mean state is used, such that using the properties of this
state results in minimal error in momentum, heat, and mass transfer. The
subscript "m" represents this mean state.

Yuen and Chen [15] propose the so called "1/3 law", where the mean
properties are evaluated at a virtual state characterized by a weighted average
of the seen and interface composition and temperature:

Tm = αTs + (1− α)Tp; Yk,m = αYk,s + (1− α)Yk,i, (17)

with α = 1/3, and k = 1..S where S is the number of species considered in
the gas phase. Recently this method is applied in most Lagrangian spray
combustion simulations [2, 6, 7, 10], and it is used throughout the present
study. To evaluate the transfer rates at a given far field and droplet surface
conditions, the material properties used in the above equations (cp,vap,m, cp,m,
λm, µm, ρm, Dm) need to be calculated according to the "1/3 law".

The specific heat of the vapor and of the mean gas mixture is calculated
based on the NASA polynomials widely used in reacting flow calculations.
The specific heat of the pure vapor is typically higher than that of the mix-
ture for the studied complex hydrocarbon fuels, meaning, that the factor
cp,vap,m/cp,m of Ξ1 is above unity.

The transport properties: thermal conductivity λm, dynamic viscosity
µm, and the diffusivity of the volatile species Dm, are calculated following
the transport theory of multicomponent mixtures. And the mixture aver-
aged molar diffusivity of the volatile species Dmol

m is used to yield the mass
diffusivity Dm, according to Ebrahimian and Habchi [16]:

Dm = Dmol
m

(

1−Xf,m + Yf,m

S
∑

k=1,k 6=f

Xk,m

Yk,m

)

, (18)

where Xk,m is the molar fraction of species k in the mean mixture.
Finally, the density is evaluated using the ideal gas law:ρm = (PWm) / (RuTm),

where P is the pressure of the system, Wm is the mean molar mass, and Ru

is the universal gas constant. The fuel’s mass diffusivity and mean density
are crucial properties for the evaporation process, as the mass flow rates are
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directly proportional to ρmDm, and this term is also present in the Lewis
number, influencing the Stefan flow effects through the factor Ξ1. The less
volatile hydrocarbon fuels are generally also characterized by lower diffusiv-
ity, further impeding the evaporation.

2.2. Droplet evaporation models

In the present modeling framework, the droplets are treated as homo-
geneous spheres under the infinite conductivity assumption. I.e.: the heat
(and mass) transfer inside the droplet is significantly faster than outside of
it, thus the droplet can be characterized by a constant temperature profile.
The Biot number Bi provides a comparison of the time scales of heat transfer
outside and inside the droplet: Bi = hdp

λp
, where the h is the heat transfer

coefficient in the gas phase: h = −Q̇r

πd2p(Ts−Tp)
and λp is the thermal conductivity

in the liquid phase. Thus, the Biot number is Bi = λmNum

λp
, where Num is an

effective Nusselt number, that may be corrected for considering Stefan flow
effects. The liquid thermal conductivity is and order of magnitude higher,
than the mean gas phase thermal conductivity, and Num is generally low if
the effect of Stefan flow is considered, thus the Biot number is low, and the
infinite conductivity model is valid. In this approach, the droplet is fully
described by two quantities influencing the evaporation: its mass and its
specific enthalpy or temperature.

Ordinary differential equations can be formed to represent the conser-
vation of these quantities in relation to the transfer rates presented in sub-
section 2.1. This model postulates, that while the inner droplet tempera-
ture profile relaxes to a constant temperature infinitely fast, similarly the
gas phase temperature and vapor mass fraction profiles also relax to their
steady state infinitely fast (quasi-steady assumption). The mass change of
the droplet is simply expressed as:

dmp

dt
= −ṁr, (19)

where mp is the mass of the droplet. The energy conservation of a droplet
can be formulated in terms of the droplet temperature as:

dTp

dt
=

−Q̇r

mpcp,p
+

Lv

mpcp,p

dmp

dt
, (20)
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using the definition of the isobaric specific heat cp,p = ∂hp

∂T |p
and the latent

heat of evaporation: Lv = hv−hp, with hp and hv being the liquid and vapor
enthalpies respectively.

The remaining unknown terms of the heat and mass conservation equa-
tions are closed using the standardized material property functions of Daubert
and Danner [17]. The necessary properties are the density of the droplet ρp
relating the droplet mass to the diameter, the specific heat of the liquid phase
cp,p, and the latent heat of evaporation Lv. Furthermore, in the evaporation
models defined below , with the exception of the non-equilibrium models, the
interface vapor mass fraction is related to the droplet temperature assuming
local thermodynamic equilibrium: Yf,i = Y eq

f,i . The saturation pressure Psat

is also evaluated using the functions of Daubert and Danner [17]. In accor-
dance with Rault’s law, the equilibrium vapor mole fraction on the droplet
interface is given by Xeq

f,i = Psat/P . To yield the equilibrium interface vapor
mass fraction, the frozen chemistry assumption is used, postulating that the
bath gas composition is constant in the boundary layer around the droplet:

Y eq
f,i = Xeq

f,i/
[

Xeq
f,i +

(

1−Xeq
f,i

)

Wb

Wf

]

, where Wb is the mean molar mass of the

bath gas, and Wf is the molar mass of the volatile component. The frozen
chemistry assumption speculates, that the chemical reactions are inactive in
the thin boundary layer surrounding the droplet, thus the bath gas species
do not react with the volatile fuel in the film, and the conservation equations
of fuel mass Eq. (5) and enthalpy Eq. (6) only need to consider advection
and diffusion as derived in subsection 2.1.

The different evaporation models used in this work are summarized in
Tab. 3 and further described below. They differ in terms of considering
Stefan flow, introducing additional corrections for the film thickness, and
considering non-equilibrium conditions on the liquid-vapor interface.

2.2.1. Diffusion only model (D/D: MTD + TTD)

The Diffusion only model considers the diffusion based transport quan-
tities derived in subsection 2.1. The mass and heat transfer rates are given
by ṁMTD

r and Q̇TTD
r , thus both rates scale linearly with the "potential dif-

ferences": (Yf,i − Yf,s) and (Tp − Ts). This model is equivalent to M5 (Mass
analogy IIa) of Miller et al. [3].

2.2.2. Classical model (S/D: MTS + TTD)

The Classical model combines the mass transport considering Stefan flow
(ṁMTS

r ) with the thermal transport neglecting Stefan flow (Q̇TTD
r ). Such a

11



combination is quite straightforward, as it is more natural to solve the mass
transfer including Stefan flow (unimolecular diffusion), while in heat transfer
the Stefan flow effects are not inherent to the problem. Nevertheless, this
asymmetry makes the Classical model (S/D) open to doubt. In this case
the mass transfer rate is no longer proportional to the difference between
fuel mass fractions on the interface and in the far-filed, but the rate is gov-

erned by the logarithmic term: ln
(

1−Yf,s

1−Yf,i

)

. This term is widely expressed

as ln (1 +BM), giving the definition of the Spalding mass transfer number:
BM =

Yf,i−Yf,s

1−Yf,i
. The transformation is preferred, since BM expresses the mass

transfer potential in a single variable. It tends to zero at low evaporation
rates, and it provides a more sensitive measure near the boiling point of the
droplet, since BM can reach very high values, as the interface vapor mass
fraction approaches 1. This model is equivalent to M1 (Classical rapid mix-
ing) of Miller et al. [3], and to EM1 of Noh et al. [6]. The mass conservation
equation of the classical model is shown in Tab. 3.

2.2.3. Bird’s correction (B: MTS + TTS)

Bird et al. [12, §19.4,§22.8] noted, that high mass transfer rates distort the
boundary layer profiles, as the energy carried by the unimolecular diffusion
of vapor becomes significant. In the case of forced convection, this results in
decreased heat transfer rates if the net mass transfer is away from the surface
(e.g.: fast evaporation of a droplet).

Bird et al. defined a rate factor β, as the ratio of enthalpy transported
by Stefan flow to the enthalpy transported by conduction in the absence of
the Stefan flow:

β =
cp,vap,mΦ

MTS
M,f,r (Tp − Ts)

Φ
TTD
T,r

, (21)

By substituting the expressions of Tab. 2, β may be expressed as:

β =
cp,vap,m
cp,m

Prm
Scm

Shm,0

Num,0
ln(1 +BM) = φm ln(1 +BM), (22)

where φm = cp,vap,m
cp,m

1
Lem

Shm,0

Num,0
expresses the β ratio’s dependence on factors

other than the Spalding number, and Lem = Scm
Prm

is the Lewis number of the
vapor in the mixture based on the mass diffusivity Dm.
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Bird et al. propose an effective Nusselt number corrected for the effect of
Stefan flow as:

Nu∗,B
m =

β

eβ − 1
Num,0 =

φm ln (1 +BM)

(1 +BM)φm − 1
Num,0, (23)

based on the simultaneous heat and mass transfer of a flat plate using film
theory. Note, that Nu∗,B

m does not have direct relation to the film thickness.
It is merely a factor that represents the effect of film thickness and the effect
of Stefan flow together. Analogous to BM , a Spalding heat transfer number
can be defined as: 1 + BT = (1 +BM)φm . In case Bird’s correction is used,
the heat transfer equation of the droplet takes the form:

dTp

dt
=

πdpλg,mNum,0

mpcp,p
(Ts − Tp)

ln (1 +BT )

BT
+

Lv

mpcp,p

dmp

dt
. (24)

Bird et al. [12] derived the above correction for mass transfer from a flat
interface. However, one may demonstrate that the same correction is to be
applied in spherical coordinates. Bird’s correction considers the radial heat
flux with Stefan flow Q̇TTS

r defined in Eq. (13), the components of the last
term of this equation are:

2
Ξ1

rp
= −βNum,0;

Ξ1

rBL,T
−

Ξ1

rp
= β. (25)

Hence, despite the different solution, the correction proposed by Bird still

holds for spheres as well: Nu∗,B
m /Num,0 = 2Ξ1

rp
/

(

1− e
Ξ1

rBL,T
−
Ξ1

rp

)

= β/
(

eβ − 1
)

.

2.2.4. Abramzon-Sirignano model (AS)

Abramzon and Sirignano [18] argue, that the heat and mass transfer film
thickness is influenced by Stefan flow. The difference between the affected
and unaffected film thickness is expressed by the correction factors FT =
δ∗T/δT and FM = δ∗M/δM , where the ∗ superscript signifies the film thickness
in the presence of Stefan flow. In their study of a vaporizing wedge, they
concluded, that FT and FM are mainly influenced by the transfer numbers
BM and B∗

T . The correction factors take the form:

F (B) = (1 +B)0.7
ln (1 +B)

B
, (26)
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where F (B) can be FT (B
∗
T ) or FM(BM), with B∗

T evaluated using the modi-
fied Sherwood and Nusselt numbers as detailed below. Note, that the valid-
ity range of Eq. (26) is in 0 ≤ B ≤ 20. Strong Stefan flow may thicken the
boundary layers by as much as 28%.

The modified Nusselt and Sherwood numbers take the form:

Nu∗,AS
m = 2 +

Num,0 − 2

FT
; Sh∗,AS

m = 2 +
Shm,0 − 2

FM
, (27)

Finally, the model is closed, by relating the Spalding transfer numbers of mass
and energy through B∗

T = (1 +BM)φ
∗

m − 1, where φ∗
m = cp,vap,m

cp,m
1

Lem

Sh∗,AS
m

Nu∗,AS
m

is

the parameter introduced in Eq. (22), but evaluated at the modified Nusselt
and Sherwood numbers. Thus, the Abramzon-Sirignano model is implicit
and has to be solved iteratively, considering φ∗

m = φm
Sh∗,AS

m

Shm,0

Num,0

Nu∗,AS
m

.

Sazhin [1] points out, that the naming of modified Nusselt and Sherwood
numbers is a possible source of confusion, as the work of Abramzon and
Sirignano departs from a model, that already considers the Stefan flow effects
in both heat and mass transfer. The correction introduced is regarding the
film thicknesses only. Stefan flow effects should be considered in the heat
transfer as in Eq. (24). Thus, the equations solved using the Abramzon-
Sirignano take the form presented in Tab. 3.
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Figure 2: The minimum possible ratio of corrected and uncorrected Nusselt and Sherwood

numbers of Abramzon and Sirignano [18] parametrized by φ∗
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m
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m

.
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Rearranging Eq. (27) as:

Nu∗,AS
m

Num,0

=
1 + 2 FT−1

Num,0

FT

;
Sh∗,AS

m

Shm,0

=
1 + 2FM−1

Shm,0

FM

, (28)

one can see, that in the limiting case of Rem → 0 (Num,0 → 2, Shm,0 → 2),
there is no correction, irrespective of the transfer rates, since the "film"
thickness at Rem → 0 approaches infinity. However, for high Nusselt and
Sherwood numbers of fast moving droplets, the correction is limited by:
(

Nu∗,AS
m

Num,0

)

min
= 1

FT
,
(

Sh∗,AS
m

Shm,0

)

min
= 1

FM
. The typical values of the correc-

tion at the high Reynolds number limit are illustrated in Fig. 2, showing
that the Abramzon-Sirignano model can result in a maximum of 22% further
reduction of Nusselt and Sherwood numbers compared to Bird’s correction.
Note, that here BT is clipped at 20 according to the validity range of Eq. (26),
affecting the curves of φ∗

m > 1.

2.2.5. Langmuir-Knudsen models (LK1,LK2)

In the discussion above, the surface composition is determined using the
equilibrium vapor pressure on the droplet surface, and the frozen chemistry
assumption. Former means, that the partial pressure of the volatile com-
ponent on the droplet interface is the saturation pressure corresponding to
the interface temperature. While latter refers to the assumed inactivity of
chemical reactions in the mass transfer film. The Langmuir-Knudsen model
considers an additional resistance in the mass transfer, by postulating that
the vapor mole fraction on the droplet interface is not at equilibrium.

The non-equilibrium mole fraction on the droplet surface may be cal-
culated as: Xneq

f,i = Xeq
f,i −

2LK

dp
β, where β can be evaluated: in model

LK1 from the equilibrium mass transfer rate: βeq = φm ln (1 +Beq
M), or in

model LK2 iteratively from the non-equilibrium mass transfer rate: βneq =
φm ln (1 +Bneq

M ), where Beq
M and Bneq

M are the Spalding mass transfer numbers
evaluated using the equilibrium and non-equilibrium surface mass fractions

respectively, and LK = ρmDm

√

2πTp
Ru

Wf
/ (αeP ) is the Knudsen layer thick-

ness, with αe = 1 molecular accommodation coefficient.
The non-equilibrium interface vapor mass fraction Y neq

f,i is still calculated
with the frozen chemistry assumption, but replacing Xeq

f,i with Xneq
f,i . In case

the Langmuir-Knudsen model is used, the Spalding number is evaluated with
the non-equilibrium interface vapor mass fraction. However, the representa-
tive gas phase properties are calculated assuming equilibrium conditions,
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thus an additional iterative lookup of the mean properties can be avoided.
[3] However, the calculation of the surface mole fraction requires an iterative
solution for model LK2. The models include Bird’s correction, but using
the non-equilibrium transfer numbers evaluated using the non-equilibrium

surface mass fraction: Bneq
M =

Y neq
f,i −Yf,s

1−Y neq
f,i

, and Bneq
T = (1 +Bneq

M )
φm − 1.

D/D
dTp

dt
=

πdpλmNum,0

mpcp,p
(Ts − Tp) +

Lv

mpcp,p

dmp

dt
dmp

dt
= −πdpρmDmShm,0 (Yf,i − Yf,s)

S/D
dTp

dt
=

πdpλmNum,0

mpcp,p
(Ts − Tp) +

Lv

mpcp,p

dmp

dt
dmp

dt
= −πdpρmDmShm,0 ln (1 +BM)

B
dTp

dt
=

πdpλmNum,0

mpcp,p
(Ts − Tp)

ln (1 +BT )

BT
+

Lv

mpcp,p

dmp

dt
dmp

dt
= −πdpρmDmShm,0 ln (1 +BM)

AS
dTp

dt
=

πdpλmNu∗,AS
m

mpcp,p
(Ts − Tp)

ln (1 +BT )

BT

+
Lv

mpcp,p

dmp

dt
dmp

dt
= −πdpρmDmSh

∗,AS
m ln (1 +BM )

LK
dTp

dt
=

πdpλmNum,0

mpcp,p
(Ts − Tp)

ln (1 +Bneq
T )

Bneq
T

+
Lv

mpcp,p

dmp

dt
dmp

dt
= −πdpρmDmShm,0 ln (1 +Bneq

M )

Table 3: Summary of the different evaporation models. D/D: diffusion only model, S/D:
Classical model, B: Bird’s correction, AS: Abramzon-Sirignano model, LK: Langmuir-
Knudsen model.

3. Single droplet behavior

3.1. Wet-bulb conditions

In psychrometry, the thermodynamic web-bulb temperature is defined as
the temperature of adiabatic saturation, i.e.: the temperature to which a
given fuel/bath gas mixture can be adiabatically cooled by the evaporation
of the fuel at the same temperature into the vapor/bath gas mixture [19].
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Figure 3: Illustration of the thermodynamic wet-bulb temperature definition.

Figure 3 illustrates the concept of adiabatic saturation using the nomen-
clature of this work, where T th

p is the thermodynamic wet-bulb temperature,
Yf,s and Ts are the fuel mass fraction and temperature at the studied gas
conditions, while Y th

f,i is the fuel mass fraction at saturated conditions. At
the outlet of the control volume, the gas phase flow is in equilibrium with the
liquid reservoir: i) the liquid and the gas phase are at the same temperature
T th
p , ii) the partial pressure of fuel in the gas is the saturation pressure at T th

p .
The model problem is characterized by an inlet mass flow rate of ṁ. The
mass flow rate of evaporation ṁf is such, that Yf,i is reached at the outlet:

ṁf =
Y th
f,i − Yf,s

1− Y th
f,i

ṁ. (29)

The heat transfer to the liquid reservoir solely facilitates the evaporation,
thus the energy conservation takes the form:

ṁ
(

hs (Ts)− hs

(

T th
p

))

= ṁfLv, (30)

hs (Ts)− hs

(

T th
p

)

= Bth
MLv, (31)

where hs(Ts) is the enthalpy at the inlet, and hs(T
th
p ) is the enthalpy at the

inlet composition but evaluated at the thermodynamic wet-bulb temperature.
Eq. (31) may be solved for T th

p at the given inlet conditions.
Figure 4 shows the solutions of Eq. (31) at atmospheric pressure for

OME1, n-heptane, n-decane, and n-dodecane. The wet-bulb temperature
T th
p , the corresponding vapor mass fraction Y th

f,i , and the Spalding mass trans-
fer number Bth

M are presented as function of the inlet temperature Ts, and
the inlet vapor mass fraction Yf,s.

The wet-bulb temperature asymptotically approaches the boiling point of
the fluid as the inlet temperature and vapor mass fraction increase. Conse-
quently, the wet-bulb vapor mass fraction approaches unity. The conditions
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Figure 4: Thermodynamic wet-bulb conditions of OME1, n-heptane, n-decane, and n-
dodecane at atmospheric pressure with air as bath gas according to Eq. (31).

are evaluated under seen gas temperatures ranging from 300 K to 2000 K.
Concentrating on the Yf,s = 0 cases, one can identify that the volatility of the
different fuels has the greatest effect at low seen gas temperatures. While
in case of OME1, the wet-bulb vapor mass fraction Y th

f,i is already ∼ 0.18
at Ts = 300 K, it is closer to zero in case of the other fuels, and n-decane
and n-dodecane even show an inflection point in the wet-bulb vapor mass
fraction.

The proposed experiment of Fig. 3 is defined with the following hypothe-
ses: the domain is adiabatic to the environment, the liquid surface is large
enough to reach equilibrium at the outlet, and the liquid is at a constant
temperature equal to the outlet temperature. A more practical point of view
is given by the psychrometric wet-bulb temperature, that is defined by find-
ing the equilibrium solution of the droplet at dTp

dt
= 0, where the received

heat is exactly the heat necessary for the phase transition. The equations
yielding the wet-bulb conditions for the different models are described below
and summarized in Tab. 4.

The diffusion only model (D/D) is only able to produce equilibrium con-
ditions for a limited range of seen temperatures. The inadequacy of the
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Thermodynamic hs (Ts)− hs

(

T th
p

)

= Bth
MLv

Diffusion olny (D/D) cp,vap,m

(

Ts − T
psy,D/D
p

)

= φm (Yf,i − Yf,s)Lv

Classical (S/D) cp,vap,m

(

Ts − T
psy,S/D
p

)

= ln
(

1 +B
psy,S/D
T

)

Lv

Bird’s correction (B) cp,vap,m
(

Ts − T psy,B
p

)

= Bpsy,B
T Lv

Abramzon-Sirignano (AS) cp,vap,m
(

Ts − T psy,AS
p

)

=
φ∗
m

φm
Bpsy,AS

T Lv

Langmuir-Knudsen (LK) cp,vap,m
(

Ts − T psy,LK
p

)

= Bneq,psy,LK
T Lv

Table 4: Summary of the wet-bulb conditions of different evaporation models. D/D:
diffusion only model, S/D: Classical model, B: Bird’s correction, AS: Abramzon-Sirignano
model, LK: Langmuir-Knudsen model.

model is demonstrated in Appendix A. The application of the diffusion
only model should be limited to low temperature, however choosing it over
the other models presented here cannot be justified. The classical evapora-
tion model (S/D) is also flawed due to the arbitrary consideration of Stefan
flow in only the mass transfer. It is able to produce steady wet-bulb states
at any seen temperature, as explained in Appendix B, however the result-
ing equilibrium conditions are unrealistic. This inconsistency is masked
by the low significance of Stefan flow at low temperature applications where
(BM ≈ ln (1 +BM )), however the model is often extended to regimes where
Stefan flow dominates the overall heat transfer, resulting in highly overesti-
mated evaporation rates. These models are given less attention in the rest
of the present study, as their inherent flaws are are already demonstrated.

The heat and mass transfer corrections of Bird [12], Abramzon and Sirig-
nano [18], and the Langmuir-Knudsen model are considered below. Based
on the dTp

dt
= 0 condition, the wet-bulb conditions of Bird’s correction are

simply given by:

cp,vap,m
(

Ts − T psy,B
p

)

= Bpsy,B
T Lv, (32)

where BT = (1 +BM)φm − 1 is the Spalding heat transfer number. Mean-
while, the wet-bulb conditions for the model of Abramzon and Sirignano are
determined by the equation:

cp,m
(

Ts − T psy,AS
p

)

=
1

Lem

Sh∗,AS
m

Nu∗,AS
m

Bpsy,AS
T

ln
(

1 +Bpsy,AS
T

) ln
(

1 +Bpsy,AS
M

)

Lv,

(33)
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that can be expressed as:

cp,m
(

Ts − T psy,AS
p

)

=
φ∗
m

φm
Bpsy,AS

T Lv, (34)

using the definitions of φ∗
m = cp,vap,m

cp,m
1

Lem

Sh∗,AS
m

Nu∗,AS
m

= φm
Sh∗,AS

m

Shm,0

Num,0

Nu∗,AS
m

.
The wet-bulb conditions of Bird’s correction and the Abramzon-Sirignano

model are almost identical in the studied cases, since the ratio of corrected
and uncorrected Sherwood and Nusselt numbers are rather similar for the two
approaches. Note, that this similarity only concerns the wet-bulb conditions,
the two models do differ in heat and mass transfer rate for non-zero Reynolds
numbers. For the Langmuir-Knudsen model (that includes Bird’s correction),
the wet-bulb conditions can be defined as:

cp,vap,m
(

Ts − T psy,LK
p

)

= Bneq,psy,LK
T Lv, (35)

considering that the Spalding heat transfer number is based on the non-
equilibrium vapor mass fractions.

For simplicity, the results of the Abramzon-Sirignano model are not shown,
since these are virtually the same as the results of Bird’s correction displayed
in Fig. 5. Likewise, the Langmuir-Knudsen model also produces similar equi-
librium conditions to Bird’s correction in case of large droplet diameters.
The influence of the droplet diameter on this model is further discussed in
Appendix C, showing that equilibrium conditions do not exist below a cer-
tain diameter. The wet-bulb conditions of Eq. (32) are compared to the
thermodynamic wet-bulb state through the difference in wet-bulb tempera-
ture ∆TB

p = T psy,B
p − T th

p and vapor mass fraction ∆Y B
f,i = Y psy,B

f,i − Y th
f,i .

The quantities: ∆TB
p , ∆Y B

f,i, and BM of Fig. 5 illustrate how the similarity
between heat and mass transfer equations is restored by considering the effect
of Stefan flow on both transfer rates. Thus, the wet-bulb conditions generally
get closer to the thermodynamic ones. The remaining differences between
Eq. (31) and Eq. (32) are mainly caused by the effect of Lewis number, and
the disparity between the mean gas specific heat and the vapor specific heat
both displayed in Fig. 5.

The parameter φm = cp,vap,m
cp,m

1
Lem

Shm,0

Num,0
combines these Lewis number

(

Lem = λm

cp,mρmDm

)

and specific heat effects. Former parameter expresses the diffusivity of the
volatile species relative to the thermal diffusivity, i.e.: high Lewis numbers
correspond to low fuel diffusivity. While latter provides a measure of the
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Figure 5: Comparison of psychrometric and thermodynamic wet-bulb conditions of OME1,
n-heptane, n-decane, and n-dodecane at atmospheric pressure with air as bath gas consid-
ering Bird’s correction according to Eq. (32). The difference in wet-bulb temperatures and

the corresponding vapor mass fractions are ∆TB
p = T psy,B

p −T th
p , and ∆Y B

f,i = Y
psy,B
f,i −Y th

f,i .
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heat carried by the unimolecular diffusion of the fuel (Stefan flow) com-
pared to heat carried by other advective phenomena where all species are
carried by the flow equally. However, the parameter φm depends also on
the Reynolds number, as Num,0 and Shm,0 are present in this parameter.
Using the Frössling-type correlations for Num,0 and Shm,0 such as the Ranz-
Marshall model, φm is limited between the cp,vap,m

cp,m
1

Lem
and cp,vap,m

cp,m
1

Le
2/3
m

cor-

responding to the low and high Reynolds number limits respectively. As
Fig. 5 shows, the mass-based Lewis number of the volatile component drops
sharply as the seen vapor mass fraction and temperature increase, and the
specific heat ratio cp,vap,m

cp,m
also shows more variation at low seen tempera-

tures, while it is almost constant otherwise. These two distinct regions are
the most pronounced in case of the heavier hydrocarbons, that are charac-
terized by near-zero wet-bulb vapor mass fractions at low seen temperatures.
The change of behavior with increasing seen temperature is explained by the
changes in mean composition, since for high seen temperatures the mean
composition Yk,m is practically constant because the interface composition
approaches pure volatile vapor, while the mean temperature keeps increasing
according to the "1/3 law". The mass-based Lewis number drops sharply
as the mass fraction of vapor increases in the mean gas mixture, since it is
largest in the dilute limit. Overall the high temperature region is dominated
by high specific heat ratios and low Lewis numbers resulting in φm above
unity. If the far field does not contain any of the volatile species (Yf,s = 0),
the Lewis numbers and specific heat ratios show a certain similarity across
the different fuels at high seen temperatures. Thus under these conditions
φm ≈ 1.5 is generally true for all fuels. However, as seen vapor mass fractions
increases, cp,vap,m/cp,m approaches unity slowly, while Lem decreases sharply,
resulting in significantly higher φm for the heavier hydrocarbons.

3.2. Single droplet evaporation

As described above, most of the presented models can yield a psycrometric
wet-bulb temperature, meaning that this temperature behaves as an attractor
of the dynamic system formed by Eq. (19) and Eq. (20). The diffusion only
model (D/D) is limited in this sense, because it clearly does not have an
equilibrium state for high seen temperatures, and the model is simply invalid
for these cases. The Langmuir-Knudsen models (LK1,LK2) show signs of a
similar problem, but only affecting very small droplets sizes.

Meanwhile, under the studied conditions, the mass of the droplet always
approaches zero until the droplet completely evaporates. The mass conser-
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vation equation Eq. (19) can be rewritten in terms of the diameter as:

dd2p
dt

= −
4ṁr

πρpdp
−

2d2p
3ρp

dρp
dt

. (36)

Since ṁr scales linearly with the diameter as summarized in Tab. 2, the
droplet surface (∼ d2p) decreases at a constant rate, if the droplet temper-
ature, Reynolds number, and the seen conditions are constant. The evap-
oration of droplets that reached their equilibrium temperature are widely
described using such "d2" relations [20], simply implying that the evolution

of droplet surface is linear in time:
dd2p
dt

= −K, where K = −
(

dmp

dt

)psy
πρpdp

4

is the vaporization rate constant. A droplet evaporation time can be defined

as: τp,evap =
d2p,0
K

, where dp,0 is the initial droplet diameter, and K is evaluated
under the wet-bulb conditions.
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Figure 6: Comparison of the experimental evaporation rate constants of Chau-
veau et al. [21] against the diffusion only model (D/D), the classical model (S/D), and
Bird’s correction (B) for an n-heptane droplet of dp,0 = 500 µm in nitrogen gas atmo-
sphere. The different figures show the data at different scales. The models are evaluated
between 300 K and 2000 K, with a step size of 25 K.

Chauveau et al. [21] show that most vaporization rate constant measure-
ments significantly overestimate K at high temperature conditions, as addi-
tional heat is transferred to the droplet through support fibers that have a
diameter comparable to the droplet diameter. They propose a measurement
technique of reducing the support fiber diameter by an order of magnitude
eliminating this deterministic measurement error.

Figure 6 shows the comparison of rate constants obtained for a stationary
n-heptane droplet in nitrogen gas atmosphere under psychrometric wet-bulb
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conditions along different seen gas temperatures for the diffusion only (D/D)
and classical (S/D) models and for Bird’s correction (B) along with the mea-
surement data of Chauveau et al. [21]. The other models (AS,LK1,LK2) are
omitted, since they are the same as Bird’s correction (B) for large stationary
droplets. In general, all models overestimate the experimentally determined
evaporation rates at high temperature conditions.

The best agreement with the measurement is observed using Bird’s cor-
rection (B), that qualitatively captures the slope of K as a function of the
seen temperature. The remaining error is limited to a 20% overestimation
and can be attributed to the real gas behavior of the fluid in the heat and
mass transfer films, as suggested by Ebrahimian and Habchi [16]. However,
addressing these effects is out of the scope of the present study. The classi-
cal model (S/D) results in particularly fast evaporation, overestimating the
evaporation rate by a factor of 3.5 for the highest temperature measurement
(Ts = 973.15 K) and producing a 6.8 higher rate than Bird’s correction (B) at
Ts = 2000 K. The diffusion only model (D/D) is assessed both in its range
of applicability and outside of it. In the former regime, it follows closely
the behavior of the classical model (S/D) despite the higher wet-bulb tem-
peratures observed using the diffusion only model (D/D). The behavior of
the model changes drastically, once thermal equilibrium conditions become
impossible and Yf,i is clipped to 1. In this regime, the evaporation rates con-
tinue growing solely because ρmDm increases due to the application of the
"1/3-law". Note that this clipping is nonphysical, and simulations applying
this model would violate energy conservation, as a significant part of the
heat transferred to the droplet is not spent neither on increasing the droplet
temperature, nor on facilitating the phase change.

Comparing the vaportization rate constants K = O (0.1 mm2/s) of Fig. 6,
and the thermal diffusivity Dt,m = O (10 mm2/s), one can see, that the
quasi-steady state assumption of the heat and mass transfer processes is
well-founded, since a unity Fourier number state Fo = tDt,m

d2p
is reached two

orders of magnitude faster, than the time scale of evaporation.
Deprédurand et al. [22] and Castanet et al. [23] showed experimentally,

that in case the initial droplet temperature is significantly lower than the
wet-bulb temperature, then the majority of heat is transferred to the liquid
phase and only a fraction of it facilitates the phase change. A scale of the
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heat-up time may be calculated using the initial heat-up rate:

τp,heat =
T psy
p − Tp,0
(

dTp

dt

)

0

=
mp,0cp,p,0

(

T psy
p − Tp,0

)

−Q̇r,0 − Lv,0ṁr,0

, (37)

where T psy
p is the wet-bulb temperature and the 0 subscript signifies the

terms evaluated at the initial condition. Considering mp,0 ∼ d3p,0, Q̇r,0 ∼ dp,0,
and ṁr,0 ∼ dp,0, this heat-up time scale scales with the initial diameter as:
τp,heat ∼ d2p,0 just like the evaporation time scale τp,evap.
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Figure 7: Illustration of the time scale estimations for the heat-up period and droplet
lifetime. The blue x markers indicate the estimates, while red cross markers provide
a reference based on the numerical simulation of the evaporation process. The heat up
timescale is marked on a magnified plot for clarity. This reference case shows the evolution
of an n-heptane droplet using Bird’s correction with an initial diameter of dp,0 = 50 µm,
and initial temperature difference of T psy

p −Tp,0 = 40 K. The droplet is stationary (Rep =

0) and the seen conditions are Ts = 1500 K and Yf,s = 0.

Figure 7 illustrates the two time scales: τp,heat and τp,evap. The scales
are plotted over the simulated evolution of an n-heptane droplet using Bird’s
correction with an initial diameter of dp,0 = 50 µm, and initial temperature
difference of T psy

p −Tp,0 = 40 K in air. The droplet is stationary (Rep = 0) and
the seen conditions are Ts = 1500 K and Yf,s = 0. Figure 7 also shows two
time scales of the simulated droplet evolution. A heat-up time scale τp,T90% is
defined as the time when the droplet temperature has completed 90% of the
change between the initial temperature Tp,0, and the psychrometric wet-bulb
temperature T psy

p . And the lifetime of the droplet τp,tot is defined as the time
it takes to reach 0.1% of the initial droplet mass. Note, that the simulation
is stopped at this point.
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Such simulations are executed over a wide range of parameters to study
the model behavior and compare the estimates τp,heat and τp,evap to their sim-
ulated counterparts τp,T90% and τp,tot. The four fuels: OME1, n-heptane, n-
decane, and n-dodecane are studied using the proposed models: diffusion only
(D/D), classical (S/D), Bird’s correction (B), Abramzon-Sirignano (AS). The
varied parameters are the initial droplet diameter dp,0 ∈ {0.5, 5, 50, 500} µm,
the difference between the psychrometric wet-bulb temperature and the ini-
tial temperature: T psy

p − Tp,0 ∈ {5, 10, 20, 40} K the Reynolds number Rep ∈
{0, 1, 10, 100, 1000}, and the seen temperature Ts ∈ {500, 750, 1000, 1250, 1500, 1750, 2000}K.
For simplicity the seen vapor mass fraction is kept constant zero.

Figure 8 illustrates the total simulation time τp,tot, compared to the es-
timate assuming the droplet evaporates under wet-bulb conditions τp,evap.
The ratio τp,tot/τp,evap is displayed as a function of the seen gas temperature
Ts. The color scheme indicates the initial temperature difference T psy

p − Tp,0.
The effect of droplet Reynolds number Rep on this ratio is negligible and only
Rep = 0 is displayed here. Likewise, the different initial droplet diameters
dp,0 are not distinguished as the symbols are completely overlapping.

As Fig. 7 shows, this ratio is an indication of what fraction of the droplet
lifetime is spent with heat-up, since τp,tot − τp,evap is the additional time the
droplet spends with reduced evaporation rate due to temperatures lower than
the wet-bulb temperature. The initial droplet diameter dp,0 has no effect on
this property, the droplet Reynolds number Rep has limited influence in the
Abramzon-Sirignano model (AS) only, however, it is too small to visualize.
There is a slight dependence on the seen gas temperature Ts, and most of the
variation can be attributed to the difference between the initial temperature
and the wet-bulb temperature. As expected, the τp,tot/τp,evap ratio decreases
as the initial droplet temperature approaches the wet-bulb temperature, since
the heat-up period diminishes.

Bird’s correction (B) and the Ambramzon-Sirignano model (AS) show
similar trends even at non-zero Reynolds numbers not shown here, as the
presented ratio decreases with the increase of the seen gas temperature Ts,
indicating that the relative importance of the heat-up period diminishes in
high temperature environments. The classical model (S/D) shows an oppo-
site trend, that is better understood observing the evaporation rate constants
of Fig. 6. One may observe, that the evaporation rate constant increases
faster than linear as function of the seen gas temperature. Meanwhile the
heat up time scale is relatively linear as a function of Ts, thus the classi-
cal model (S/D) predicts higher and higher fractions of time spent on the
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Figure 8: Comparison of the evaporation timescale estimate τp,evap and the time necessary
to evaporate 99.9% of the initial droplet mass in simulations. The ratio of the two time
scales is assessed as function of the seen gas temperature under different initial tempera-
tures marked by the color scheme, under different constant Reynolds numbers, and with
different initial droplet sizes. The droplet size and the Reynolds number are not indicated
as there is insignificant dependence on these parameters.

heat-up.
A similar comparison of the time scale estimate and the simulated time

scale is studied for the heat-up period in Appendix D, comparing τp,T90% to
τp,heat. In conclusion the heat-up is completed in 1.5 to 2 times the τp,heat
estimate for Bird’s correction and the Abramzon-Sirignano model, influenced
mostly by the initial droplet temperature. The analysis of Appendix D
further emphasizes the inadequacy of the diffusion only and classical models.
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Overall, according to the analytical derivations of Section 2, the diffusion
only model (D/D) neglects an important part of the physical phenomena
involved in evaporation: Stefan flow, while the classical model (S/D) con-
siders it wrongly. The validation against the experimental data of Chau-
veau et al. [21] underlines this discrepancy as illustrated in Fig. 6. In the
remaining part of the study, the diffusion only model (D/D) and the classical
model (S/D) are disregarded, since their validity is limited to low temper-
ature applications. Only the models correctly considering Stefan flow are
analyzed below.

3.2.1. Reynolds number effects in the Abramzon-Sirignano model (AS)

As shown in Fig. 2, the Abramzon-Sirignano model (AS) introduces a
modification to Bird’s correction (B), that only acts in case of finite film
thickness, i.e.: in case of non-zero Reynolds number. The correction is limited
to a maximum of 22% reduction of the transfer rates in very high Reynolds
numbers.

The ratio of time scale estimates of evaporation are shown in Fig. 9 a-d
and of heat-up at different initial temperatures in Fig. 9 e-t for the Abramzon-
Sirignano model (AS) and Bird’s correction (B) respectively. As expected,
the additional correction introduced by Abramzon and Sirignano [18] in-
creases the time scales for the combination of high Reynolds numbers with
high Spalding mass transfer numbers. The degree of time scale augmenta-
tion is within 30% under the studied conditions. These values are approached
only at high seen temperatures and high Reynolds numbers. For low tem-
perature applications, the Abramzon-Sirignano model (AS) only affects the
highly volatile OME1, the rest of the studied fuels is practically unaffected
at seen gas temperatures of 300 K.

The evaporation time scales displayed in Fig. 9 a-d are evaluated under

the wet-bulb conditions according to τp,evap =
d2p,0
K

. This ratio shows a clear
growth as function of the Reynolds number Rep, and the seen gas temperature
Ts. The correction factor of Abramzon and Sirignano [18] saturates after a
certain Spalding mass transfer numbers is reached, thus the τAS

p,evap/τ
B
p,evap

ratio similarly reaches a plateau with increasing seen gas temperatures. The
dependence on seen vapor mass fraction is minor.

The heat-up time scales are shown for different initial temperatures in
Fig. 9 e-t where ∆T0 = T psy,B

p − Tp,0 is the difference between the psychro-
metric wet-bulb temperature given by Bird’s correction and the initial droplet
temperature. Note, that this means that Tp,0 is the same for both Bird’s cor-
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Figure 9: Comparison of the evaporation (a-d) and heat-up (e-t) timescales between the
Abramzon-Sirignano model (AS) and Bird’s correction (B). The evaporation time scales
are compared under the wet-bulb conditions of the respective models, while the heat-up
time scales are assessed using the same initial temperature: Tp,0 = T psy,B

p −∆T0.

rection (B) and the Abramzon-Sirignano model (AS) even though T psy,B
p and

T psy,AS
p are slightly different. The effect on the heat-up timescale diminishes

as ∆T0 increases and the droplets get further from the wet-bulb conditions,
since the transfer rates are low at high ∆T0, thus only part of the heat-up
process is really affected. Comparing Fig. 9 a-d and Fig. 9 e-h, one can ob-
serve a difference between the behavior of mass and heat transfers. Overall,
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the correction of the heat transfer time scale is higher than that of the mass
transfer time scale, as φm tends to be over unity at higher seen temperatures.
The Spalding mass transfer number is limited to BM < 6 under the studied
conditions (see Fig. 5), so B∗

T > BM and the correction of heat transfer can
reach the maximum 28% while that of mass transfer cannot (see Fig. 2).

In general, the Abramzon-Sirignano model (AS) introduces significant
changes compared to Bird’s correction (B) at high Reynolds numbers, and
the effect is notable even at Rep = 1..10. Such droplet Reynolds numbers are
typically sustained in a turbulent flow field, where the variability of the gas
phase velocity and the inertia of the droplets keeps up a non-zero slip velocity.
Thus, the usage of the Abramzon-Sirignano model (AS) is recommended for
spray combustion simulations.

3.2.2. Langmuir-Knudsen model (LK1,LK2)

The Langmuir-Knudsen models described in Section 2 are rather partic-
ular in the sense, that these models introduce diameter dependence on quan-
tities, that are independent of the diameter in all the other studied models.
For this reason, the wet-bulb conditions are undefined as the droplets do
not approach a specific equilibrium temperature during their lifetime as it
is the case with the other studied models. Furthermore, as already illus-
trated in Appendix C, the non-equilibrium mass transfer number Bneq

M is
limited depending on the droplet diameter. Thus applying the Langmuir-
Knudsen models, the droplets may reach a minimum diameter dp,min in their
lifetime, where the liquid droplet temperature approaches the boiling point
(thus Beq

M → ∞) and energy conservation cannot be satisfied because the
mass transfer is limited by max(Bneq

M ), similarly to the case of the diffusion
only model (D/D).

A number of single droplet simulations were executed using the two differ-
ent Langmuir-Knudsen models: LK1 and LK2. The chosen parameter set is
similar as before: the initial droplet diameter is: dp,0 ∈ {0.5, 2, 5, 20, 50, 500} µm,
the difference between the psychrometric wet-bulb temperature calculated
with Bird’s correction and the initial temperature is: ∆T0 = T psy,B

p − Tp,0 ∈
{0, 40} K the Reynolds number is: Rep ∈ {0, 10, 1000}, and the seen temper-
ature is varied between 300 K and 2000 K with 100 K steps. For simplicity
the seen vapor mass fraction is again kept constant zero. The simulations are
run either until 99.9% of the initial droplet mass is evaporated, or until the
Beq

M > 105 condition is satisfied indicating that dp,min is reached. Latter limit
is further studied in Appendix C, showing that the minimum attainable di-
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ameter can be estimated as: dLK1
p,min ≈ 2LB

Kφ
B
m ln (1 + 105) for the non-iterative

LK1 model. The limiting diameter of the iterative LK2 model follows the
same trend, but the diameter is approximately half: dLK2

p,min ≈ dLK1
p,min/2.
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Figure 10: Ratio of time taken till the final droplet mass is reached in case of Langmuir-
Knudsen models (LK1 and LK2) and Bird’s correction (B) as function of the seen gas
temperature. The models are assessed under various seen gas temperatures, initial temper-
atures, Reynolds numbers, and initial droplet diameters. The initial diameter is indicated
by the color scheme, while symbols indicate the cause of termination of the Langmuir-
Knudsen simulations.

The simulated cases are analyzed in Fig. 10 presenting the time necessary
to reach the final possible droplet mass normalized by the time necessary to
reach the same mass using Bird’s correction. I.e.: in case it is possible to
evaporate 99.9% of the initial droplet mass, the presented ratio is τLKp,tot/τ

B
p,tot

(represented by triangles), where τp,tot is defined in Fig. 7. Otherwise, if the
droplet evaporation cannot be completed, then the denominator of the ratio
is interpolated from the complete simulation using Bird’s correction corre-
sponding to the same mass (represented by dots). This figure quantifies the
importance of using the Langmuir-Knudsen models, as the non-equilibrium
models only deviate from Bird’s correction for very small droplet sizes. Above
an initial droplet size of 20 µm ,this deviation is completely insignificant, and
is omitted here. I.e.: 99.9% of the droplet mass can evaporate, without any
notable non-equilibrium effects.

As the initial droplet size decreases, the non-equilibrium models (LK1,LK2)
become more important, however the diameter limitation discussed in Ap-
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pendix C restricts their applicability to low seen temperatures as the evap-
oration is terminated prematurely. In general, the non-iterative LK1 model
suffers from this limitation to a greater extent. The dp,0 = 20 µm droplets
can complete their evaporation under most studied conditions, but smaller
droplets cannot. Overall, the effects of the LK1 model are either small, be-
cause of the larger droplet size, or the effects get severe enough to impede
full evaporation.

The iterative solution of the non-equilibrium conditions (LK2) is much
less restricted in terms of dp,min, thus even droplets of dp,0 = 0.5 µm can be
successfully simulated under certain seen temperatures. For this reason the
observed effect can be much larger in the cases that complete the evaporation
(Fig. 10 e-h triangles). In general, the effect increases with larger and less
volatile hydrocarbons. In most fuels, the effect monotonously decreases with
increasing seen gas temperature, except in the case of n-dodecane. This
characteristic change of behavior is related to the extremely low volatility of
n-dodecane at Ts = 300 K that can be observed in the other analysis of the
present work.

The behavior of the Langmuir-Knudsen models is further analyzed in
Fig. 11. The figure shows d2p/d

2
p,0 as function of t/d2p,0, for stationary droplets

(Rep = 0) under different seen gas temperature, and zero seen vapor mass
fraction. The scaling of the coordinates, makes the plot independent of initial
droplet size in case of Bird’s correction, as the evaporation constant is only
a function of the seen conditions and material properties. Thus, Fig. 11
can highlight the differences introduced by the non-equilibrium models. The
figure provides examples of simulations using the iterative and non-iterative
models for three different initial droplet diameters. In this scale, the effect
appears quite insignificant even for these small droplets except for the sub-
micron case of dp,0 = 0.5 µm.

The evolution of the droplet size highlights a key issue of the non iterative
method (LK1) related to the phenomena shown in discussed in Appendix C:
the non-equilibrium mass transfer number Bneq

M has a local maximum in
droplet temperature Tp then drops to zero and this zero-crossing is rather
far from the boiling point in case of sub-micron droplet diameters (Fig. C.14
i-l). Thus the LK1 model can completely impede the evaporation process
before the highest temperatures are reached, resulting in cases like the one
presented in Fig. 11 h) for dp,0 = 0.5 µm where the droplet temperature
keeps increasing even though the evaporation is over. The LK2 model does
not show this behavior, as it asymptotically approaches a maximum Bneq

M as
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Figure 11: Evolution of droplet surface in time using the non-iterative (LK1) and iterative
(LK2) Langmuir-Knudsen models under various seen gas temperatures. The Reynolds
number and seen vapor mass fraction are zero. Three initial diameters are indicated by
the color scheme in dp,0 ∈ {0.5, 2, 5} µm, while the initial droplet temperature is given
by the wet-bulb conditions using Bird’s correction. The equilibrium solution using Bird’s
correction (B) is indicated for reference.

the droplet temperature increases (Fig. C.14). However, this model is also
limited by a minimum possible diameter.

Overall, the applicability of the Langmuir-Knudsen models is limited on
two fronts. On one side, if the initial droplet diameter is too large, the models
have barely any effect on the major part of the evaporation process (99.9%
of the initial mass can be evaporated without any significant effect.) On the
other side, if the initial droplet diameter is too small, the models are limited
by the minimum achievable diameter. Latter limitation increases with the
seen gas temperature, thus the Langmuir-Knudsen models can only be used
in low temperature studies. Furthermore, experimental evidence is lacking
for assessing the performance of these models, as sub-micron measurements
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are not yet possible. State of the art measurements can study droplets of
dp,0 = O (100) µm. [21]

4. Concluding Remarks

The fundamentals of analytical heat and mass transfer sub-models have
been reviewed in the context of film theory for spherical droplets. The com-
bination of these two sub-models yield widely used evaporation models under
the infinite conductivity assumption, that describe the evolution of droplet
size and temperature at given far-field ("seen") gas phase conditions. The
family of models considering Stefan flow in both heat and mass transfer stand
out in terms of performance among the studied options, namely the model de-
noted as Bird’s correction (B), the Abramzon-Sirignano model (AS) and the
Langmuir-Knudsen model (LK). The two other studied models either ignore
Stefan flow as in the case of diffusion only model (D/D), or partially ignore
it in case of the classical model (S/D). Both resulting in nonphysical behav-
ior in high temperature environments. Unfortunately many of these models
are validated at low temperature conditions where all of them behave very
similarly.

It must be noted, that Bird et al. [12, §19.4,§22.8] originally derived the
heat transfer correction term for evaporation or condensation over a flat plate.
This correction is expressed in terms of non-dimensional numbers (β) and it is
used on spherical cases such as evaporating droplets. In the present work, the
correction is derived from first principles to spherical coordinates, yielding the
surprising conclusion, that Bird’s correction is indeed the same for droplets
and flat plates despite the fundamental differences in configuration.

The evaporation characteristics of four different pure compounds: OME1,
n-heptane, n-decane, and n-dodecane are studied using the aforementioned
models. These fuels differ in terms of volatility, that causes the most variation
between their behavior. The difference is most striking in low temperature
environment, where n-dodecane behaves radically different from the more
volatile fuels. The evaporation of single droplets of these fuels is numerically
investigated under an extensive range of conditions from ambient to flame-
like environments. It is found, that the initial heat-up process can extend the
droplet lifetime by ∼ 10% if the initial temperature is sufficiently far from
the wet-bulb conditions.

Finally, the additional considerations of non-equilibrium thermodynam-
ics [3] and interaction between the mean flow and the Stefan flow [18] are
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evaluated. It is found that the Langmuir-Knudsen model needs an iterative
process, to correctly evaluate the non-equilibrium vapor pressures. Even with
this iterative solution, the application of this model shall be limited to low
temperature evaporation of sub-micron droplets, where the computation is
not limited neither by the inherent instability of the model, nor by its neg-
ligible effect compared to Bird’s correction. Thus, the Langmuir-Knudsen
models are not suitable for combustion simulations. The Reynolds number
effects considered by the Abramzon-Sirignano model are found to be signif-
icant even at relatively low Reynolds numbers. The authors consider this
model to be the state of art in Lagrangian fuel spray modeling under the
conditions of the present work, and it can be used with confidence for liquid
fuel combustion applications.
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Appendix A. Wet-bulb conditions of the diffusion only model (D/D)

For the diffusion only model (D/D), the psychrometric wet-bulb condi-
tions are given by:

cp,m
(

Ts − T psy,D/D
p

)

=
1

Lem

Shm,0

Num,0

(

Y
psy,D/D
f,i − Yf,s

)

Lv. (A.1)

The far-field temperature Ts, and vapor mass fraction Yf,s are boundary
conditions of the problem, while the wet-bulb temperature T

psy,D/D
p is the

unknown, and the interface vapor mass fraction Y
psy,D/D
f,i is a monotonous

increasing function in temperature up to the boiling point of the liquid. At
atmospheric pressure, far from the critical point, the latent heat of vapor-
ization Lv is only weakly dependent on the droplet temperature. The other
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coefficients: cp,vap,m and φm are also constrained to a range of finite values.
Thus, Eq. (A.1) only has a solution for a constrained range of far-field tem-
peratures, unlike in the case of thermodynamic wet-bulb conditions. This
highlights the limitation of neglecting Stefan flow in the evaporation model.
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Figure A.12: Comparison of psychrometric and thermodynamic wet-bulb conditions of
OME1, n-heptane, n-decane, and n-dodecane at atmospheric pressure with air as bath
gas according to the diffusion only model (D/D): Eq. (A.1). The difference in wet-bulb

temperatures and the corresponding vapor mass fractions are ∆T
D/D
p = T

psy,D/D
p − T th

p ,

and ∆Y
D/D
f,i = Y

psy,D/D
f,i − Y th

f,i .

Figure A.12 shows the difference between the thermodynamic wet-bulb
conditions and the wet-bulb conditions given by Eq. (A.1) for the diffusion
only model where the differences in wet-bulb temperatures and the corre-
sponding vapor mass fractions are ∆T

D/D
p = T

psy,D/D
p − T th

p , and ∆Y
D/D
f,i =

Y
psy,D/D
f,i − Y th

f,i respectively. The curves corresponding to equilibrium states
are presented as a function of the seen gas temperature Ts, and parametrized
by the seen gas vapor mass fraction Yf,s, and the Reynolds number Rem. This
latter dependence corresponds to Reynolds numbers of Rem ∈ {0, 1, 10, 100, 1000},
the legend omits this dependence for simplicity, as the equilibrium condi-
tions are rather insensitive to the Reynolds number in this exhaustive range.
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Nonetheless to interpret the variation: lighter colors correspond to higher
Reynolds numbers.

The vicinity of the saturation condition is illustrated best by the Spalding
mass transfer number BM . It is evident, that in case of the diffusion only
model (D/D), the wet-bulb conditions are only found below a certain seen
gas temperature. In Fig. A.12, the wet-bulb calculations are arbitrarily cut-
off where BM = 20, thus the maximum displayed seen temperature is:
max (Ts)

D/D = Tp|BM=20 +
φm

cp,vap,m
Lv

(

Yf,i|BM=20 − Yf,s

)

. After this limit, the
Spalding transfer number keeps approaching infinity, while the change in
max (Ts)

D/D is small. The limiting values on Fig. A.12 for Yf,s = 0 and
Rem = 0 are: 574.0 K, 561.9 K, 594.7 K, 610.9 K, for OME1, n-heptane,
n-decane, and n-dodecane respectively. If a cut-off point of BM = 200 was
chosen, the limiting seen temperatures would be approximately 20 K higher.
However it does not mean, that the effect of Stefan flow could be neglected
below this limit. The application of this model should be limited to low
temperature, however choosing it over the other models presented here is
only justified by its computational simplicity. Considering the operations
needed to evaluate the mean gas properties, the material properties of the
liquid, and the phase change properties, this advantage is negligible compared
to Bird’s correction (B) (that do not need iterative methods to determine the
rate of evaporation). Thus the authors recommend avoiding the usage of the
diffusion only model (D/D) altogether, especially in combustion applications.

Appendix B. Wet-bulb conditions of the classical model (S/D)

In case of the classical evaporation model (S/D), the wet-bulb conditions
are given by:

cp,vap,m
(

Ts − T psy,S/D
p

)

= ln
(

1 +B
psy,S/D
T

)

Lv. (B.1)

The differences between the psychrometric and thermodynamic wet-bulb con-
ditions are illustrated in Fig. B.13 through the difference in wet-bulb tem-
perature and vapor mass fraction: ∆T

S/D
p = T

psy,S/D
p − T th

p , and ∆Y
S/D
f,i =

Y
psy,S/D
f,i − Y th

f,i respectively.
The classical model yields an equilibrium state at all studied conditions,

since ln
(

1 +B
psy,S/D
T

)

is not limited as the droplet temperature approaches

the boiling point. The equilibrium conditions are rather insensitive to the
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Figure B.13: Comparison of psychrometric and thermodynamic wet-bulb conditions of
OME1, n-heptane, n-decane, and n-dodecane at atmospheric pressure with air as bath gas
according to the classical evaporation model (S/D): Eq. (B.1). The difference in wet-bulb

temperatures and the corresponding vapor mass fractions are ∆T
S/D
p = T

psy,S/D
p − T th

p ,

and ∆Y
S/D
f,i = Y

psy,S/D
f,i − Y th

f,i .

Reynolds number. The highest difference between the thermodynamic and
psychrometric conditions is attained with dry air (Yf,s = 0).

The presence of the logarithmic term causes the main difference be-
tween this model and the others (BM 6= ln (1 +BM)). To illustrate this,
ln (1 +BM) is shown on the right axis of Fig. B.13. To maintain equilibrium
temperatures, ln (1 +Bpsy

M ) has to be in the same order of magnitude as Bth
M

in Fig. 4 for high temperature seen gas. This results in significantly higher
droplet temperatures, and surface vapor mass fractions, although not as high
as with the diffusion only model.

The main issue with the classical model (S/D) is the disparity caused by
considering Stefan flow in the mass transfer, but not in the heat transfer.
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Appendix C. Limit of applicability of the Langmuir-Knudsen mod-
els (LK)

In case of the Langmuir-Knudsen models (LK), finding the wet-bulb tem-
perature becomes more complex, as size-dependence interferes with the re-
sults. To illustrate this, the non-equilibrium Spalding mass transfer numbers
of model LK1 and LK2 are presented in Fig. C.14 as function of the droplet
temperature at different seen temperatures, and different droplet diameters.
Note that a coordinate transformation is applied in the droplet temperature:

θ = − ln
(

1− Tp

Tsat

)

to highlight the behavior near the boiling point. Also,

this figure differs from the previously shown examples in the sense, that the
droplet is not at its steady state temperature. Generally, the mass transfer
resembles the equilibrium solution better at higher diameters and low droplet
temperatures.
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Figure C.14: Non-equilibrium Spalding mass transfer numbers given by model LK1 and
LK2 as function of droplet temperature for various liquids, at three different droplet diame-
ters: a,b,c,d) 50 µm, e,f,g,h) 5 µm, and i,j,k,l) 0.5 µm, and at 5 different seen temperatures:
300 K, 500 K, 1000 K, 1500 K, and 2000 K. The seen gas is dry air at atmospheric pressure.

The model without the iterative solution of Xneq
f,i (LK1) is illustrated with
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dashed lines. As the droplet temperature increases the LK1 model shows
local maxima in the mass transfer number, and even drops below 0 with
the further increase of the droplet temperature. Not shown in the graph,
this results in nonphysical cases where the non-equilibrium interface vapor
mass fraction is negative in the further testing of the model, these conditions
are omitted, and Xneq

f,i ≥ 0 is imposed. For the 50 µm droplets (Fig. C.14
a,b,c,d) this shortcoming only takes effect within 1 K of the boiling point,
however as the droplets evaporate, larger and larger portions of the range
of viable droplet temperatures is affected. In conclusion, the LK1 model
cannot be recommended for droplets evaporating at high temperatures like
combustion applications, as it completely eliminates mass transfer at high
droplet temperatures.

As the solid curves of Fig. C.14 illustrate, the LK2 model also limits the
mass transfer numbers to a maximum, but Bneq

M stays injective respect to
the droplet temperature. The maximum attainable mass transfer number
is a function of droplet size, seen temperature and gas composition. Bneq

M

decreases with the seen temperature as the "1/3 law" gives higher Knudsen
layer thicknesses. Overall, the non-equilibrium mass transfer numbers still
approach 0 as the droplet size decreases, but the non-physical local max-
ima and negative mass fractions are avoided with the iterative solution of
βneq = φm ln (1 +Bneq

M ). Bneq
M also decreases with increasing seen vapor mass

fraction, which is not shown here for simplicity.
In conclusion, the Langmuir-Knudsen model may not provide a solution

for Eq. (35), as Bneq,psy,LK
T is bounded since Bneq

M is bounded as shown in
Fig. C.14. On the left hand side of Eq. (35) T psy,LK

p is bounded by the boiling
point, but Ts is unbounded, thus the possible equilibrium states are limited
just like in the case of the diffusion only model (D/D). In case a sufficiently
high Bneq,psy,LK

T cannot be provided, there is no equilibrium state, however
it does not mean the model is invalid, as the temperature takes a finite time
to relax towards new equilibrium states. As Fig. C.14 illustrates, the range
of feasible Spalding mass transfer numbers can accommodate the necessary
values for droplets of dp = 50 µm, since the mass transfer number only
plateaus between 50 and 150 even for a seen temperature of 2000 K, but under
these seen conditions, BM < 6 is sufficient to keep a equilibrium temperature
(Fig. 5). The range of mass transfer number necessary for equilibrium is
only unattainable for very small droplets of dp = O (0.1 µm) ..O (1 µm).
As demonstrated below, in practice the Langmuir-Knudsen model (LK2)
largely behaves similarly to Bird’s correction (B) for droplets that start the
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evaporation in the dp = O (10 µm) range, with a small interval near the
end of the droplets lifetime, where the non-equilibrium effects slow down the
mass transfer and the droplet temperature can quickly rise.

The single droplet simulation data of subsection 3.2.2 is used below to
further demonstrate the limitations of the Langmuir-Knudsen models. In
these simulations the droplets may reach a minimum diameter dp,min in their
lifetime, where the liquid droplet temperature approaches the boiling point.
Figure C.15 presents dp,min as the final diameter in the simulation cases where
Beq

M > 105 is reached. Such conditions are only observed starting from the
initial diameter of dp,0 ∈ {0.5, 2, 5, 20} µm. In the studied parameter range
dp,min appears to be independent of the initial droplet temperature Tp,0, and
there is only a slight dependence on the Reynolds number Rep. Furthermore,
the initial droplet diameter dp,0 only affects the minimum possible diameter,
if the energy balance is unsatisfied almost instantly after the start of the
simulation and dp,min ≈ dp,0. Thus the determining factor of dp,min for a
given fuel is the seen gas temperature Ts. The minimum diameter of the
LK1 model can be estimated well, by solving for dp assuming Beq

M = 105

and Xneq
f,i = 0 and using material properties from the wet-bulb conditions of

Bird’s correction (B) as indicated by the dashed lines in Fig. C.15: dLK1
p,min ≈

2LB
Kφ

B
m ln (1 + 105). As expected, the iterative process of the LK2 model

extends its applicability range, and produces a minimum diameter less than
half of the LK1 model.
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Figure C.15: Minimum diameter of applicability of the Langmuir-Knudsen models (LK1
and LK2) as function of the seen gas temperature identified as the diameter where BM >

105 is reached in single droplet simulations. The models are assessed under various seen
gas temperatures, initial temperatures, Reynolds numbers, and initial droplet diameters.
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Appendix D. Heat-up time scale

Figure D.16 shows the ratio of the simulated heat-up time scale and the
estimate derived from the initial temperature slope: τp,T90%/τp,heat, for the
single droplet simulation cases of subsection 3.2. This ratio is displayed
in a similar manner as in Fig. 8. The influence of initial droplet diameter
is negligible on this property, thus the symbols are overlapping. Similarly,
this timescale ratio is not dependent on the Reynolds number except in the
case of the Abramzon-Sirignano model (AS), thus the otherm models only
display the Rep = 0 case. Two different Reynolds numbers are shown for
AS, to illustrate the small influence of the Reynolds number on the heat up
estimation.

Taking Bird’s correction (B) as reference, the τp,T90%/τp,heat ratio ranges
between 1.5 and 2.5, indicating a behavior similar to the example shown in
Fig. 7, where the droplet temperature smoothly transitions to the wet-bulb
condition. There is no variation in terms of dp,0 and Rep, and even the seen
temperature only has a weak effect on this ratio. At a given fuel, the ratio is
varied the most by the initial temperature difference T psy

p − Tp,0, indicating,
that the temperature evolution during the heat-up period is not self-similar,
but depends on the initial value. The dependence on the initial temperature
diminishes as the volatility of the fuels decrease, i.e.: the variation is highest
for OME1, and it diminishes almost completely for n-dodecane, especially
under high seen gas temperatures. The high variability of the displayed ratio
indicates, that the τp,heat estimate can only be used, to determine the order
of magnitude of the heat-up period, but it is not accurate enough to define
an exact relation.

The different modeling strategies are also compared on Fig. D.16. The
Abramzon-Sirignano model (AS) behaves almost identically to Bird’s cor-
rection (B), except that the τp,T90%/τp,heat ratio slightly increases with the
Reynolds number, further comparison is provided below. In the case of the
diffusion only model (D/D), the two regimes shown in Fig. 6 are clearly dis-
tinguishable. For Ts = 500 K, this model is able to provide a stable solution,
and consequently the ratio is approximately 2, since the droplet temperature
reaches wet-bulb condition smoothly. In case of the rest of the seen temper-
atures, the diffusion only model (D/D) is unable to find stable solutions, and
the droplet reaches the boiling point in approximately one τp,heat time. The
classical model (S/D) shows very similar τp,T90%/τp,heat ratio to Bird’s correc-
tion (B) at lower seen gas temperatures, but it transitions to fast heat-up as
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Figure D.16: Comparison of the heat-up timescale estimate τp,heat and the time necessary
to complete 90% of the total temperature change in simulations. The ratio of the two
time scales is assessed as function of the seen gas temperature under different initial
temperatures marked by the color scheme, under different constant Reynolds numbers
marked by the symbols, and with different initial droplet sizes. The droplet size is not
indicated as there is no dependence, and similarly the Reynolds number is only indicated
for the Abramzon-Sirignano model (AS).

the seen gas temperature increases. This is due to the inconsistent consid-
eration of Stefan flow in only the mass transfer, as this model needs orders
of magnitudes higher Spalding mass transfer numbers than Bird’s correction
(B) to maintain the energy balance (see Fig. B.13 and Fig. 5). Thus, in the
transient cases of the present analysis, the latent heat of evaporation only
starts to have a significant effect, once the droplet temperature is near the
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boiling point in case of high seen gas temperatures.
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