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Abstract 

 

Irrigation in the Central Valley of California is essential for successful wine grape production. 

With reductions in water availability in much of California due to drought and competing water 

use interests, it is important to optimize irrigation management strategies. In the current study, 

we investigate the utility of satellite-derived maps of evapotranspiration (ET) and the ratio of 

actual to reference ET (fRET) based on remotely sensed land surface temperature (LST) imagery 

for monitoring crop water use and stress in vineyards. The Disaggregated Atmosphere Land 

EXchange Inverse (ALEXI/DisALEXI) surface energy balance model, a multi-scale ET remote 

sensing framework with operational capabilities, is evaluated over two Pinot noir vineyard sites 

in central California that are being monitored as part of the Grape Remote sensing Atmospheric 

Profile and Evapotranspiration eXperiment (GRAPEX).  A data fusion approach is employed to 

combine ET timeseries retrievals from multiple satellite platforms to generate estimates at both 

the high spatial (30m) and temporal (daily) resolution required for field-scale irrigation 

management. Comparisons with micrometeorological data indicate reasonable model 

performance, with mean absolute errors of 0.59 mm d-1 in ET at the daily timestep and minimal 

bias. Values of fRET agree well with tower observations and reflect known irrigation. 

Spatiotemporal analyses illustrate the ability of ALEXI/DisALEXI/data fusion package to 

characterize heterogeneity in ET and fRET both within a vineyard and over the surrounding 

landscape. These findings will inform the development of strategies for integrating ET mapping 

time series into operational irrigation management framework, providing actionable information 

regarding vineyard water use and crop stress at the field and regional scale and at daily to multi-

annual timescales. 
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Introduction 

 

Water management is a critical aspect of successful grape production in California’s Central 

Valley, which represents over 400,000 hectares valued at approximately 6 billion dollars 

(California Department of Food and Agriculture & USDA National Agricultural Statistics 

Service 2016). Despite competing water use interests and a reduction in water availability over 

much of California due to recent long-term droughts, vineyard acreage and production continues 

to increase, with acreage devoted to wine grapes increasing by 12,950 hectares between years 

2013 and 2016 (California Department of Food and Agriculture & USDA National Agricultural 

Statistics Service 2017). As such, there is significant interest in developing efficient water 

management strategies for these viticulture production systems.  

 

The adoption of an appropriate and efficient irrigation strategy for a specific vineyard is 

predicated on understanding and controlling the vine water stress throughout the season (Girona 

et al. 2009; van Leeuwen et al. 2009; Basile et al. 2011). Moderate vine water stress, achieved 

through the practice of deficit irrigation can improve the composition/quality of grapes used in 

wine production (Williams and Matthews 1990; Williams et al. 1994). The standard indicator for 

vine water stress is the leaf water potential (ΨL), commonly measured using a pressure chamber. 

In some cases, pressure bomb measurements are used in scheduling irrigation for commercial 

vineyards (Girona et al. 2006). However, this practice requires individual leaf measurements, 

limiting its suitability for application over large heterogeneous areas. Techniques for mapping ΨL 

have been developed using high resolution thermal imagery to isolate plant canopy temperatures 

(Bellvert et al., 2016). This technique could be used for mapping variability in vine stress across 

vineyards; however, it would be challenging to provide this information on a routine basis over 

large regions and may require calibration for different climates and vine varieties. 

 

An additional tool for monitoring water stress and use in vineyards is measurement of 

evapotranspiration (ET), which quantifies water loss from the vine and surface to the 

atmosphere. Numerous studies have explored various methods and techniques to measure 

vineyard ET or water use, including lysimeters (Johnson et al. 2005; Azevedo et al. 2008; Netzer 

et al. 2009), eddy covariance (Spano et al. 2000; Ortega-Farias et al. 2010; Rodriguez et al. 

2010), heat pulse or heat balance (Trambouze et al. 1998; Yunusa et al. 1997; Intrigliolo et al. 

2009; Zhang et al. 2010), surface renewal energy balance (Castellvi and Snyder 2010; Moratiel 

and Martinez-Cob 2012), Bowen ratio energy balance (Yunusa et al. 2004; Teixeira et al. 2007; 

Zhang et al. 2011), soil water balance (Singleton and Maudsley 1996; Fooladmand and 

Sepaskhah 2009; Cancela et al. 2012), and the most common and simplest approach, the FAO-56 

method (Allen et al. 1998). However, like the leaf water potential measurement method, these 

approaches simply provide point measurements that are difficult to extrapolate over larger areas 

or fields, and fail to indicate in-field spatial variability (Teixeira et al. 2007).  Such spatial 

variability limits the effective use of irrigation water. Uniform irrigation across a vineyard with 

variable biomass and soil texture, implying differences in plant growth and water requirements, 

will result in the over- or under-watering in these anomalous sections within the vineyard. This 

will result in variability in vegetative growth across the vineyard, and result in non-uniform yield 

and grape composition/quality (Bramley and Hamilton 2004; Bramley et al. 2005; Bellvert et al. 

2012). Errors are further compounded when extrapolating to vineyards outside the area of in-situ 

ET data collection. 
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Satellite remote sensing technology offers the possibility of providing routine spatial information 

useful for determining sub-field and inter-field scale heterogeneity in plant conditions and water 

use. Satellite retrievals of land-surface temperature (LST), derived from thermal-infrared (TIR) 

imagery, have been shown to be particularly useful for estimating ET and plant stress due to the 

sensitivity of soil and canopy temperatures to variable soil moisture availability (Moran 2003). 

Several TIR-based ET mapping algorithms have been developed over the past few decades (e.g. 

Bastiaanssen et al. 1998; Su 2002; Allen et al. 2007; Anderson et al. 1997). Due to significant 

uncertainties associated with determining accurate atmospherically and emissivity corrected 

surface temperature data, most TIR-based models use relative measures of LST variability to 

parameterize ET estimates rather than the absolute LST values (Anderson et al. 1997; 2012). 

This is accomplished either through using an end-member pixel scaling method (spatial 

variability) or a time-differential method (temporal variability). For example, the Surface Energy 

Balance Algorithm for Land (SEBAL; Bastiaanssen et al. 1998) and the Mapping 

Evapotranspiration with Internalized Calibration (METRIC; Allen et al. 2007) methods use TIR 

end-member pixels within a satellite image to represent limiting (minimal ET; hot pixel) and 

non-limiting (potential ET; cold pixel) moisture conditions. The Atmosphere Land Exchange 

Inverse (ALEXI; Anderson et al. 1997; 2007a; 2007b) surface energy balance model uses the 

time-differential approach, relating changes in morning LST derived from geostationary 

satellites to surface moisture availability and latent heat flux.  ALEXI is based on the Two-

Source Energy Balance (TSEB) land surface representation originally described by Norman et al. 

(1995). The TSEB can also be used to downscale ALEXI fluxes to finer, subfield scales using an 

associated flux disaggregation technique (DisALEXI; Norman et al. 2003). 

 

Recent studies have demonstrated the utility of TIR-based ET approaches for monitoring water 

use and stress within vineyards (Semmens et al. 2016; Xia et al. 2016). Specifically, Semmens et 

al. (2016) applied the ALEXI/DisALEXI modeling system, integrated with a data fusion 

methodology (Gao et al. 2006), to estimate daily ET at 30m spatial resolution over two Pinot noir 

vineyards near Lodi in the Central Valley of California for the 2013 growing season, 

demonstrating good agreement with ground-based flux measurements. Moreover, Xia et al. 

(2016) evaluated TSEB model performance over these two vineyards at high spatial resolution (≤ 

1m) using thermal and multispectral remote sensing data from low-altitude aircraft over the same 

two vineyards. Results indicate that the TSEB can derive reliable ET patterns at sub-field scale 

under a wide range of environmental conditions. 

 

The current study expands upon results presented in Semmens et al. (2016), extending the 

analysis to multiple years to promote a comprehensive understanding of seasonal flux dynamics 

within the unique canopy architecture of vineyards, especially during the early spring season 

when timing of the initiation of irrigation and subsequent water use estimates can have 

significant errors. In this study, daily 30m ET maps over the Lodi vineyard landscape are 

evaluated over the period 2013-2016, including an extended period of severe drought when water 

resources in the Central Valley became increasingly limited. An analysis is also included on the 

ratio of actual to reference ET (fRET), an indicator of crop moisture and stress conditions, and its 

linkages on both spatial and temporal scales to criteria used in irrigation decision making. The 

current study aims to demonstrate the utility of remotely sensed ET and fRET mapping time series 

in support of an operational irrigation management framework, supplying reliable spatiotemporal 
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information on vineyard water use and crop stress at the field and regional scale and at daily to 

annual timescales.  

 

Materials and Methods 

 

Study Area  

 

The model study domain includes two vineyard sites located in the Central Valley of California 

near the town of Lodi, using data collected as part of the USDA-ARS Grape Remote sensing 

Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) (Kustas et al. 2018). Both 

the northern (site 1) and the southern (site 2) vineyards are planted with Pinot noir vines trained 

on quadrilateral cordons with drip irrigation installed. Both sites have vine heights that vary 

between 2 and 2.5 m, with space between rows of 3.3 m, space between vines of 1.5 m, and an 

east-west row orientation. The northern site has an area of 35 ha with vines planted in 2009. The 

southern site is smaller and less mature, with an area of 21 ha and vines planted in 2011, 

resulting in lower biomass/leaf area than the northern field. In these plots, vines typically leaf out 

in late March, grow through late August, with grape harvest occurring in early September. Flux 

tower were installed in 2013 approximately half-way north-south along the eastern edge of each 

field, located to maximize fetch as the predominant wind direction is from the west during the 

growing season. These towers continue to operate through the 2017 growing season. 

 

 
Fig. 1 Location of study area. Red boxes represent the northern and southern vineyards and red dots represent the 

location of the flux towers. The two photos of the northern (Site 1) and southern (Site 2) vineyard blocks were taken 

on August 6th, 2013. 

 

Field Measurements 

 

Micrometeorological and biological field measurements collected during GRAPEX are designed 

to serve as validation data for models developed to estimate ET and component vine and inter-

row fluxes, detect stress, and monitor biomass development and root zone soil water availability. 

Both vineyards are equipped with identical micrometeorological instrumentation and started 

recording in late March of 2013. Measurements include turbulence and mean profile 
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measurements of wind, surface energy balance flux estimates, temperature and water vapor, as 

well as ground-based biophysical measurements such as leaf area index (LAI).  

 

The eddy covariance (EC) systems include a Campbell Scientific, Inc. EC150 water 

vapor/carbon dioxide sensor and a CSAT3 three-dimensional sonic anemometer. Both 

instruments are mounted 5 m above local ground level (a.g.l.) facing due west, collecting data at 

20 Hz producing 15 min averages. Additional instrumentation includes a four-component 

radiometer (CNR-1, Kipp and Zonen, Delft, Netherlands) mounted 6 m a.g.l., upward and 

downward facing quantum sensors (LI-190, Li-Cor, Lincoln, Nebraska) mounted 6 m a.g.l., a 

combined humidity and temperature sensor (HMP45C, Vaisala, Helsinki, Finland) mounted 5 m 

a.g.l., two thermal infrared thermometers (SI-111, Campbell Scientific) mounted 2.5 m a.g.l. 

used to measure both surface and canopy temperature, a tipping bucket rain gauge (TE525, 

Texas Electronics, Dallas, Texas), and five soil heat flux plates (HFT-3, Radiation Energy 

Balance Systems, Bellevue, Washington) buried cross-row at a depth of 8 cm. Each heat flux 

plate includes two thermocouples buried at depths of 2 and 6 cm and a soil moisture sensor 

(HydraProbe, Stevens Water Monitoring System, Portland, Oregon) buried at 5 cm depth.1  

 

Post-processing of the 20 Hz eddy covariance data for computing sensible and latent heat fluxes 

is described by Alfieri et al. (this issue). Energy balance flux measurements used in this study 

were collected between April 16, 2013 and October 19, 2016. During this period, typical closure 

ratios were on the order of 0.91 for Site 1 and 0.88 for Site 2. Original and closure-adjusted 

latent heat flux (LE) measurements were compared to modeled LE estimates to determine degree 

of agreement between measured and modeled fluxes. Since daily totals are used for model 

validation, observed fluxes were corrected for closure errors using the residual (RE) method as 

opposed to Bowen Ratio (BR) method (which often yields spurious results for nighttime 

conditions) described in Twine et al. (2000).  

 

Measurements of water applied through irrigation began in 2015 and are made using an 

assemblage of pressure switches and Onset HOBO data loggers (Onset Computer Corporation, 

Bourne, MA). Irrigation events are recorded as the time difference between the beginning and 

end of irrigation, with events lasting roughly 5 hours on average between sites. The amount of 

irrigation applied in liters per vine is calculated using an average irrigation pump rate and 

vine/row spacing data provided by vineyard managers.   

 

Yield maps for 2013 through 2016 harvest in both north and south vineyards are provided by 

E&J Gallo Winery using Advanced Technology Viticulture (ATV, Joslin, Australia) yield 

monitoring systems and a cleanup script used to convert mass flow units into tons per hectare, 

eliminate outliers, and normalized across harvesters. Yield data greater than three standard 

deviations from the mean are omitted. Yield maps are interpolated to a 3m grid using Vesper 

Spatial Prediction Software for Precision Agriculture (Whelan et al. 2002).   

 

Multi-scale ET modeling system 

 

 
1
 The use of trade, firm, or corporation names in this article is for the information and convenience of the reader. 

Such use does not constitute official endorsement or approval by the US Department of Agriculture or the 

Agricultural Research Service of any product or service to the exclusion of others that may be suitable. 
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ALEXI 

 

The multi-scale ET modeling system used here downscales regional coarse-scale fluxes from the 

ALEXI surface energy balance model (Anderson et al. 1997; 2007a; 2007b; Mecikalski et al. 

1999) to finer spatial scales. ALEXI exploits the high temporal resolution afforded by 

geostationary satellites to measure the morning rate of land surface temperature (LST) rise, 

which is used to guide partitioning of the surface energy budget. Time-differential LST 

measurements provide the added benefit of being less sensitive to errors in temperature retrieval 

due to atmospheric and emissivity correction (Anderson et al. 1997).  

 

ALEXI is based on the Two-Source Energy Balance (TSEB) model, first developed by Norman 

et al. (1995), and later refined through improved parameterizations in Kustas and Norman 

(1999). The TSEB model partitions surface temperature into soil and vegetation components, 

which are then used to solve the surface-energy budget for the soil, canopy and combined system 

associated with the mixed scene: 

 

(𝑅𝑛! + 𝑅𝑛") − 𝐺 = (𝐻! + 𝐻") + (𝜆𝐸! + 𝜆𝐸")   
 

where Rn is net radiation (W/m2), H is the sensible heat flux (W/m2), G is the soil heat flux 

(W/m2) and λE is the latent heat flux (W/m2). Subscripts ‘s’ and ‘c’ represent fluxes associated 

with the soil and canopy scene components, respectively. The TSEB uses an estimate of local 

vegetation cover fraction to partition the composite surface temperature measurement into soil 

and canopy temperatures, which are used to constrain net radiation and sensible heat flux, 

defined by the surface-to-air temperature gradient. The G term is parameterized in as a fraction 

of the net radiation at the soil surface (Rns).  Canopy transpiration, λEc, is estimated using a 

modified Priestley-Taylor approach (Priestley and Taylor, 1972) which responds to signals of 

vegetation stress conveyed by the surface temperature measurement, while soil evaporation λEs 

is computed as the residual to the energy balance equation.   

 

The TSEB model is applied at two times during the atmospheric boundary layer (ABL) growth 

phase, at approximately 1.5 hr after local sunrise (t1) and 1.0 hr before local noon (t2). A simple 

slab model of ABL development (McNaughton and Spriggs, 1986) is used to provide a means 

for surface energy closure by relating the rise in air temperature in the mixed layer over the time 

interval (t1 to t2) to the time-integrated influx of H from the surface (Anderson et al. 1997). This 

approach allows near-surface air temperature to be computed internally, eliminating the need for 

an a priori specification of air temperature boundary conditions to the sensible heat flux 

computation. 

 

Daily latent heat flux is derived using ALEXI-retrieved latent heat flux estimates at t2 and 

upscaled to 24 hrs using the ratio of instantaneous to daily insolation: 

 

𝜆𝐸#$% =
&'!"

(#!"

,𝑅!)*-   

 

where 𝜆𝐸+" is the latent heat at t2, 𝑅,!"is the insolation rate at t2, and 𝑅!"$ is the time-integrated 

daily insolation rate. This insolation technique has proven generally reliable, with lower bias and 
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sensitivity to errors in retrieval estimates when compared to other techniques (Cammalleri et al. 

2014a). Daily net radiation (𝑅-"$) maps are derived using an approach described in Anderson et 

al. (2012), daily 𝐺 maps are computed by integrating the Santanello equation over daylight hours 

(Santanello and Friedl 2003), and daily	𝐻 values are computed as the residual. All fluxes are 

expressed in MJ m-2 d-1. The daily latent heat is converted to daily ET (in units of mm d-1) by 

dividing by the latent heat of vaporization λ.  

 

Missing pixels within the ALEXI ET maps, due either to cloud cover or missing or low-quality 

input data, are gap filled by conserving the ratio of actual ET to daily insolation (fsun) over time 

at each pixel. The timeseries of clear-sky fsun is filtered, smoothed and gap-filled for each pixel 

using a Savitzky-Golay filter, designed to reduce noise while preserving signals associated with 

changes in surface moisture conditions. Missing pixels within the daily ET map are then 

recovered by multiplying the gap-filled fsun fields by the daily scaling flux (insolation) maps. 

 

ALEXI is run operationally by the National Oceanic and Atmospheric Association (NOAA) at 8 

km spatial resolution over North America as part of the Geostationary Operational 

Environmental Satellite (GOES) Evapotranspiration and Drought (GET-D) system. GET-D 

produces daily ET and an ET-based Evaporative Stress Index (ESI) using radiometric 

temperature data retrieved from GOES East and West thermal imagery. The ESI describes 

standardized anomalies in the actual-to-reference ET ratio (fRET), using the Penman-Monteith 

(FAO-56) reference ET for grass (1998). The ESI is an indicator of agricultural drought 

reflecting impacts on crop water use, and has been shown to provide early warning of 

deteriorating crop conditions (Anderson et al. 2011, 2013; Otkin et al. 2013; Otkin et al. 2014). 

A 4 km-resolution grid is also maintained for research purposes and allows assessment of ESI 

and ET at the regional scale over the continental U.S. (CONUS). 

 

DisALEXI 

 

Due to its reliance on high temporal frequency TIR imagery, here obtained from geostationary 

satellites, ALEXI is constrained to operate on coarser spatial scales on the order of a few 

kilometers. To map flux distributions at higher spatial resolution, an associated spatial 

disaggregation technique known as DisALEXI (Norman et al. 2003; Anderson et al. 2004; 2012) 

can be implemented using higher resolution TIR imagery from polar orbiting instruments or 

from airborne platforms. DisALEXI operates by running the TSEB model over each ALEXI 

pixel area within a given modeling domain using the higher spatial resolution vegetation cover 

and surface radiometric temperature information. For this application of TSEB, the air 

temperature boundary condition (set at a nominal blending height of 50 m), is iteratively adjusted 

at the ALEXI pixel scale until the DisALEXI daily ET fluxes converge to the ALEXI value on 

average over that pixel.  This ensures consistency between the ALEXI and DisALEXI flux 

fields. Further description can be found in Anderson et al. (2012), and Cammalleri et al. (2013, 

2014a).   

 

ET data fusion 

 

In this study, DisALEXI was used to generate ET map timeseries at moderate resolution (1 km) 

and near daily timesteps using thermal and reflectance data from the MODerate Resolution 
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Imaging Spectroradiometer (MODIS). Higher resolution (30m) maps were created with periodic 

Landsat datasets, with thermal band data sharpened to the 30-m resolution of the reflectance 

bands using the Data Mining Sharpener tool developed by Gao et al. (2012a). These two 

timeseries were then fused using the Spatial and Temporal Adaptive Reflectance Fusion Model 

(STARFM; Gao et al. 2006) to create daily maps of ET at 30-m resolution. 

 

In short, STARFM predicts Landsat-resolution ET maps on MODIS acquisition dates by 

developing spatially distributed weighting factors representing the spectral similarity and 

temporal difference between observed Landsat/MODIS maps collected on the same day. These 

weighting factors are then used in the disaggregation of MODIS images on days when Landsat is 

not available, resulting in daily Landsat-scale ET maps. For more information, the reader is 

referred to Gao et al. (2006), Cammalleri et al. (2013; 2014a) and Semmens et al. (2016). 

 

Model inputs 

 

LST inputs for the 4-km ALEXI simulations over CONUS were obtained 11 µm brightness 

temperature observations from the GOES-EAST (at 75°W) and GOES-WEST (at 105°W) 

Imager instruments. Raw brightness temperature values are atmospherically corrected using 

atmospheric profiles of temperature, as described in French et al. (2003). Vegetation cover 

fraction, used to partition LST between soil and canopy temperatures, is computed from MODIS 

leaf area index (LAI) product (see below), aggregated to 4 km and interpolated to daily 

timesteps. 

 

Landsat 8 (L8) data between April 16, 2013 and October 19, 2016 were collected over the study 

area, which is in the overlap of two scenes (path 44/row 33 and path 43/row 33). A total of 87 

mostly clear scenes were processed. Landsat thermal band data at native resolution (100 m) were 

atmospherically corrected using MODTRAN (Berk et al. 1989) then sharpened to 30 m 

resolution to match Landsat optical bands using the data mining sharpener (DMS) approach (Gao 

et al. 2012a). Atmospherically corrected shortwave reflectance data were directly downloaded 

from the U.S. Geological Survey (USGS) Earth Explorer website (http://earthexplorer.usgs.gov). 

These reflectance products were used to derive 30-m maps of LAI using regression tree analysis 

trained by MODIS 1 km LAI data, as described in Gao et al. (2012b). 

 

MODIS daily LAI maps were generated from the 4-day composite (MCD15A3, Collection 5) 

products and a procedure outlined in Gao et al. (2008), where the 4-day products are smoothed 

and gapfilled to daily timesteps using the TIMESAT algorithm for analyzing satellite time-series 

data for seasonality and other temporally dynamic vegetation properties (Jönsson and Eklundh, 

2004). Input MODIS albedo maps were generated from the Solar Zenith Angle (SZN)-extended 

MODIS/Terra + Aqua 30 arc sec Global Gap-Filled Snow-Free Bidirectional Reflectance 

Distribution Function (BRDF) (MODIS BRDF/Albedo CMG Gap-Filled Snow-Free Product 

MCD43GF V005) parameters product (University of Massachusetts Boston, Dr. Crystal Schaaf). 

MODIS LST maps were generated using the Terra instantaneous swath product (MOD11_L2) 

and geolocation product (MOD03) to obtain correct georegistration. LST maps were sharpened 

using DMS (MODIS 1 km composite NDVI as input) to reduce the bowtie effect due to off-nadir 

pixel smearing (Cammalleri et al. 2014b, Semmens et al. 2016).   
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Meteorological inputs to ALEXI/DisALEXI include hourly solar radiation, air temperature, wind 

speed and vapor pressure. These data were obtained from the National Centers for 

Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data set (Dee et 

al. 2013). All fields were mapped to the 4 km ALEXI grid and converted to each sensor’s 

projection at both daily and overpass times for ingestion into DisALEXI.  

 

ALEXI/DisALEXI also requires landcover class to specify surface roughness parameters and 

vegetation optical properties (Anderson et al. 2007a). The ALEXI model uses the University of 

Maryland (UMD) global land cover dataset at 1 km resolution, based on observations from the 

AVHRR (Hansen et al. 2000). Higher resolution MODIS and Landsat disaggregation requires 

the 30 m National Land Cover Dataset (NLCD) (Fry et al. 2011). For MODIS, the NLCD map 

was upscaled to 1 km resolution using the majority class within each MODIS pixel. 

 

Prior evaluation of ALEXI/DisALEXI over California vineyards indicate a small wet bias in 

modeled fluxes during the cold season (Semmens et al. 2016). The current study incorporates a 

generalized second order empirical correction factor based on the day of year (DOY) to adjust 

this bias (Anderson et al. 2018). Minimal correction is applied during the mid-season, with the 

largest corrections being applied during the beginning and ending of the year, causing minimal 

impact to seasonal total estimates. For more information, the reader is referred to Anderson et al. 

(2018).  

 

Results 

 

Model evaluation on Landsat dates  

 

The accuracy of the fused daily 30-m ET timeseries depends largely on the fidelity in energy 

balance partitioning achieved on dates of clear Landsat overpasses, while the MODIS ET data 

effectively serve to inform interpolation between Landsat dates. To evaluate performance on 

these key tie-points, modeled daytime flux estimates derived using DisALEXI on Landsat 

overpass dates are compared to EC observations in Fig. 2, with statistical metrics of agreement 

provided in Table 1. The modeled flux estimates have been averaged over a 3-by-3 pixel area (90 

x 90 m) shifted west from the tower center to avoid non-characteristic pixels over the adjacent 

road. Model estimates of latent heat flux (LE) have been compared to measured fluxes both as 

observed and closed using the RE method, as described in the Field Measurements section. This 

enables an evaluation of closure impacts on the assessment of model performance. 

 

Simulated daytime fluxes derived from DisALEXI generally align along the one-to-one line (Fig. 

2), indicating reasonable partitioning by the TSEB. Insolation and net radiation, defining energy 

available for partitioning, agree well with in situ measurements. A few days with higher 

discrepancies reflect errors in the CFSR insolation inputs, related to misrepresentation of clouds 

in the reanalysis data. Future implementation over North America will test use of NOAA’s 

GOES Surface and Insolation Products (GSIP; Laszlo et al. 2008) as a near real time input data 

source. Preliminary investigation shows that these hourly, 20-km satellite derived estimates 

developed by Diak et al. (2017) better capture local variability in solar irradiance over the 

northern vineyard (Anderson et al. 2018), although some regional calibration may be required. 
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Figure 2. Scatterplots comparing measured (observed) and modeled daytime fluxes obtained from DisALEXI on 

Landsat overpass dates between April 16, 2013 and October 19, 2016 at site 1 (left panel) and site 2 (right panel). 

 

Model performance for the 2013-2016 period is similar to that reported by Semmens et al. 

(2016), where MAE errors in daily LE of ~1.2 MJ m-2 d-1 were obtained for Landsat overpass 

dates during the 2013 growing season. The increase in MAE seen here is likely associated with 

evaluating over multiple years with varying climatic conditions and vineyard management 

decisions, and the extension of analysis to year-round in the current study (Semmens et al. 2016 

was limited to the growing season only). Modeled LE indicates underestimation when compared 

to closed observed LE estimates at site 1, yielding a negative MBE of -0.46 MJ m-2 d-1 (Table 1). 

The negative bias is most prevalent at the highest values associated with peak growing season, 

and is not present at site 2 or in comparison with the unclosed LE measurements.   

 
Table 1. Statistical measures of flux retrieval performance on Landsat dates and daily estimates from the fused 

timeseries (Fusion) at sites 1, 2 and combination of sites 1 and 2 at 24-h, daily (fusion) and weekly time steps.  

 

Variable Rs Rn G H LE LE closed ET (Landsat) ET (Fusion) ET (Fusion)

Unit MJ m
-2

 d
-1

MJ m
-2

 d
-1

MJ m
-2

 d
-1

MJ m
-2

 d
-1

MJ m
-2

 d
-1

MJ m
-2

 d
-1 mm/day mm/day mm/week

n 103 102 96 78 67 61 55 700 55

meanO 23.34 14.00 1.55 3.68 7.74 9.96 4.16 3.55 26.74

MBE 0.79 -0.01 -0.13 0.43 1.58 -0.46 -0.12 -0.02 -0.59

RMSE 2.49 1.95 0.92 1.92 2.44 2.13 0.79 0.80 3.91

Slope 1.07 0.96 0.08 0.19 0.67 0.62 0.67 0.74 0.70

MAE 1.62 1.13 0.70 1.43 2.05 1.69 0.60 0.62 3.06

R2 0.89 0.82 0.05 0.04 0.80 0.80 0.81 0.78 0.80

% Error 7 8 45 39 27 17 15 18 11

n 98 95 95 72 65 63 56 710 49

meanO 23.44 14.36 1.59 4.74 7.16 9.38 3.71 3.35 26.74

MBE 0.59 -0.44 -0.44 0.19 2.38 0.17 0.23 0.14 0.81

RMSE 2.47 2.02 0.77 1.54 2.93 1.73 0.73 0.74 4.07

Slope 1.10 1.01 0.10 0.46 0.68 0.64 0.76 0.87 0.76

MAE 1.55 1.10 0.57 1.27 2.48 1.36 0.57 0.57 3.17

R2 0.89 0.81 0.03 0.21 0.56 0.63 0.69 0.73 0.74

% Error 7 8 36 27 35 14 15 17 12

n 201 197 191 150 132 124 111 1410 104

meanO 23.39 14.18 1.57 4.21 7.45 9.67 3.94 3.45 26.74

MBE 0.69 -0.22 -0.29 0.31 1.98 -0.15 0.05 0.06 0.07

RMSE 2.41 3.09 0.94 2.05 2.57 1.92 0.76 0.77 3.98

Slope 1.08 0.92 0.09 0.27 0.61 0.65 0.69 0.79 0.72

MAE 1.58 1.12 0.63 1.35 2.27 1.52 0.58 0.59 3.11

R2 0.89 0.77 0.01 0.08 0.67 0.72 0.74 0.75 0.77

% Error 7 8 40 32 30 16 15 17 12

Combined

Site

1

2
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Rs, daytime solar radation; Rn, daytime integrated net radiation; G, daytime integrated soil flux; H, daytime integrated sensible heat; LE, daytime 

integrated latent heat; ET, daytime evapotranspiration on Landsat dates in mm d-1; ET(Fusion), daily ET from 2013 to 2016; n, number of 

observations; meanO, mean measured flux; MAE, mean absolute error between the modeled and measured quantities; RMSE, root mean square 

error; %error, percent error; MBE, mean bias error. 

 

Evaluation of daily ET from fused timeseries 

 

Scatter plots and associated timeseries of modeled 24-hr ET from the fused daily timeseries and 

daily fluxes observed at tower sites 1 and 2 between April 16, 2013 and October 19, 2016 are 

shown in Figures 3 and 4, respectively. Daily ET estimates from the fused remote sensing 

product follow the same general trend as the direct retrievals on Landsat overpass dates (Fig. 3). 

MAE for the full daily time series (closed) are 0.6 mm d-1 for both sites, comparable to the 0.7 

mm d-1 errors reported by Semmens et al (2016) for the 2013 growing season in isolation. 

Relative errors for both sites combined are 17% and 12% at daily and weekly time steps – the 

latter being more relevant for weekly irrigation scheduling. 

 

 
Figure 3. Scatterplots of modeled vs. observed closed (left panels) and unclosed (right panels) 24-h ET over the full 

simulation period from the fused timeseries for sites 1 (top panels) and 2 (bottom panels). 

 

On both Landsat overpass dates (Fig 2) and in the full daily timeseries from the data fusion 

methodology (Fig 3), the modeled LE and ET underestimates the closed observed fluxes at site 1 

at the very highest values. As seen in Fig. 4, these periods of underestimation occur between 

approximately mid-June and mid-August for each year and most notably for years 2013 and 

2016.  In both cases, the closure corrections using the residual method are relatively large, and 

the modeled ET is typically bracketed between closed and unclosed observed values.  Such 

discrepancies are not observed at site 2. 

 

These large mid-season closure corrections and enhanced model-measurement discrepancies are 

likely related to advective conditions.  In semiarid or arid regions, horizontal advection of hot, 
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dry air, heated by the surrounding landscape, can significantly increase the localized evaporative 

demand over an irrigated field, driving large latent heat fluxes. In such cases, the additional 

energy required for evaporation is extracted from the surface itself, resulting in negative sensible 

heat and an increase in closure errors (Alfieri et al. 2012).  A cursory analysis of the observed 

sensible heat fluxes at sites 1 and 2 revealed signatures of advection during the periods of lower 

closure, suggesting the RE method may be overestimating the real evaporative flux during those 

intervals.  Furthermore, the tower footprint may be impacted under advective conditions, 

effectively sampling surface conditions further upwind.  Anderson et al. (2018) found that peak 

observed flux estimates are better correlated with model fluxes extracted over a more central 

region of the vineyard that has more vigorous vine growth and yield production. Moreover, the 

assumption of self-preservation to upscale instantaneous flux retrieved at the satellite overpass 

time to daily totals depreciates under advective conditions (Crago 1996; Tang et al., 2013). 

Ongoing work is addressing both modeling and observational issues under the specific condition 

of strong mid-season advection.  

    
Figure 4. Time series of observed closed 24-h daily ET (blue dots), observed unclosed 24-h daily ET (white dots), 

24-h daily ET retrievals on Landsat dates (red squares) and 24-h daily ET retrievals from the fused timeseries (red 

line) for site 1 (top panel) and site 2 (bottom panel).  Daily precipitation measured at each site is indicated by the 

black vertical bars.  

 

Within-field variability in water use 

 

Routine remote sensing of daily ET at 30-m resolution will facilitate identification of areas of 

uneven ET/stress within vineyards due to variations in soil texture and composition and other 

environmental or anthropogenic factors. Figure 5 shows the variability in daily ET across both 

the northern and southern vineyards (sites 1 and 2) during the entire period of investigation. 

Spatial variability in ET increases during the growing season, with maximum variation occurring 

in July, then decreasing to a near-homogeneous distribution during the winter season. The 

northern vineyard exhibits a higher degree of spatial variability in ET, both in standard deviation 

and range, when compared to the southern vineyard. In the northern vineyard, the ET observed at 

the flux tower persistently lies near the upper bounds in standard deviation and range during the 

growing season. In general, at site 2, the flux tower samples are near the spatial mean of the 
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remotely sensed distribution (Fig. 5). Overall, modeled spatial mean estimates of ET over the 

northern and southern vineyard are similar, with the only discrepancy found during the late 

growing season of 2013 and 2015, where values over the southern vineyard are slightly lower 

than in the northern vineyard (Fig. 5, bottom panel). 

 

The analyses in Fig. 5 highlight the challenges in using isolated in-situ measurements to infer 

field-scale states and fluxes. As noted by Semmens et al. (2016), the northern field has large 

variability in soil texture, with the northwestern corner of the northern vineyard containing a 

silt/gravelly loam, resulting in poor to moderate water storage capacities and subsequently lower 

ET rates than observed in other parts of both fields, dominated by a Kimball silt loam. As a 

result, the tower footprint in site 1 captures conditions that are not always representative of the 

field as a whole. This is consistent with analyses presented by Anderson et al. (2018), who 

investigated spatial variability in correlations between the observed fluxes and modeled ET 

timeseries extracted in a moving window sampling a 600x600 m area around the Lodi tower 

sites, as a metric of tower representivity. They found that on average over two full annual cycles, 

tower fluxes at site 1 were best correlated with modeled ET to the southwest of the tower 

location, shifting to the vineyard center when the analysis was limited to the peak of the growing 

seasons. The southern vineyard showed less spatial variability in terms of tower-model 

agreement.  

 

 
Figure 5. Time series of observed ET (black dots), spatial mean modeled ET with plus and minus standard deviation 

(dark red) and spatial range (maximum and minimum) modeled ET (light red) for the northern vineyard (top panel) 

and southern vineyard (middle panel). Also included is the time series of modeled spatial mean ET for both 

vineyards (bottom panel).  
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Local variability in water use 

 

Along with field ET estimates, spatial maps of ET over the local landscape can provide valuable 

context for irrigation decision makers. Vineyard managers often operate multiple vineyards, 

potentially with different varietals and irrigation management strategies. There may also be value 

in understanding irrigation and water use patterns in neighboring fields. As an example, maps of 

monthly ET over a roughly 3 km by 3 km box including the GRAPEX study area, with the 

northern and southern vineyards near the center, are presented in Figure 6. Over this 4-year 

period, some consistent seasonal patterns in water use are apparent. Beginning in March, 

localized ET enhancements in irrigated fields begin to emerge. Irrigation in the GRAPEX 

vineyards begins in early June and ends in early- to mid-October. Remnant evaporation of late 

season irrigation can be seen in these vineyards in October for each year.  

 

Although seasonal patterns remain relatively consistent from year to year, some discernable 

changes in local water use can be seen over the four-year period, particularly during the growing 

season. These changes are largely related to changes in land-use. For example, evidence of 

irrigation in a new vineyard established just west of site one in early 2014 is manifested as a 

substantial increase between 2013 and 2014 and persisting through the 2015-2016 growing 

seasons (outlined in black; Fig. 6). In addition, ET in the field due south of the southern vineyard 

(also outlined in Fig. 6) decreases notably in 2016 due to fallowing of an alfalfa field after May 

of that year, possibly the result of grower response to long-term drought conditions and resulting 

water limitations (Anderson et al., 2018).  Spatial weekly or monthly maps of local ET at this 

scale provide vineyard managers with information about local land- and water-use changes, 

which may have bearing on in-field decision making and long-term strategic planning.  

 

 
Figure 6. Spatial time series (monthly) of ET (mm month-1) over a 3 x 3 km area including the northern and 

southern vineyards instrumented for GRAPEX. Boxes demarcate the new vineyard established west of the northern 

vineyard and an alfalfa field left fallow following the 2015 growing season. 
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Use of remote sensing for monitoring vineyard water stress and managing irrigation  

 

This study investigates two remote sensing metrics that may be useful in vineyard irrigation 

management are total daily or weekly ET (relating to consumptive water use – water extracted 

from the soil profile requiring replacement), and the moisture stress factor fRET. Grape 

development is strongly dependent on vine water status, and strategies for optimizing wine grape 

quality are often associated with imposing some degree of water stress in the vine during specific 

phenological periods. This degree of stress is achieved through regulated deficit irrigation (RDI), 

estimated as a fraction of the full crop potential water use. Current operational practices utilize 

the Food and Agricultural Organization (FAO-56) model to estimate crop potential water use 

based on the reference ET and a crop coefficient (commonly referred to as Kc) describing the 

average ratio of actual-to-reference ET for different crops under well-watered conditions. The 

fRET quantity used in the regional-scale ESI agricultural drought indicator effectively represents a 

dynamic crop coefficient, diagnostically retrieved via thermal remote sensing and responding to 

daily changes in localized crop stress and development.  

 

To illustrate the utility of a daily Landsat-scale fRET product for stress detection, Fig. 7 compares 

modeled values to observations derived from tower measurements of actual and reference ET. 

Reference ET is calculated in both cases using the Penman-Monteith formulation, as described in 

the FAO standard for a short grass (Allen et al. 1998), computed using tower data in the 

observed case and using regional meteorological data (NCEP CFSR data set; Dee et al. 2013) for 

the modeled case. Observed Actual ET is taken as the observed 24-hr daily closed flux tower 

measurement, while the modeled ET values are extracted from the fused timeseries at the tower 

sites. Also shown are rainfall and irrigation amounts measured in-field, the latter only available 

for the 2015 and 2016 growing seasons (see zoom-in in Fig. 7; bottom panel). 

 

In general, the fused fRET timeseries reproduces observed seasonal patterns inferred from the 

tower observations with good fidelity. Small mid-season biases are observed in 2013 and 2015 at 

site 1, relating to localized advective issues discussed earlier. This bias is non-existent at site 2, 

where both modeled and observed fRET estimates are similar throughout the study period. Both 

modeled and measured fRET indicate lower peak season fRET values at site 2 during 2013 and 

2015 when compared to 2014 and 2015, consistent with the cyclical annual ET patterns in Fig. 4.  
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Figure 7. Timeseries of fRET derived from closed observations (black dots) and the fused ET timeseries (red line) 

derived from point estimates for site 1 (top panel) and site 2 (second from top panel) during the entire study period, 

along with daily rainfall (green bars). Also included is an enhanced view of 2015 and 2016 (bottom two panels), 

which includes daily irrigation totals (blue bars) presented in Liters/vine. 

 

During 2015-2016, when detailed irrigation information is available (Fig. 7; bottom panels), we 

can closely investigate relationships between fRET and daily irrigation amounts, expressed in in 

units of liters per vine. Observed and modeled fRET fluctuate rapidly during the non-growing 

season when canopy cover is sparse and no irrigation is occurring, reflecting the relative 

volatility in the soil evaporation and cover crop transpiration contributions that dominate total 

ET during this period. Once irrigation commences, fRET remains more stable and near target 

levels (0.8-1.0) until after harvest. Note that irrigation is suspended each year briefly (5-7 days) 

around harvest near the end of August, then resumed post-harvest until early-to-mid October to 

maintain the canopy. After harvest, both observed and modeled fRET decay as the vines senesce. 
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Figure 8. Total irrigation applied (liters/vine) over 2015 and 2016 growing seasons in the site 1 and 2 vineyards. 

 

During the growing season, remotely sensed fRET values in both vineyards show response to 

seasonal irrigation amounts. In 2015, site 2 received about 60% of the daily irrigation amounts 

applied to site 1, while in 2016 the irrigation strategy was more uniform, with site 2 at 92% of 

site 1 (Fig. 8). Irrigation at site 1 varied by only 1% between the two years, while site 2 increased 

by 54% in 2016. These variations in irrigation management are reflected in the average remote 

sensing fRET retrieved during the irrigation season (pre-harvest), around 0.7 for site 2 in 2013 and 

0.8 in all other cases. 

 

Regional differences in applied irrigation can be seen in the spatiotemporal patterns of monthly 

average 30-m fused fRET
  (Fig. 9). After irrigation is initiated (beginning of June), there is a clear 

distinction in fRET between the vineyards in 2013 and 2015, but less difference in 2014/2016, 

reflecting differentials in irrigation amounts applied to the two fields (Fig. 8). While the relative 

patterns in monthly fRET are similar to those in total ET shown in Fig. 6, normalization by 

reference ET serves to reduce dependence on the seasonal evaporative demand curve, focusing 

more specifically on variations in moisture conditions driving the evaporative fluxes. These 

maps also provide information on irrigation initiation in surrounding fields. The fRET maps for 

April in Fig. 9 emphasize wetter springtime conditions in 2014, as well as early initiation of 

irrigation in the fields to the southwest in 2014 and 2016. 

 

Anomalies in monthly fRET, computed as the difference with respect to the long-term (here 4-

year) mean fRET map for each month are useful for highlighting regions anomalous moisture 

stress and water use in real time (Fig. 9; bottom panel).  In April, May and June of 2015 we see 

pronounced negative anomalies in the southern vineyard, which are also present, albeit to a 

smaller degree, during the remainder of the growing season. These anomalies indicate stress in 

the vineyard likely correlated to the lesser amount of irrigation applied during the 2015 growing 

season and subsequent reduced yield as discussed earlier. Regional precipitation in October of 

2015 may have helped to reduce the fRET anomaly signal from September to October. In some 

cases, reflect changes in land-use and water management rather than stress.  In 2013 we see 

strong negative anomalies in the areas where new vineyards were established in 2014, to the west 

and south of site 1. The alfalfa field fallowed in May of 2016 is clearly apparent. Drier than 

normal conditions are detected for the month of September in 2015 over the region just east of 

the GRAPEX vineyard sites. This may be related to management/harvest decisions in response to 
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the multi-year drought conditions that prevailed in California during the study period, leading to 

increasing pressure on water availability for irrigation. Spatial fRET and fRET anomaly products 

such as these prove capable of monitoring dynamic crop coefficients and highlighting changing 

conditions, not only within a field of interest, but also on a regional scale.  

 

 
Figure 9. Spatiotemporal time series (monthly) of fRET (top panel) and fRET anomaly (bottom panel) over a 3 x 3 km 

area including the northern and southern vineyards instrumented for GRAPEX.  

 

 

Relationships between vineyard water use, stress and yields  

 

The ultimate objective in this study is to motivate use of remote sensing toward meeting the dual 

goals of reducing water use while improving yield and grape quality. Figure 10 provides a more 

detailed view of annual water use patterns and its relation to grape yield over the two GRAPEX 

vineyards, showing cumulative ET over the peak growing season (May-August) in the top panel 

and grape yield (tons ha-1) in the bottom panel.  

 

The cumulative ET maps show distinct spatial structure. Two low ET features in the south-

central portion of the northern vineyard are associated with vernal pools - small areas having no 

vines and no irrigation because of protection by state and federal law from any cultivation 

activities (see also Semmens et al., 2016). These ephemeral wetlands emerge after rainfall 

events, but during most of the growing season are dry leading to persistently low values of 

seasonal ET. There is also the persistence in lower ET in the northwest corner of the northern 

(site 1) vineyard, which is associated with poor vine growth due to soil properties.  This corner 

of the field has silt loam and gravelly loam soils characteristic of poor to moderate water storage 

capacity (Semmens et al. 2016), while the center of the northern vineyard is Kimball silt loam 

and is characteristic of more vigorous vine growth.   The latter is characterized by high rates of 

seasonal consumptive water use.  The increased water use associated with the new vineyards 

established to the west and south of the north vineyard after the 2013 growing season can also be 

observed in Fig. 10. Total ET during the peak growing season increases from roughly 300 mm 

yr-1 during 2013 to 520-550 mm yr-1 during 2014 over this region due to irrigation applied to 

help establish the recently planted vines. 

 

Much of this spatial structure in seasonal ET is well correlated in patterns in yield maps, 

collected over the GRAPEX fields using GPS-enabled sensors on the harvesters. The cyclical ET 

dynamics in the southern vineyard (site 2), with relatively high cumulative water use in 2014 and 

2016, reflects grower decisions in irrigation management in this field. In the northern vineyard 

(site 1), the cumulative water use is lower in 2013 than in 2014-2016.  Similar spatial and 

temporal patterns are seen in the reported total yield for each site (Fig. 10). Specifically, total 

yield for 2015 in the southern vineyard is considerably lower than in the northern vineyard, while 

also being lower than both the north and south vineyards in 2016, corresponding to trends in both 

fRET and irrigation. This instance of decreased yield may be the result of increased stress imposed 

over the southern vineyard (shown in fRET) through restricted irrigation during the 2015 growing 

season (Fig. 8). Despite the lack of irrigation data during the 2013 and 2014 growing seasons, 

trends in fRET correspond to yield totals – most notably in the southern vineyard – where fRET 
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values are lowest during the 2013 and 2015 growing season (Fig. 7).   In the northern vineyard, 

yields are lowest in 2013 – the year of lowest cumulative water use. 

 
Figure 10. Cumulative peak growing season (May-August) ET (mm) (top) and total yield in tons/ha (bottom) over 

the northern and southern vineyards for years 2013, 2014, 2015 and 2016.  

 

The spatial distribution of cumulative growing season ET (Fig. 10) also roughly follows that of 

yield, with larger values of both reported near the center of the northern vineyard for all years. 

As noted above, spatial heterogeneity in the northern vineyard is associated with soil texture 

discontinuities and vine growth vigor.  Low yields in the NW corner are spatially correlated with 

lower seasonal ET, while the center of the northern vineyard has persistently the highest yields 

and seasonal water use. A similar spatial correlation to yield is presented in Sun et al. (2017), 

where the biophysical parameters NDVI and LAI show a similar spatial correlation to grape 

yield over the same vineyards during 2013 and 2014, although the relationship is more variable 

from year to year. Ongoing work looks to expand upon research done in Sun et al. (2017) by 
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examining the joint use of remotely sensed LAI/ET/fRET signals to predict yield variations over a 

larger dataset of vineyards and over an extended period.   

 

Summary and Conclusions 

 

A remote sensing approach for mapping daily ET at 30-m spatial resolution is evaluated over 

two vineyard sites in central California for the 2013-2016 growing seasons to investigate the 

utility for irrigation management. Mean absolute errors in comparison with in-situ eddy 

covariance measurements of daily ET were 0.6 mm d-1, or about 17% of the mean observed 

value.  Errors reduced to 15% at the weekly timesteps relevant to irrigation management.   In 

comparison with eddy covariance fluxes forced for closure, the model tended to underestimate 

closed observations in the northern vineyard site during highly advective periods for the peak 

growing season in 2013 and 2016.  During this period, the closure errors in the observations were 

exacerbated, and therefore the tendency to underestimate is partly attributed to issues with the 

flux measurements and closure technique and not the model alone. Model errors may be 

associated with the self-preservation assumptions in the daily upscaling technique, which may be 

less reliable under advective conditions.    

  

Monthly total ET maps and the spatial variation time series demonstrate strong seasonal water 

use variability, both within the vineyards themselves and over the surrounding landscape.  In the 

northern vineyard, the flux tower location was not representative of the field-scale mean 

properties in some years, highlighting challenges in managing irrigation decisions based on 

point-scale measurements. Timeseries of monthly ET maps revealed consistent seasonal 

dynamics year-to-year in water use patterns over the GRAPEX study area, but with some notable 

variations due to changes in land use and water management. Within vineyard spatial variability 

of cumulative growing season ET and actual-to-reference ET (fRET) correlate well with yield 

totals, demonstrating the impact of potential stress on future yield prospects. Maps of fRET 

demonstrate utility for monitoring how consistently target values (between 0.8 and 1.0 in this 

case) are achieved for a given field, and could be useful for adaptive management of irrigation 

applications in real time. Maps of fRET anomalies highlight emerging areas of anomalous water 

use or stress that could alert needs for modified management or further investigation.   

 

The modeling approach described here can provide detailed and robust information on daily to 

seasonal crop water use and stress. Applied operationally, this ET mapping framework can be of 

great utility to irrigation managers, both for individual vineyard assessment and larger regional 

application. Improved spatial and temporal monitoring will improve water allocation and 

conservation efforts through an ability to identify areas of uneven productivity/stress due to 

variations in soil texture and composition and other environmental or anthropogenic factors. This 

will allow vineyard managers to identify areas in their blocks with water, nutrient or other 

environmental stressors as well as malfunctions in the irrigation systems. Moreover, with reliable 

daily 30-m ET, growers and irrigation managers have the potential to make use of variable rate 

irrigation systems that can apply appropriate amounts of irrigated water and nutrients to specific 

areas within a vineyard to achieve more uniform grape quality and yield goals.  There is also 

potential to incorporate very fine resolution aerial imagery from UAVs or manned aircraft for 

identifying individual or groups of vines requiring intervention at critical periods during vine and 
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grape development stages when stress conditions are detected at the coarser 30 m satellite 

resolution.     

 

In ongoing work, this fusion-based ET mapping system is being applied over different vine 

varieties and climate regions within California as part of the continued effort of the GRAPEX 

project (Kustas et al., 2018). The ability to reliably monitor evaporative water loss and crop 

conditions at both the field and regional scale is imperative to viticulture and agricultural 

production systems alike, especially in regions with competing demands for limited water 

resources.  
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