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Abstract. Evapotranspiration (ET) plays an important role in hydrological cycle by linking land
surface and atmosphere through water and energy transfers. Based on the data from the Landsat-
8 satellite for typical days with clear sky condition from 2013 to 2016, a two-layer daily
ET remote sensing framework was built, which includes four compartments: surface feature
parameter estimation, evaporative fraction estimation, daily net radiation estimation, and daily
ET extension. Based on the model, evaporation, transpiration, and daily ET in Shahe River Basin
were estimated. The estimated daily ET showed a mean absolute percentage error of 8.7% in the
plain areas, and 12.1% in the mountainous areas, compared to observations using large aperture
scintillometer and eddy covariance system. The method gave higher accuracy than other remote
sensing models applied in the same area previously, including the surface energy balance system
and the ETWatch. By analyzing the relationship between land use types and surface water/heat
fluxes, it was found that the surface energy balance components in the basin have prominent
spatial-temporal features, and the soil component’s features are more obvious. It indicated
that the proposed two-layer approach is superior to others in terms of simulation accuracy, and
applicable to daily scale ET estimations on complex terrains. © 2017 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.11.XX.XXXXXX]
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1 Introduction

Evapotranspiration (ET) that consists of evaporation and transpiration determines interactions
and feedbacks among geosphere, biosphere, and atmosphere in the earth system.1–3 It is one of
the most difficult components to estimate in the terrestrial water budgets, and accurate ET esti-
mation is crucial to understanding the land–atmosphere interactions to mediate climate change
impacts, and improving water resources management, agricultural production assessment, and
environmental protection.4,5 Therefore, ET estimation is listed as a critical content of research on
land–atmosphere interactions and agricultural irrigation and drainage by many international
programs and organizations, such as the International Hydrological Programme, the United
Nations Environment Programme, the International Geosphere and Biosphere Plan, and the
United Nations Food and Agriculture Organization.

The physics of ET is now well understood,6,7 yet we still face difficulties in its accurate
estimation. Field techniques are able to give ET fluxes in a relatively high accuracy, but
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they usually are limited in space and time,8,9 and hard to be extrapolated to regional estimation.10

On the other hand, remote sensing methods emerging from around the 1960s provide a means to
quantify ET at both bigger spatial scales and longer temporal scales.11 Remote sensing ET mod-
els are based on energy balance equation, and through years of development, their capability to
estimate ET over heterogeneous land surface has been improved.12 Generally, such remote
sensing models can be divided into one-layer and two-layer models.13 One-layer models take
land surface as one entity thus fail to distinguish soil evaporation from vegetation transpiration;14

they perform better in regions with a moist climate or dense vegetation cover than areas with dry
climate and sparse vegetation cover. Whereas two-layer models target bare soils and vegetated
surfaces at the same time, so they are able to partition ET into soil evaporation and vegetation
transpiration,15 therefore, they are favorable for the understanding of biomass production and
water use efficiency, etc.

Land surface temperature is one important input for remote sensing ET algorithms. Usually
temperatures of soil and vegetation are unequal; water and heat exchanges among soil, vegeta-
tion, and the atmosphere do not take place on an identical boundary surface.16,17 According to the
two-layer model, soil and vegetation temperatures that can be directly acquired by a multiangle
thermal infrared sensor (TIRS) should serve as driving forces.18 However, most sensors are sin-
gle-angled. To overcome the limitations of single-angle thermal infrared band data, Norman
et al.19 developed a parallel model that can be employed to estimate surface fluxes in large spatial
areas based on a two-source model by Shuttleworth and Wallace.20 The parallel model takes
advantage of Beer’s law to decompose the net radiation for vegetation canopy and underlying
soil, and Priestley–Taylor formula to partition soil and vegetation temperatures for sensible and
latent heat fluxes calculations. Over the last decade, this model has been verified under diverse
vegetation cover conditions.21 In the meantime, many studies use the triangle/trapezoidal method
to partition temperatures based on single-angle remote sensing data through determination of
dry and wet limits13,22,23 by scatter plots of land surface temperature and normalized difference
vegetation index (NDVI). As a result, constraints from multiangle data are diminished.24

The simple remote sensing ET model (Sim-ReSET)25,26 and the pixel ranking-layered energy
segmentation model27,28 are typical examples. In addition, they assumed that temperature at a
reference altitude is approximately equal to the vegetation temperature. Similarly, for the pixel
ranking-layered energy segmentation model,27,28 the pixel component arranging and comparing
algorithm (PCACA) is proposed to decompose component temperature based on envelope
curves in scatter plot of surface temperature and fractional vegetation cover. Layered energy
segmentation algorithm (LESA) is further constructed with the combination of Bowen ratio
to calculate net radiation components of soil and vegetation. In recent years, with the continuous
improvement of the PCACA-LESA algorithm, it is more operational in terms of computing.29,30

Based on the PCACA-LESA, regional instantaneous evaporative fraction is estimated in this
paper. Moreover, in combination with an improved total daily net radiation estimation (DNRE)
model and the daily evaporation scale extension module, a two-layer remote sensing inversion
system is established to estimate the daily land surface ET. Taking Shahe River Basin in Beijing
as an example, we estimated ET on 33 clear days in different seasons between 2013 and 2016.
Results were compared to field observations of the large-aperture scintillometer and eddy covari-
ance (EC) system. The results help improve our understanding of the water cycle in the basin.

2 Materials and Methods

2.1 Study Site

Shahe River Basin of Beijing, located at 40°00′N-40°30′N and 115°50′E-116°20′E, is a sub-
catchment of Haihe River Basin. Within a semihumid climate zone in North China, elevation
gradient of this basin is 1309 m (Fig. 1). Forests cover about 48% of the basin, and cultivated lands
around 35%. The main stream flows from Northwest to Southeast; in detail, the mountainous
upstream is covered by forest, while farm lands and urban areas are dominant in the downstream.
With four distinctive seasons, soil exposure shows different proportion and characteristics
spatially. In recent years, rainfall keeps decreasing, especially from 2005 to 2015, the mean annual
precipitation is 427.5 mm, decreased dramatically compared to 602 mm from 1956 to 2015.
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2.2 Data

Field observations include surface flux stations and meteorological data such as air temperature,
wind speed, atmospheric pressure, radiation, and humidity (locations are shown in Fig. 1).
The meteorological data are interpolated at a spatial resolution of 30 m. Remote sensing
data are derived from operational land imager (OLI) (bands 1 to 9) and TIRS (bands 10
and 11) with a preferable imaging quality acquired by Landsat-8 on 33 days (Table 1). The
original spatial resolution of the OLI imagery is 30 m, and 100 m for TIRS. The DEM and
geographic information data from land use map and soil-type map are provided by Data
Center for Resources and Environmental Sciences of China Academy of Sciences. All the
data involved in ET estimation are transformed into 30-m spatial resolution under UTM-
GWS84 projection.

2.3 Methods

The two-layer daily ET remote sensing system (TDERSS) in this study contains four modules:
surface feature parameter inversion module (SFPI), instantaneous evaporative fraction estima-
tion module (IEFE), the DNRE module, and the daily ET extension module (DEE). The SFPI
is used to estimate fractional vegetation cover, land surface albedo, temperature, and emissivity
required in the IEFE, which is based on PCACA-LESA.27,28 The IEFE calculates the latent heat
flux, sensible heat flux, net radiation, soil heat flux, and instantaneous evaporative fraction.
The DNRE is based on empirical formula to obtain daily net radiation. Finally, daily ET is
obtained by the DEE through the evaporative fraction method.31 The detailed flowchart of the
TDERSE is shown in Fig. 2. Details of each module are given below.

Fig. 1 Map of the study area. (a) The location of instrumentation and elevation and (b) the land use
map.

Table 1 The 33 days with data obtained from the OLI/TIRS of Landsat-8.

Date

OLI/TIRS (Landsat-8) 2013/5/12, 2013/6/13, 2013/7/31, 2013/9/1, 2013/10/3, 2013/11/4, 2013/11/20,
2013/12/6, 2014/4/13, 2014/4/29, 2014/5/15, 2014/8/19, 2014/9/4, 2014/10/6,
2014/12/25, 2015/1/10, 2015/2/11, 2015/3/15, 2015/4/16, 2015/5/2, 2015/5/18,
2015/7/5, 2015/8/22, 2015/9/7, 2015/9/23, 2015/11/26, 2016/2/14, 2016/3/1,
2016/4/18, 2016/5/4, 2016/5/20, 2016/8/8, 2016/9/9
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2.3.1 Surface feature parameter inversion

Fractional vegetation cover, surface albedo, surface temperature, and surface emissivity are the
driving data of the PCACA-LESA.

Fractional vegetation cover and land surface albedo. The NDVI is calculated from
reflectance data of OLI bands 4 to 5 after atmospheric and geometric corrections; fractional
vegetation cover f is then obtained with the modified dimidiate pixel model.32 Surface albedo
α is estimated using the method in Liang33 with surface reflectance data from OLI bands 2 to 8.

Land surface temperature. The monowindow algorithm dependent on surface heat
radiation transfer equation is employed34 to infer surface temperature for Shahe River Basin
using TIRS data. The relevant equations are given as follows.

Brightness temperature T10 is calculated according to the thermal infrared band 10.34

EQ-TARGET;temp:intralink-;e001;116;230T10 ¼ K2∕ lnð1þ K1∕ρb10Þ; (1)

where ρb10 refers to reflectance of the 10th band of Landsat-8, considering the USGS calibration
notices,35 ρb10 could be calculated based on the metadata file of Landsat-8 data;34 K1 and K2

are constants preset before satellite launch (K1 ¼ 774.89 W · m−2 · sr−1 · μm−1 and K2 ¼
1321.08 K). Brightness temperature is different from actual surface temperature and the gap
is about 5 to 10 K for on a dry clear day.36 Therefore, the brightness temperature should be
corrected34 to calculate the surface temperature Tm.

EQ-TARGET;temp:intralink-;e002;116;124Tm ¼ fA · F þ ½ðB − 1ÞF þ 1�T10 −D · Txg∕C; (2)

where A and B are constants; when surface temperature ranges from 273.15 to 343.15 K,
A ¼ −67.355351, B ¼ 0.458606; in addition, C ¼ ζ · τ, D ¼ ð1 − τÞ½1þ ð1 − ζÞτ�, and

Fig. 2 Flowchart of the daily ET remote sensing estimation methodology.
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F ¼ 1 − C −D. Tx denotes atmospheric mean temperature (K), while ζ and τ are land surface
emissivity and atmospheric transmissivity, respectively. Tx ¼ 1.60110þ 092621T0, where T0 is
the near-surface air temperature (K). If the total atmospheric water vapor content w lies between
0.4 and 1.6 g∕cm2, τ can be calculated as τ ¼ 0.974290 to 0.08007 w; if w varies between 1.6
and 3.0 g∕cm2, τ ¼ 1.031412 to 0.11536 w. Empirical equation between effective water vapor
content of the atmosphere in the research area and ground water vapor pressure can be described
as follows:

EQ-TARGET;temp:intralink-;e003;116;477w ¼ 0.185þ 0.144e; (3)

where e is the actual water vapor pressure on surface (hPa).

Land surface emissivity. In order to calculate the land surface emissivity, land use types
are classified into six categories based on NDVI, including vegetation, water body, bare land,
vegetation in bare land, building lot, and vegetation in building lot. Classification methods are
presented in Table 2.

We took emissivity values from Tian et al.,29 that is, 0.986 for vegetation, 0.995, 0.972, and
0.97 for water body, bare land, and building correspondingly. Emissivity in pixels mixed of soil
and vegetation is calculated from Eq. (4), and in pixels mixed with vegetation and building lot
calculated from Eq. (5).

EQ-TARGET;temp:intralink-;e004;116;310εm ¼ fRvεv þ ð1 − fÞRsεs þ dε; (4)

EQ-TARGET;temp:intralink-;e005;116;275εm ¼ fRvεv þ ð1 − fÞRbεb þ dε; (5)

where R is the temperature scaling function; the subscripts v, s, and b represent vegetation, soil,
and building. R is defined as Ri ¼ ðTi∕TÞ4 in which i stands for v, s, and b, T for surface temper-
ature (K). In areas where land surface is relatively flat, thermal radiation interactions (dε)
between the two surfaces are very weak and thus dε ¼ 0.

2.3.2 Instantaneous evaporative fraction estimation

The instantaneous evaporative fraction Λ of land surface can be defined as follows:

EQ-TARGET;temp:intralink-;e006;116;152Λ ¼ λE∕ðRn − GÞ; (6)

where λE is surface latent heat flux, while Rn and G are net radiation flux and soil heat flux.
Empirical relation between soil heat flux and net radiation flux of land surface is presented as

EQ-TARGET;temp:intralink-;e007;116;91G ≈ 0.3ð1 − 0.9fÞRn: (7)

Table 2 NDVI-based land use classification.

Classification Criteria

Vegetation NDVI≧0.5

Building lot OLI7≧OLI6, OLI7≧OLI5, and sum for band OLI2 to OLI7 is
larger than 900. NDVI is 0.1, as a threshold to differentiate
building lot and vegetation in building lot.Vegetation in building lot

Bare land OLI5≧OLI6, OLI5≧OLI4, and the sum for band OLI2 to
OLI7≦900. NDVI ¼ 0.15, serve as the threshold to
distinguish bare land and vegetation in bare land.Vegetation in bare land

Water body NDVI ¼ 0; and, OLI5≦OLI4.
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In this paper, λE and Rn are estimated by the PCACA model to acquire instantaneous evapo-
rative fraction Λ. In line with PCACA, combining measured values of parameters for dry and wet
pixels, actual temperatures of four extreme mixed pixels are calculated according to “surface
temperature-fractional vegetation cover” plot trapezoid envelope. Then, linear interpolation
method is applied to obtain the relationship between land surface temperature and temperature
of soil (Ts) and vegetation (Tv). Partitioning of surface temperature into soil and vegetation
canopy temperature is given as

EQ-TARGET;temp:intralink-;e008;116;651δεmT4
m ¼ δεvT4

v þ δεsð1 − fÞT4
s ; (8)

where εm, εv, and εs refer to emissivity of mixed pixels, vegetation, and soil surface; σ to
Boltzmann constant, and f to the fractional vegetation cover of mixed pixels. Derivation of
f is performed from Eq. (8), together with simplifications, and the following equation can
be achieved:

EQ-TARGET;temp:intralink-;e009;116;568dTm∕df ≈ Tv − Ts; (9)

where dTm∕df is the slope of medium soil moisture content line in the trapezoid framework.
“Theoretical dry boundary” is determined by reverse-reasoning calculations based on the energy
balance method; “theoretical wet boundary” is determined by surface temperature over large
water body (refer to Refs. 28 and 29). In the same manner, surface albedo α can also be decom-
posed into vegetation albedo αv and soil albedo αs.

In the LESA method, soil and vegetation Bowen ratio βs or βv are obtained first;
37,38 and then

energy balance method is applied to partition available surface energy for soil evaporation and
vegetation transpiration. Afterward, in combination with the trapezoid framework, Bowen
ratio is figured out using Eq. (10), in which TSH and TSL are the maximum and minimum
soil temperatures of pixels with identical coverage in the research area; βSi and TSi refer to
soil Bowen ratio and soil temperature of a single pixel.

EQ-TARGET;temp:intralink-;e010;116;403βSi ≈ ðTSH − TSLÞ∕ðTSH − TSiÞ − 1: (10)

Rsn and Rvn that stand for net radiation fluxes of soil and vegetation are calculated from
long-/short-wave radiations of soil/vegetation surfaces; then, linear mixture theory is applied
to get the net surface radiation flux Rn through coverage weighting.38

EQ-TARGET;temp:intralink-;e011;116;331Rn ¼ fRvn þ ð1 − fÞRsn: (11)

Lastly, instantaneous soil evaporation λEs and instantaneous vegetation transpiration λEv

can be estimated.

EQ-TARGET;temp:intralink-;e012;116;273λEs ¼ ðRsn − GÞ∕ð1þ βsÞ; λEv ¼ Rvn∕ð1þ βvÞ; (12)

EQ-TARGET;temp:intralink-;e013;116;238λE ¼ fλEv þ ð1 − fÞλEs: (13)

2.3.3 Daily net radiation estimation

The daily net surface radiation denoted by Rd is the effective energy absorbed by land surface; it
is equal to the sum of Rs and Rl, known as daily net short-wave radiation and daily net long-wave
radiation.39 Rs can be computed by Rsun (daily surface solar radiation) and α (surface albedo);
that is, Rs ¼ ð1 − αÞRsun:Rsun is calculated based on the extraterrestrial radiation and the
empirical parameters for atmospheric transmissivity.40

EQ-TARGET;temp:intralink-;e014;116;117Rsun ¼ ðas þ bs · n∕NÞWd; (14)

where n refers to the actual sunshine duration, N to the maximum sunshine duration, n∕N to the
relative sunshine duration (0 to 1), Wd is the daily extraterrestrial radiation (MJ · m−2 · day−1),
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and as and bs are empirical regression coefficients taken as 0.56 and 0.16.41 Daily extraterrestrial
radiation (Wd) is computed as

EQ-TARGET;temp:intralink-;e015;116;711Wd ¼ ðD∕πÞð1∕ρ0Þ2I0ðω0 sin φ sin δþ cos φ cos δ sin ω0Þ; (15)

where D is time span of a day; I0 is solar constant (0.082 MJm−2 min−1); ω0 corresponds to
solar hour angle; φ (rad) and δ (rad) are geographic latitude and solar declination; and, ð1∕ρ0Þ2 is
the earth–sin distance correction coefficient.

The Penman, Howard–Lloyd, and total radiation calculation methods are applied for daily
net long-wave radiation calculation. When water vapor pressure ranges from 0 to 12.25 hPa,
the total radiation calculation equation is selected [Eq. (16)]; if it ranges from 12.25 to 27.04 hPa,
the Howard–Lloyd equation is selected [Eq. (17)]; otherwise, Penman equation is selected
[Eq. (18)].

EQ-TARGET;temp:intralink-;e016;116;584Rl ¼ εδT4
0

�
0.39 − 0.058

ffiffiffiffiffi
ed

p �
ð0.1þ 0.9 · n∕NÞ; (16)

EQ-TARGET;temp:intralink-;e017;116;535Rl ¼ εδT4
0

�
0.32 − 0.026

ffiffiffiffiffi
ed

p �
ð0.3þ 0.7 · n∕NÞ; (17)

EQ-TARGET;temp:intralink-;e018;116;491Rl ¼ εδT4
0

�
0.56 − 0.079

ffiffiffiffiffi
ed

p �
ð0.1þ 0.9 · n∕NÞ; (18)

where Ta denotes the temperature (K), ed is the average vapor pressure (hPa), n is the sunshine
duration, and N is the maximum sunshine duration (hours).

2.3.4 Daily ET extension

The evaporative fraction is assumed to be constant during a day,31 then the ratio between latent
heat flux (λE) and available energy (Rn − G) is stable within a day.

EQ-TARGET;temp:intralink-;e019;116;366λEd∕Fd ≈ λE∕F ¼ Λ ¼ λE∕ðRn − GÞ; (19)

where Λ refers to the instantaneous evaporative fraction. In addition, based on the calculated Rd,
24-h integral is carried out for Eq. (19) to achieve the daily ET.

EQ-TARGET;temp:intralink-;e020;116;311Ed ¼ Λ ·
Rd

λ
; (20)

where Ed is the actual daily ET with a unit of mm · day−1; Rd is the daily net radiation (unit:
MJ · m−2 · day−1); λ is the latent heat of vaporization (MJ · m−3); and λ ¼ ð2.501 −
0.02361 × T0Þ × 103 MJ · m−3; T0 is daily average temperature (°C).

2.3.5 Validations

Two validations were conducted here. First, observation data from the Xiaotangshan Flux
Observation Station within the research area and ET results in the relevant pixels are selected
for validation. Observation values from Miyun Flux Observation Station near the Shahe River
Basin are also used for validation. Data from daytime observation stations consist of daily evapo-
ration obtained through daily scale transformation of instantaneous fluxes measured by EC
system and large aperture scintillometer. According to the previous studies,29,42 in the case
that surface energy balance equation closure ½η ¼ ðH þ λEÞ∕ðRn − GÞ� is larger than 0.8, the
achieved simulation results have a high confidence level. Energy closures of simulation results
are all higher than 0.8 on the 33 typical days in this study. Therefore, daily ET estimated by
remote sensing inversion are in agreement with observations.
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Second, we compared our ET results with another two commonly used remote sensing meth-
ods. The surface energy balance system (SEBS)43 is a one-layer ET remote sensing model.
According to China’s specific regional characteristics, improvements have been made to the
original SEBS model. The SEBS-China9 was proved as a more appropriate model for estimating
China’s regional ET. In addition, with the support of Global Environment Facility, a number of
ground flux stations have been established in the Haihe River Basin (including the Shahe River
Basin).44 Based on those studies, ETWatch44 an integrated ET remote sensing system, was con-
structed by coupling the Penman–Monteith model and the “residue approach” of the surface
energy balance equation. For the remote sensing data (30 m), the ETWatch adopts the calibrated
and improved METRIC45/SEBAL46 models; for 1-km data, it adopts the SEBS model. Recently,
the ET estimation studies using ETWatch showed satisfactory results.44,47,48 For example, using
the 30 m TM data and the 1-km MODIS data in sunny days during 2002 to 2009, Jia et al.47

estimated the daily ET, and used the observation data of Miyun, Guantao, and Daxing flux sta-
tions for validation. Wu et al.48 fused the TM and MODIS data, and employed the ETWatch to
calculate the daily ET in 30-m spatial resolution.

3 Results and Discussions

3.1 Surface Parameters

In the two-layer daily ET remote sensing system TDERSS, inputs include surface feature param-
eters including fractional vegetation cover, surface albedo, surface temperature, and surface
emissivity. From Fig. 3, temperature, fractional vegetation cover, and emissivity variables

Fig. 3 Surface parameters of a typical day based on remote sensing (August 19, 2014).
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are transitionally stable on up/downstream; and their transitional boundaries are inconspicuous.
Fractional vegetation cover is the largest for mountainous areas, so is that of farm lands in plain
areas. Changes in surface albedo in up/downstream as well as the plain area in the lower reaches
are minor; a prominent boundary appears between mountainous areas on the upstream and the
plain downstream for albedo.

3.2 Evaporative Fluxes of Vegetation and Soil

Flux inversion results of April 13, 2014, and October 6, 2014, are selected as representative
spring and autumn days. According to the distribution diagram, surface flux inversion outcomes
indicate that net radiation flux, soil heat flux, sensible heat flux, and latent heat flux have a good
consistency with surface feature parameters in terms of the spatial distributions (Figs. 4–6).

Northwest of the area where fractional vegetation cover is high on the upstream, latent heat
flux is greater than the downstream plain area on southeast; sensible heat flux on the lower
reaches is larger than the upper reaches. The net radiation and soil heat flux on the upper reaches
are larger than those on the lower reaches. The difference between the net radiation of the upper
and lower reaches is small. For the soil heat flux, the difference of the data of the upstream
and downstream is also trivial. However, for sensible heat flux, the contrast is more obvious.
On the upstream, latent heat flux is relatively high while soil heat flux relatively low; on the
downstream, the integral difference of them is not large.

At the moment of satellite passing, the average net radiation on representative day of spring is
605.8 and 637.6 W∕m2 in autumn. Differences among energy balance components in the lower
and upper reaches are great on the representative day of spring; and they are minor in autumn.
What needs to be pointed out is that in both spring and autumn, the basin has high average latent
heat fluxes 221.3 and 279.1 W∕m2, respectively. The main reasons are that as in the crops leaf-
ing period, land surface is rather humid, solar radiation is strong, and evaporation is large in
spring; and, in autumn, summer maize is still not harvested, together with unwithered grasses
they contribute a considerable amount of surface evaporation. Average values of sensible heat
fluxes of this basin in spring and autumn are 237.2 and 199.1 W∕m2. Land use types with a large
sensible heat flux consist of building lot and dry bare land. In autumn, vegetation is denser
than in spring on representative days, which leads to small specific surface area of bare soils;
as a result, sensible heat flux in this period is lower than the representative day of spring.

Based on Figs. 3–6, soil and vegetation components of sensible and latent heat fluxes are
both higher on the upstream than those on the downstream areas. Latent heat and sensible heat
components in spring have a more prominent spatial variability than in autumn, while it is

Fig. 4 Fractional vegetation cover distributions of Shahe River Basin in spring and autumn.
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Fig. 6 The spatial distribution of soil/vegetation sensible and latent heat fluxes on typical days in
spring and autumn.

Fig. 5 Surface fluxes and relevant spatial distributions on typical days in spring and autumn.
Units for energy fluxes are W∕m2.
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insignificant for soil components in both spring and autumn. Soil and vegetation components for
sensible heat flux in spring are both greater than those in autumn; however, latent heat flux
components are lower than autumn. Soil component is greater than the vegetation component
in total sensible heat and latent heat. In spring, sensible heat flux range and the mean value of soil
are 0 to 420 and 244.9 W∕m2, which change to 1.5 to 421 and 212.3 W∕m2 in autumn.
Moreover, the corresponding vegetation sensible heat ranges and mean values are 2 to 271,
154.1, and 78 to 130, 102.1 W∕m2, respectively. Regarding the minimum values for soil
and vegetation components, sensible heat flux of soil is less than the vegetation. From the
perspective of average value of the basin, latent heat of vegetation in spring is 309.3 and
214.3 W∕m2 of soil. In comparison, for autumn, they are 368.6 and 266.8 W∕m2.

Within the basin, latent heat flux and net radiation over a large reservoir are distinctly higher
than other areas. According to surface fluxes in spring, the total latent heat fluxes between
upstream and downstream areas are significantly different in spring. Regular-shaped patches
with latent heat lower and sensible heat higher than other regions are distributed in a scattered
manner in the lower reaches. Such patches are caused by winter wheat turning green, unseeded
summer maize and nonuniformly developed vegetation canopy. In October, the Shahe River
Basin enters its nongrowing season so that high value of sensible heat flux is substantially
reduced (Figs. 3–6); especially for those near large water bodies, such a reduction becomes
more distinct. At the same time, sensible heat flux around downstream water bodies goes
down while the latent heat flux goes up.

3.3 Validation Results

3.3.1 Validation with the observations

For Xiaotangshan Station situated in cropland region on the lower reaches of Shahe River Basin,
its underlying surface is dominated by crops (winter planting summer harvesting or summer
planting autumn harvesting). Daily ET that varies between 0 and 3.5 mm reaches its peak at
the end of spring to early summer. For comparison in Fig. 7, the relative error of daily evapo-
ration simulation observations is between 0% and 20%, with a mean absolute percentage error
(MAPE) of 8.7%, a mean relative error (MRE) of −1.0%, a correlation coefficient of 0.985, and
a root-mean-square error of 0.776 mm. Thus, our remote sensing method estimates ET at a sat-
isfactory accuracy level.

Miyun station is located at Xinchengzi Town, Miyun County in the northwest of Haihe River
Basin, near the Shahe River Basin. The data of Miyun station are used as an alternative validation
data for evaluating ET estimation in mountain area. It has a mixed underlying surface mainly
formed by forest and crops in hilly region; in addition, vegetation is a mixture of needle-leaf and
broadleaf; fruit trees and maize are primary crops, and the corn field is turned into bare land in
the unfit planting time. Climatic characteristics and underlying surface features share similarities
with the Shahe River Basin. Through spatial analysis, we selected the points with the
similar underlying surface condition (elevation, slope, vegetation cover, land cover type, and

Fig. 7 Comparison of remote sensing daily ET and observations at the Xiaotangshan Station.
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temperature) in the mountainous area of Shahe River Basin, and compared the average daily ET
of them with the data by Miyun station. For comparison in Fig. 8, MAPE, MRE, root-mean-
square error, and correlation coefficients is 12.1%, 3.3%, 1.20 mm, and 0.982 respectively.

3.3.2 Intercomparison with other remote sensing models

The comparisons of the daily ET results of TDERSS and SEBS-China models are given in Fig. 9.
The results show that the simulations of the two models are generally identical, with the

MAPE of 13%. Compared with the daily ET values of corresponding pixels in the observation
areas of flux stations, TDERSS has the advantage of accuracy over the SEBS-China. Because of
the vegetation and soil-mixed farmland or forest in the area where the station is located, the bias
may be due to nonseparated soil and vegetation of the SEBS-China. The difference between the
daily ET by the two models was more significant in the growing season (April to October).
In terms of the land use types, MAPE of SEBS and RSTM from low to high were water,
grassland, forest, farmland, bare land, and building land.

Furthermore, Table 3 shows the statistics of the comparisons between the daily ET and the
observations at the validation sites.

The MRE is the mean relative percentage error between the daily ETof remote sensing model
and corresponding observation station. The MRE of the TDERSS is the smallest in growing
seasons and all years. The MRE of TDERSS (30 m) is close to that of ETWatch in 1-km res-
olution. Overall, the TDERSS proposed in the study improved ET estimation accuracy compared
to ETWatch and SEBS.

Fig. 8 Comparison of remote sensing daily ET and observations at the Miyun Station.

Fig. 9 Comparisons of daily ET results by TDERSS, SEBS-China in different land use areas.
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3.4 Spatial-Temporal Analysis

In this study, April 15, 2014, August 19, 2014, October 6, 2014, and January 1, 2015, are used as
representative days among four seasons to perform the spatial-temporal analysis of ET, net radi-
ation, and evaporative fraction. It is clear from Fig. 10 that spatial differences among evaporative
fractions for all seasons are not big; although in spring and summer when fractional vegetation

Fig. 10 Comparisons of daily net radiation (Rd), evaporative fraction (Λ), and daily ET (Ed) in
the corresponding representative days in spring, summer, autumn, and winter.

Table 3 Comparisons of daily ET results by TDERS, SEBS-China, ETWatch, and observation
stations.

Model Data Spatial resolution of daily ET

Mean relative error (%) to the stations

Xiaotangshan Miyun Average

SEBS-China OLI/TIRS 30 m −6.9ð−12.5Þ −10.5ð−15.7Þ —

TDERSS OLI/TIRS 30 m −1.0ð1.9Þ 3.3(5.2) —

ETWatch47 TM 30 m N/A N/A −9.1ð−22.9Þ

ETWatch47 MODIS 1 km N/A N/A 0.99ð−1.13Þ

ETWatch48 Fused data 30 m 2.60(N/A) N/A N/A

Note: Numbers in parentheses are the statistics during growing seasons (April to September).

Yin et al.: Evapotranspiration estimation using Landsat-8 data with a two-layer framework

Journal of Applied Remote Sensing XXXXXX-13 • Vol. ()



cover is high, the average evaporative fraction of the basin is slightly higher than the other two
seasons. On the upper reaches, the evaporative fraction is universally larger than farmlands and
settlement places on the lower reaches. On representative days of different seasons, the total daily
net radiation of the basin is high in the upstream and low in the downstream.

For the convenience of analysis, considerations are given to upstream mountainous areas and
downstream plain areas of the Shahe River Basin in a separate way. Mountainous areas are
defined with an elevation more than 130 m. The region where land use type is nonforestry
with a slope less than 4.28% is defined as plain area. A scatter plot of evaporative fraction,
daily net radiation, and daily ET are extracted respectively for plain and mountainous areas,
given in Fig. 11. Except plain area on representative days of winter, evaporative fraction
and daily ET exhibit prominent linear relationships which indicates that a good correlation exists
between daily ET and evaporative fraction. As mountainous areas in the Shahe River Basin have
mingled forest of coniferous and broadleaf deciduous forest, scatter distribution of daily ET and
evaporative fraction in four seasons tend to be uniform. However, due to impacts of vegetation
density in the mountainous area, the correlation between daily ET and evaporative fraction is the
strongest in summer, weakest for winter. For most plains dominated by farmlands and buildings,
they are primarily covered by bare lands and sporadically distributed vegetation in winter.
To sum up, under a circumstance of dense vegetation, daily ET and evaporative fraction are
distinctly correlated; on the contrary, when vegetation is sparse, such a correlation is weak.

Similarly, relationships between daily ET and daily net radiation are also investigated for
mountainous and plain areas. In four seasons, no matter in the mountainous area or the
plain, correlation of daily ET and daily net radiation is not strong. The correlation between

Fig. 11 Scatter plot of daily ET-evaporative fraction and daily ET-net radiation for plain area and
mountain area across four seasons.

Yin et al.: Evapotranspiration estimation using Landsat-8 data with a two-layer framework

Journal of Applied Remote Sensing XXXXXX-14 • Vol. ()



ET and daily net radiation for plain in winter is the highest. In Shahe River Basin, there is very
little rain in winter; and the plain area here is mainly dominated by bare lands; moreover, the
major factor affecting daily ET is solar radiation. Therefore, such a preferable correlation exists
between daily ET and daily net radiation in diverse regions of the plain. In summer, net radiation
differences lie between farmlands on the downstream and forest in hilly region on the upstream
are very minor. Evaporative fraction and daily ET are linearly related; however, the correlation
between daily net radiation and daily ET is rather low. Thus, we can infer that major factor
influencing seasonable variations of ET is net radiation; while underlying surface characteristics
are also important to shape the ET spatial distributions. In general, fractional vegetation cover in
mountainous area is larger than the plain area and it reaches the peak in summer. The relation-
ships of daily ET, net radiation, and evaporative fraction can be summarized as follows: the
higher the fractional vegetation cover, the greater the influence of evaporative fraction on
the daily ET; the lower the fractional vegetation cover, the greater the influence of daily net
radiation on daily ET.

4 Conclusions

Based on PCACA-LESA and ET extension algorithm, a remote sensing model TDERSS is con-
structed for daily ET estimation at 30-m spatial resolution. Application in the Shahe River Basin
shows that the MAPE between our method and the EC and large-aperture scintillometer obser-
vations is 8.7% in plain areas and 12.1% in mountainous areas. Our model estimates more
accurate ET than the ETWatch model and SEBS-China model. The results imply that our model
is applicable for daily scale ET estimations on complex terrains. In addition, TDERSS is able to
calculate the water/heat fluxes of soil and vegetation separately, which is helpful to study the
process and space distribution of evaporation and transpiration.

Surface energy balance components in the Shahe River Basin have prominent spatial-
temporal features. Instantaneous soil and vegetation water/heat fluxes are correlated to surface
parameters of the basin. On sunny days of spring and autumn, spatial distribution of water/heat
fluxes of vegetation and soils is uniform, despite that vegetation water/energy fluxes are slightly
larger than soil, and the spatial variability of the latter is more prominent. Interannual variation of
those distributions is minor and positively related to coverage within a year. The distribution
of ET shows distinct patterns in the basin that upstream > downstream, forest lands >
farmlands > building lots, summer > other seasons distinctly.
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