
Evasion and Hardening of Tree Ensemble Classifiers

Alex Kantchelian AKANT@CS.BERKELEY.EDU

J. D. Tygar TYGAR@CS.BERKELEY.EDU

Anthony D. Joseph ADJ@CS.BERKELEY.EDU

University of California, Berkeley

Abstract

Classifier evasion consists in finding for a given

instance x the “nearest” instance x′ such that the

classifier predictions of x and x′ are different.

We present two novel algorithms for systemati-

cally computing evasions for tree ensembles such

as boosted trees and random forests. Our first

algorithm uses a Mixed Integer Linear Program

solver and finds the optimal evading instance un-

der an expressive set of constraints. Our second

algorithm trades off optimality for speed by us-

ing symbolic prediction, a novel algorithm for

fast finite differences on tree ensembles. On a

digit recognition task, we demonstrate that both

gradient boosted trees and random forests are

extremely susceptible to evasions. Finally, we

harden a boosted tree model without loss of pre-

dictive accuracy by augmenting the training set

of each boosting round with evading instances, a

technique we call adversarial boosting.

1. Introduction

Deep neural networks (DNN) represent a prominent suc-

cess of machine learning. These models can successfully

and accurately address difficult learning problems, includ-

ing classification of audio, video, and natural language pos-

sible where previous approaches have failed. Yet, the ex-

istence of evading instances for the current incarnation of

DNNs (Szegedy et al., 2013) shows a perhaps surprising

brittleness: for virtually any instance x that the model clas-

sifies correctly, it is possible to find a negligible perturba-

tion δ such that x+ δ evades being correctly classified, that

is, receives a (sometimes widely) inaccurate prediction.

The general study of the evasion problem matters on both

conceptual and practical grounds. First, we expect a high-

Proceedings of the 33
rd International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

performance learning algorithm to generalize well and be

hard to evade: only a “large enough” perturbation δ should

be able to alter its decision. The existence of small-δ evad-

ing instances shows a defect in the generalization ability of

the model, and hints at improper model class and/or insuffi-

cient regularization. Second, machine learning is becoming

the workhorse of security-oriented applications, the most

prominent example being unwanted content filtering. In

those applications, the attacker has a large incentive for

finding evading instances. For example, spammers look

for small, cost-effective changes to their online content to

avoid detection and removal.

While prior work extensively studies the evasion problem

on differentiable models by means of gradient descent,

those results are reported in an essentially qualitative fash-

ion, implicitly defaulting the choice of metric for measur-

ing δ to the L2 norm. Further, non-differentiable, non-

continuous models have received very little attention. Tree

sum-ensembles as produced by boosting or bagging are

perhaps the most important models from this class as they

are often able to achieve competitive performance and en-

joy good adoption rates in both industrial and academic

contexts.

In this paper, we develop two novel exact and approximate

evasion algorithms for sum-ensemble of trees. Our exact

(or optimal) evasion algorithm computes the smallest δ ac-

cording to the Lp norm for p = 0, 1, 2,∞ such that the

model misclassifies x+ δ. The algorithm relies on a Mixed

Integer Linear Program solver and enables precise quanti-

tative robustness statements. We benchmark the robustness

of boosted trees and random forests on a concrete hand-

written digit classification task by comparing the minimal

required perturbation δ across many representative models.

Those models include L1 and L2 regularized logistic re-

gression, max-ensemble of linear classifiers (shallow max-

out network), a 3-layer deep neural network and a classic

RBF-SVM. The comparison shows that for this task, de-

spite their competitive accuracies, tree ensembles are con-

sistently the most brittle models across the board.

Finally, our approximate evasion algorithm is based on

Evasion and Hardening of Tree Ensemble Classifiers

symbolic prediction, a fast and novel method for comput-

ing finite differences for tree ensemble models. We use

this method for generating more than 11 million synthetic

confusing instances and incorporate those during gradi-

ent boosting in an approach we call adversarial boosting.

This technique produces a hardened model which is signif-

icantly harder to evade without loss of accuracy.

2. Related Work

From the onset of the adversarial machine learning sub-

field, evasion is recognized as part of the larger family of at-

tacks occurring at inference time: exploratory attacks (Bar-

reno et al., 2006). While there is a prolific literature consid-

ering the evasion of linear or otherwise differentiable mod-

els (Dalvi et al., 2004; L., 2005; Lowd & Meek, 2005; Nel-

son et al., 2012; Brückner et al., 2012; Fawzi et al., 2014;

Biggio et al., 2013; Szegedy et al., 2013; Srndic & Laskov,

2014), we are only aware of a single paper tackling the case

of tree ensembles. In Xu et al. (Xu et al., 2016), the authors

present a genetic algorithm for finding malicious PDF in-

stances which evade detection.

In this paper, we forgo application-specific feature extrac-

tion and directly work in feature space. We briefly dis-

cuss strategies for modeling the feature extraction step in

paragraph additional constraints of section 4.3. We de-

liberately do not limit the amount of information available

for carrying out evasion. In this paper, our goal is to estab-

lish the intrinsic evasion robustness of the machine learning

models themselves, and thus provide a guaranteed worst-

case lower-bound. In contrast to (Xu et al., 2016), our ex-

act algorithm guarantees optimality of the solution, and our

approximate algorithm performs a fast coordinate descent

without the additional tuning and hyper-parameters that a

genetic algorithm requires.

We contrast our paper with a few related papers on deep

neural networks, as these are the closest in spirit to the

ideas developed here. Goodfellow et al. (Goodfellow et al.,

2014) hypothesize that evasion in practical deep neural net-

works is possible because these models are locally lin-

ear. However, this paper demonstrates that despite their

extreme non-linearity, boosted trees are even more sus-

ceptible to evasion than neural networks. On the harden-

ing side, Goodfellow et al. (Goodfellow et al., 2014) in-

troduce a regularization penalty term which simulates the

presence of evading instances at training time, and show

limited improvements in both test accuracy and robustness.

Gu et al. (Gu & Rigazio, 2015) show preliminary results

by augmenting deep neural networks with a pre-filtering

layer based on a form of contractive auto-encoding. Most

recently, Papernot et al. (Papernot et al., 2015) shows the

strong positive effect of distillation on evasion robustness

for neural networks. In this paper, we demonstrate a large

increase in robustness for a boosted tree model hardened

by adversarial boosting. We empirically show that our

method does not degrade accuracy and creates the most ro-

bust model in our benchmark problem.

3. The Optimal Evasion Problem

In this section, we formally introduce the optimal evasion

problem and briefly discuss its relevance to adversarial ma-

chine learning. We follow the definition of (Biggio et al.,

2013). Let c : X → Y be a classifier. For a given instance

x ∈ X and a given “distance” function d : X × X → R+,

the optimal evasion problem is defined as:

minimize
x′∈X

d(x, x′) subject to c(x) 6= c(x′) (1)

In this paper, we focus on binary classifiers defined over

an n-dimensional feature space, that is Y = {−1, 1} and

X ⊂ R
n.

Setting the classifier c aside, the distance function d fully

specifies (1), hence we talk about d-evading instances, or d-

robustness. In fact, many problems of interest in adversar-

ial machine learning fit under formulation (1) with a judi-

cious choice for d. In the adversarial learning perspective,

d can be used to model the cost the attacker has to pay for

changing her initial instance x. In this paper, we proceed

as if this cost is decomposable over the feature dimensions.

In particular, we present results for four representative dis-

tances. We briefly describe those and their typical effects

on the solution of (1).

The L0 distance
∑n

i=1
Ixi 6=x′

i
, or Hamming distance en-

courages the sparsest, most localized deformations with ar-

bitrary magnitude. Our optimal evasion algorithm can also

handle the case of non-uniform costs over features. This

situation corresponds to minimizing
∑n

i=1
αiIxi 6=x′

i
where

αi are non-negative weights.

The L1 distance
∑n

i=1
|xi−x

′
i| encourages localized de-

formations and additionally controls for their magnitude.

The L2 distance
√

∑n
i=1

(xi − x′
i)

2 encourages less lo-

calized but small deformations.

The L∞ distance maxi |xi − x′
i| encourages uniformly

spread deformations with the smallest possible magnitude.

Note that for binary-valued features, L1 and L2 reduce to

L0 and L∞ results in the trivial solution value 1 for (1).

4. Evading Tree Ensemble Models

We start by introducing tree ensemble models along with

some useful notation. We then describe our optimal and ap-

Evasion and Hardening of Tree Ensemble Classifiers

proximate algorithms for generating evading instances on

sum-ensembles of trees.

4.1. Tree Ensembles

A sum-ensemble of trees model f : Rn → R consists of

a set T of regression trees. Without loss of generality, a

regression tree T ∈ T is a binary tree where each inter-

nal node n ∈ T.nodes holds a logical predicate n.predicate

over the feature variables, outgoing node edges are by con-

vention labeled n.true and n.false and finally each leaf

l ∈ T.leaves holds a numerical value l.prediction ∈ R.

For a given instance x ∈ R
n, the prediction path in T is

the path from the tree root to a leaf such that for each in-

ternal node n in the path, n.true is also in the path if and

only if n.predicate is true. The prediction of tree T is the

leaf value of the prediction path. Finally, the signed margin

prediction f(x) of the ensemble model is the sum of all in-

dividual tree predictions and the predicted label is obtained

by thresholding, with the threshold value commonly fixed

at zero: c(x) = 1⇔ f(x) > 0.

In this paper, we consider the case of single-feature thresh-

old predicates of the form xi < τ or equivalently xi > τ ,

where 0 ≤ i < n and τ ∈ R are fixed model parame-

ters. This restriction excludes oblique decision trees where

predicates simultaneously involve several feature variables.

We however note that oblique trees are seldom used in en-

semble classifiers, partially because of their relatively high

construction cost and complexity (Norouzi et al., 2015).

Before describing our generic approach for solving the op-

timal evasion problem, we first state a simple worst-case

complexity result for problem (1).

4.2. Theoretical Hardness of Evasion

For a given tree ensemble model f , finding an x ∈ R
n such

that f(x) > 0 (or f(x) < 0 without loss of generality) is

NP-complete. That is, irrespectively of the choice for d,

the optimal evasion problem (1) requires solving an NP-

complete feasibility subproblem. We give a proof of this

fact by reduction from 3-SAT in the appendix.

While we can not expect an efficient algorithm for solving

all instances of problem (1) unless P = NP, it may be the

case that tree ensemble models as produced by common

learners such as gradient boosting or random forests are

practically easy to evade. We now turn to an algorithm for

optimally solving the evasion problem when d is one of the

distances presented in section 3.

4.3. Optimal Evasion

Let f be a sum-ensemble of trees as defined in 4.1 and

x ∈ R
n an initial instance. We present a reduction of

problem (1) into a Mixed Integer Linear Program (MILP).

This reduction avoids introducing constraints with so called

“big-M” constants (Griva et al., 2008) at the cost of a

slightly more complex solution encoding. We experimen-

tally find that our reduction produces tight formulations and

acceptable running times for all common models f .

In what follows, we present the mixed integer program by

defining three groups of MILP variables: the predicate

variables encode the state (true or false) of all predicates,

the leaf variables encode which prediction leaf is active in

each tree, and the optional objective variable for the case

where d is the L∞ norm.

We then introduce three families of constraints: the pred-

icates consistency constraints enforce the logical con-

sistency between predicates, the leaves consistency con-

straints enforce the logical consistency between prediction

leaves and predicates, and the model mislabel constraint

enforces the condition c(x) 6= c(x′), or equivalently that

f(x′) > 0 or f(x′) < 0 depending on the sign of f(x).
Finally we reduce the objective of (1) by relating the pred-

icate variables to the value of d(x, x′) in objective.

Program Variables For clarity, MILP variables are

bolded and italicized throughout. Our reduction uses three

families of variables.

• At most
∑

T∈T |T.nodes| binary variables pi ∈ {0; 1}
(predicates) encoding the state of the predicates. Our

implementation sparingly create those variables: if

any two or more predicates in the model are logically

equivalent, their state is represented by a single vari-

able. For example, the state of x′
5 < 0 and −x′

5 > 0
would be represented by the same variable.

•
∑

T∈T |T.leaves| continuous variables 0 ≤ li ≤ 1
(leaves) encoding which prediction leaf is active in

each tree. The MILP constraints force exactly one li
per tree to be non-zero with li = 1. The l variables are

thus implied binary in any solution but are nonethe-

less typed continuous to narrow down the choice

of branching variable candidates during branch-and-

bound, and hence improve solving time.

• At most 1 non-negative continuous variable b (bound)

for expressing the distance d(x, x′) of problem (1)

when d is the L∞ distance. This variable is first used

in the objective paragraph.

In what follows, we illustrate our reduction by using a

model with a single regression tree as represented in fig-

ure 1.

Predicates consistency Without loss of generality, each

predicate variable pi corresponds to the state of a predicate

Evasion and Hardening of Tree Ensemble Classifiers

Figure 1. Regression tree for the reduction example. Predicate

variables p and leaf variables l are shown next to their correspond-

ing internal and leaf nodes. There are n = 2 continuous features.

The leaf predictions are -2, 1, 1 and 2.

of the form xk < τk. If two variables pi and pj corre-

spond to predicates over the same variable xk < τ1 and

xk < τ2, then pi and pj can take inconsistent values with-

out additional constraints. For instance, if τ1 < τ2, then

pi = 1 and pj = 0 would be logically inconsistent because

xk < τ1 ⇒ xk < τ2, but any other valuation is possible.

For each feature variable x′
k, we can ensure the consis-

tency of all p variables which reference a predicate over x′
k

by adding K − 1 inequalities enforcing the implicit impli-

cation constraints between the predicates, where K is the

number of p variables referencing xk. For a given x′
k, let

τ1 < · · · < τK be the sorted thresholds of the predicates

over x′
k. Let p1, . . . , pK be the MILP variables correspond-

ing to predicates x′
k < τ1, . . . , x

′
k < τK . A valuation of

(pi)i=1..K is consistent if and only if p1 = 1 ⇒ · · · ⇒
pK = 1. Thus the consistency constraints are:

p1 ≤ p2 ≤ · · · ≤ pK

When the feature variables x′
k are binary-valued, there is a

single pi variable associated to a feature variable: all pred-

icates x′
k < τ with 0 < τ < 1 are equivalent. Generally,

tree building packages generate a threshold of 0.5 in this

situation. This is however implementation dependent and

we can simplify the formulation with additional knowledge

of the value domain x′
k is allowed to take.

In our toy example in figure 1, variables p0 and p1 refer to

the same feature dimension 0 and are not independent. The

predicate consistency constraint in this case is:

p1 ≤ p0

and no other predicate consistency constraint is needed.

Leaves consistency These constraints bind the p and l

variables so that the semantics of the regression trees are

preserved. Each regression tree has its own independent

set of leaves consistency constraints. We construct the con-

straints such that the following properties hold:

(i) if lk = 1, then every other li 6=k variable within the

same tree is zero, and

(ii) if a leaf variable lk is 1, then all predicate variables pi
encountered in the prediction path of the correspond-

ing leaf are forced to be either 0 or 1 in accordance

with the semantics of the prediction path, and

(iii) exactly one lk variable per tree is equal to 1. This

property is needed because (i) does not force any li to

be non-zero.

Enforcing property (i) is done using a classic exclusion

constraint. If l1, . . . , lK are the K leaf variables for a given

tree, then the following equality constraint enforces (i):

l1 + l2 + · · ·+ lK = 1 (2)

For our toy example, this constraint is:

l1 + l2 + l3 + l4 = 1

Enforcing property (ii) requires two constraints per internal

node. Let us start at the root node r. Let proot be the variable

corresponding to the root predicate. Let lT1 , . . . , lTi be the

variables corresponding to the leaves of the subtree rooted

at r.true, and lF1 , . . . , lFj the variables for the subtree rooted

at r.false. The root predicate is true if and only if the active

prediction leaf belongs to the subtree rooted at r.true. In

terms of the MILP reduction, this means that proot is equal

to 1 if and only if one of the leaf variables of the true subtree

is set to one. Similarly on the false subtree, proot is 0 if

and only if one of the leaf variables of the false subtree is

set to one. Because only one leaf can be non-zero, these

constraints can be written as:

1−
(

lF1 + lF2 + · · ·+ lFj

)

= proot = lT1 + lT2 + · · ·+ lTi

The case of internal nodes is identical, except that if and

only ifs are weakened to single side implications. Indeed,

unlike the root case, it is possible that no leaf in either sub-

tree might be an active prediction leaf. For an internal node

n, let pnode be the variable attached to the node, lT and lF

the variables attached to leaves of the true and false sub-

trees rooted at n.true and n.false. The constraints are:

1−
(

lF1 + lF2 + · · ·+ lFj

)

≥ pnode ≥ lT1 + lT2 + · · ·+ lTi

In our toy example, we have 3 internal nodes and thus six

constraints. The constraints associated with the root, the

Evasion and Hardening of Tree Ensemble Classifiers

leftmost and rightmost internal nodes are respectively:

l1 + l2 = p0 = 1− (l3 + l4)

l1 ≤ p1 ≤ 1− l2

l3 ≤ p2 ≤ 1− l4

Finally, property (iii) automatically holds given the previ-

ously defined constraints. To see this, one can walk down

the prediction path defined by the p variables and notice

that at each level, the leaves values of one of the subtree

rooted at the current node must be all zero. For instance, if

pnode = 1, then we have

lF1 + lF2 + · · ·+ lFj ≤ 0⇒ lF1 = lF2 = · · · = lFj = 0

At the last internal node, exactly two leaf variables remain

unconstrained, and one of them is pushed to zero. By the

exclusion constraint (2), the remaining leaf variable must

be set to 1.

Model mislabel Without loss of generality, consider an

original instance x such that f(x) < 0. In order for x′ to

be an evading instance, we must have f(x′) ≥ 0. Encod-

ing the model output f(x′) is straightforward given the leaf

variables l. The output of each regression tree is simply

the weighted sum of its leaf variables, where the weight of

each variable li corresponds to the prediction value vi of the

associated leaf. Hence, f(x′) is the sum of |T | weighted

sums over the l variables and the following constraint en-

forces f(x′) ≥ 0:
∑

i

vili ≥ 0

For our running example, the mislabeling constraint is:

−2l1 + l2 − l3 + 2l4 ≥ 0

Objective Finally, we need to translate the objective

d(x, x′) of problem (1). We rely on the predicate variables

p in doing so. For any distance Lρ with ρ ∈ N, there exists

weights wi and a constant C such that the MILP objective

can be written as:

∑

i

wipi + C

We leave the complete proof in the appendix. Intuitively,

because the predicates effectively discretize the feature val-

ues, an optimal distance d(x, x′) can only take a finite num-

ber of values.

For our toy example, consider (x0 = 0, x1 = 3). In the

case of the L0 distance, we have the following objective:

1− p1 + p2

For the (squared) L2 distance instead, the objective is es-

sentially:

4− 3p0 − p1 + 4p2

For the L∞ case, our objective reduces to the variable b

and we introduce n additional bounding constraints of the

form · · · ≤ b where the left hand side measures |xk − x′
k|

using the same technique as the ρ = 1 case.

Hence, the full MILP reduction of the optimal L0-evasion

for our toy instance is:

min
p,l

1− p1 + p2

s.t. p0, p1 ∈ {0; 1}; 0 ≤ l1, l2, l3, l4 ≤ 1

p1 ≤ p0 predicates consistency

l1 + l2 + l3 + l4 = 1 leaves consistency

l1 + l2 = p0 = 1− (l3 + l4) leaves consistency

l1 ≤ p1 ≤ 1− l2 leaves consistency

l3 ≤ p2 ≤ 1− l4 leaves consistency

− 2l1 + l2 − l3 + 2l4 ≥ 0 model mislabel

Additional Constraints Reducing problem (1) to a

MILP allows expressing potentially complex inter-feature

dependencies created by the feature extraction step. For in-

stance, consider the common case of K mutually exclusive

binary features x1, . . . , xK such that in any well-formed

instance, exactly one feature is non-zero. Letting pi be the

predicate variable associated with xi < 0.5, mutual exclu-

sivity can be enforced by:

K
∑

i=1

pi = K − 1

4.4. Approximate Evasion

While the above reduction of problem (1) to an MILP is lin-

ear in the size of the model f , the actual solving time can

be very significant for difficult models. Thus, as a comple-

ment to the exact method, we develop an approximate eva-

sion algorithm to generate good quality evading instances.

For this part, we exclusively focus on minimizing the L0

distance. Our approximate evasion algorithm is based on

the iterative coordinate descent procedure described in al-

gorithm 1.

In essence, this algorithm greedily modifies the single best

feature at each iteration until the sign of f(x′) changes.

We now present an efficient algorithm for solving the inner

optimization subproblem

max
x̃:‖x−x̃‖0=1

f(x̃) (3)

Evasion and Hardening of Tree Ensemble Classifiers

Algorithm 1 Coordinate Descent for Problem (1)

Input: model f , initial instance x (assume f(x) < 0)

Output: evading instance x′ such that f(x′) ≥ 0

x′ ← x

while f(x′) < 0 do

x′ ← argmax
x̃′:‖x̃′−x′‖0=1

f(x̃′)

end while

The time complexity of a careful brute force approach is

high. For balanced regression trees, the prediction time

for a given instance is O
(
∑

T∈T log |T.nodes|
)

. Fur-

ther, for each dimension 1 ≤ k ≤ n, we must com-

pute all possible values of f(x̃) where x̃ and x only dif-

fer along dimension k. Note that because the model pred-

icates effectively discretize the feature space, f(x̃) takes

a finite number of distinct values. This number is no

more than one plus the total number of predicates hold-

ing over feature k. Hence, we must compute f(x̃) for a

total of
∑

T∈T |T.nodes| candidates x̃ and the total run-

ning time is O
(
∑

T∈T |T.nodes| ×
∑

T∈T log |T.nodes|
)

.

If we denote by |f | the size of the model which is propor-

tional to the total number of predicates, the running time is

O
(

|f ||T | log |f |
|T |

)

. Tree ensembles often have thousands

of trees, making the |f ||T | dependency prohibitively ex-

pensive.

We can efficiently solve problem (3) by a dynamic pro-

gramming approach. The main idea is to visit each internal

node no more than once by computing what value of x̃ can

land us at each node. We call this approach symbolic pre-

diction in reference to symbolic program execution (King,

1976), because we essentially move a symbolic instance x̃

down the regression tree and keep track of the constraints

imposed on x̃ by all encountered predicates. Because we

are only interested in x̃ instances that are at most one fea-

ture away from x, we can stop the tree exploration early if

the current constraints imply that at least two dimensions

need to be modified or more trivially, if there is no instance

x̃ that can simultaneously satisfy all the constraints. When

reaching a leaf, we report the leaf prediction value f(x̃)
along with the pair of perturbed dimension number k and

value interval for x̃k which would reach the given leaf.

To simplify the presentation of the algorithm, we introduce

a SYMBOLICINSTANCE data structure which keeps track

of the constraints on x̃. This structure is initialized by x

and has four methods.

• For a predicate p, .ISFEASIBLE(p) returns true if and

only if there exists an instance x̃ such that ‖x̃−x‖0 ≤
1 and all constraints including p hold.

• .UPDATE(p) updates the set of constraints on x̃ by

adding predicate p.

• .ISCHANGED() returns true if and only if the current

set of constraints imply x 6= x̃.

• .GETPERTURBATION() returns the index k such that

xk 6= x̃k and the admissible interval of values for x̃k

It is possible to implement SYMBOLICINSTANCE such that

each method executes in constant time.

Algorithm 2 presents the symbolic prediction algorithm re-

cursively for a given tree. It updates a list of elements by

appending tuples to it. The first element of a tuple is the

feature index k where x̃k 6= xk, the second element is the

allowed right-open interval for x̃k, and the last element is

the prediction score f(x̃).

Algorithm 2 Recursive definition of the symbolic predic-

tion algorithm. For the first call, n is the tree root, s is a

fresh SYMBOLICINSTANCE object initialized on x with no

additional constraints and l is an empty list.

Input: node n (either internal or leaf)

Input: s of type SYMBOLICINSTANCE

Input/Output: list of tuples l (see description)

if n is a leaf then

if s.ISCHANGED() then

l← l∪{s.GETPERTURBATION(), n.prediction}
end if

else

if s.ISFEASIBLE(n.predicate) then

sT ← COPY(s)
sT .UPDATE(n.predicate)
SYMBOLICPREDICTION(n.true, sT , l)

end if

if s.ISFEASIBLE(¬n.predicate) then

s.UPDATE(¬n.predicate)
SYMBOLICPREDICTION(n.false, s, l)

end if

end if

This algorithm visits each node at most once and per-

forms at most one copy of the SYMBOLICINSTANCE s

per visit. The copy operation is proportional to the num-

ber of constraints in s. For a balanced tree T , the copy

cost is O(log |T.nodes|), so that the total running time is

O(|T.nodes| log |T.nodes|).

For each tree of the model, once the list of dimension-

interval-prediction tuples is obtained, we substract the leaf

prediction value for x from all predictions in order to obtain

a score variation between x̃ and x instead of the score for x̃.

With the help of an additional data structure, we can use the

dimension-interval-variation tuples across all trees to find

the dimension k and interval for x̃k which corresponds to

Evasion and Hardening of Tree Ensemble Classifiers

the highest variation f(x̃)− f(x). This final search can be

done in O(L logL), where L is the total number of tuples,

and is no larger than
∑

T∈T |T.leaves| by construction. To

summarize, the time complexity of our method for solving

problem (3) is O(|f | log |f |), an exponential improvement

over the brute force method.

5. Results

We turn to the experimental evaluation of the robustness

of tree ensembles. We start by describing the evaluation

dataset and our choice of models for benchmarking pur-

poses before moving to a quantitative comparison of the ro-

bustness of boosted trees and random forest models against

a garden variety of learning algorithms. We finally show

that the brittleness of boosted trees can be effectively ad-

dressed by including fresh evading instances in the training

set during boosting.

Model Parameters Test Error

Lin. L1 C = 0.5 1.5%

Lin. L2 C = 0.2 1.5%

BDT 1,000 trees, depth 4, η = 0.02 0.25%

RF 80 trees, max. depth 22 0.20%

CPM k = 30, C = 0.01 0.20%

NN 60-60-30 sigmoidal (tanh) units 0.25%

RBF-SVM γ = 0.04, C = 1 0.25%

BDT-R 1,000 trees, depth 6, η = 0.01 0.20%

Table 1. The considered models. BDT-R is the hardened boosted

trees model introduced in section 5.4.

5.1. Dataset and Method

We choose digit recognition over the MNIST (LeCun et al.)

dataset as our benchmark classification task for three rea-

sons. First, the MNIST dataset is well studied and exempt

from labeling errors. Second, there is a one-to-one map-

ping between pixels and features, so that features can vary

independently from each other. Third, we can pictorially

represent evading instances, and this helps understanding

the models’ robustness or lack of. Our running binary clas-

sification task is to distinguish between handwritten digits

“2” and “6”. Our training and testing sets respectively in-

clude 11,876 and 1,990 images and each image has 28×28
gray scale pixels and our feature space is X = [0, 1]784.

As our main goal is not to compare model accuracies, but

rather to obtain the best possible model for each model

class, we tune the hyper-parameters so as to minimize the

error on the testing set directly. In addition to the training

and testing sets, we create an evaluation dataset of a hun-

dred instances from the testing set such that every instance

is correctly classified by all of the benchmarked models.

These correctly classified instances are to serve the purpose

of x, the starting point instances in the evasion problem (1).

5.2. Considered Models

Table 1 summarizes the 7 benchmarked models with their

salient hyper-parameters and error rates on the testing set.

For our tree ensembles, BDT is a (gradient) boosted de-

cision trees model in the modern XGBoost implementa-

tion (Chen & He) and RF is a random forest trained us-

ing scikit-learn (Buitinck et al., 2013). We also include the

following models for comparison purposes. Lin. L1 and

Lin. L2 are respectively a L1 and L2-regularized logis-

tic regression using the LibLinear (Fan et al., 2008) imple-

mentation. RBF-SVM is a regular Gaussian kernel SVM

trained using LibSVM (Chang & Lin, 2011). NN is a 3

hidden layer neural network with a top logistic regression

layer implemented using Theano (Bergstra et al., 2010)

(no pre-training, no drop-out). Finally, our last benchmark

model is the equivalent of a shallow neural network made

of two max-out units (one unit for each class) each made

of thirty linear classifiers. This model corresponds to the

difference of two Convex Polytope Machines (Kantchelian

et al., 2014) (one for each class) and we use the authors’

implementation (CPM). Two factors motivate the choice of

CPM. First, previous work has theoretically considered the

evasion robustness of such ensemble of linear classifiers

and proved the problem to be NP-hard (Stevens & Lowd,

2013). Second, unlike RBF-SVM and NN, this model can

be readily reduced to a Mixed Integer Program, enabling

optimal evasions thanks to a MIP solver. As the reduction

is considerably simpler than the one presented for tree en-

sembles above, we omit it here. Except for the two linear

classifiers, all models have a comparable, very low error

rate on the benchmark task.

5.3. Robustness

For each learned model, and for all of the 100 correctly

classified evaluation instance, we compute the optimal (or

best effort) solution to the evasion problem under all of

the deformation metrics. We use the Gurobi (Gurobi Op-

timization, 2015) solver to compute the optimal evasions

for all distances and all models but NN and RBF-SVM. We

use a classic projected gradient descent method for solving

the L1, L2 and L∞ evasions of NN and RBF-SVM, and

address the L0-evasion case by an iterative coordinate de-

scent algorithm and a brute force grid search at each itera-

tion. Figure 2 summarizes the obtained adversarial bounds

as one boxplot for each combination of model and dis-

tance. Although the tree ensembles BDT and RF have very

competitive accuracies, they systematically rank at the bot-

tom for robustness across all metrics. Remarkably, negli-

gible L1 or L2 perturbations suffice to evade those mod-

els. RBF-SVM is apparently the hardest model to evade,

agreeing with results from (Goodfellow et al., 2014). NN

Evasion and Hardening of Tree Ensemble Classifiers

Figure 2. Optimal (white boxes) or best-effort (gray boxes) evasion bounds for different metrics on the evaluation dataset. The smallest

bounds, 25-50% and 50-75% quartiles and largest bounds are shown. The red line is the median score. Larger scores mean more

deformations are necessary to change the model prediction.

Figure 3. First 4 rows: examples of optimal or best effort evading

“6” instances. Every picture is misclassified as “2” by its col-

umn model. Last row: feature importance computed as frequency

of pixel modification in the L0-evasions (darker means feature is

more often picked).

and CPM exhibit very similar performance despite having

quite different architectures. Finally, the L1-regularized

linear model exhibits significantly more brittleness than its

L2 counterpart. This phenomenon is explained by large

weights concentrating in specific dimensions as a result of

sparsity. Thus, small modifications in the heavily weighted

model dimensions can result in large classifier output vari-

ations.

5.4. Hardening by Adversarial Boosting

We empirically demonstrate how to significantly improve

the robustness of the BDT model by adding evading in-

stances to the training set during the boosting process.

At each boosting round, we use our fast symbolic predic-

tion-based algorithm to create budgeted “adversarial” in-

stances with respect to the current model and for all the

11,876 original training instances. For a given training in-

stance x with label y and a modification budget B ≥ 1,

a budgeted “adversarial” training instance x∗ is such that

‖x−x∗‖0 ≤ B and the margin yf(x∗) is as small as possi-

ble. Here, we use B = 28, the size of the picture diagonal,

as our budget. The reason is that modifying 28 pixels over

784 is not enough to perceptually morph a handwritten “2”

into “6”. The training dataset for the current round is then

formed by appending to the original training dataset these

evading instances along with their correct labels, thus in-

creasing the size of the training set by a factor 2. Finally,

gradient boosting produces the next regression tree which

by definition minimizes the error of the augmented ensem-

ble model on the adversarially-enriched training set. After

1,000 adversarial boosting rounds, our model has encoun-

tered more than 11 million adversarial instances, without

ever training on more than 24,000 instances at a time.

We found that we needed to increase the maximum tree

depth from 4 to 6 in order to obtain an acceptable error

rate. After 1,000 iterations, the resulting model BDT-R

has a slightly higher testing accuracy than BDT (see Ta-

ble 1). Unlike BDT, BDT-R is extremely challenging to

optimally evade using the MILP solver: the branch-and-

bound search continues to expand nodes after 1 day on a

6 core Xeon 3.2GHz machine. To obtain the tightest pos-

sible evasion bound, we warm-start the solver with the so-

lution found by the fast evasion technique and report the

best solution found by the solver after an hour. Figure 2

shows that BDT-R is more robust than our previous cham-

pion RBF-SVM with respect to L0 deformations. Unfor-

tunately, we found significantly lower scores on all L1, L2

and L∞ distances compared to the original BDT model:

hardening against L0-evasions made the model more sen-

sitive to all other types of evasions.

6. Conclusion

We have presented two novel algorithms, one exact and one

approximate, for systematically computing evasions of tree

ensembles such as boosted trees and random forests. On

a classic digit recognition task, both gradient boosted trees

and random forests are extremely susceptible to evasions.

We also introduce adversarial boosting and show that it

trains models that are hard to evade, without sacrificing ac-

curacy. One future work direction would be to use these

algorithms to generate “small” evading instances for prac-

tical security systems. Another direction would be to better

understand the properties of adversarial boosting. In par-

ticular, it is not known whether this hardening approach

would succeed on all possible datasets.

Evasion and Hardening of Tree Ensemble Classifiers

Acknowledgements

This research is supported in part by Intel’s ISTC for

Secure Computing, NSF grants 0424422 (TRUST) and

1139158, the Freedom 2 Connect Foundation, US State

Dept. DRL, LBNL Award 7076018, DARPA XData Award

FA8750-12-2-0331, and gifts from Amazon, Google,

SAP, Apple, Cisco, Clearstory Data, Cloudera, Erics-

son, Facebook, GameOnTalis, General Electric, Horton-

works, Huawei, Intel, Microsoft, NetApp, Oracle, Sam-

sung, Splunk, VMware, WANdisco and Yahoo!. The opin-

ions in this paper are those of the authors and do not nec-

essarily reflect those of any funding sponsor or the United

States Government.

References

Barreno, M., Nelson, B., Sears, R., Joseph, A. D., and

Tygar, J. D. Can machine learning be secure? In

Proceedings of the 2006 ACM Symposium on Infor-

mation, Computer and Communications Security, ASI-

ACCS ’06, 2006.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pas-

canu, R., Desjardins, G., Turian, J., Warde-Farley, D.,

and Bengio, Y. Theano: a CPU and GPU math expres-

sion compiler. In Proceedings of the Python for Scientific

Computing Conference (SciPy), 2010.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., rndi, N.,

Laskov, P., Giacinto, G., and Roli, F. Evasion attacks

against machine learning at test time. In Machine Learn-

ing and Knowledge Discovery in Databases, volume

8190 of Lecture Notes in Computer Science. Springer

Berlin Heidelberg, 2013.

Brückner, M., Kanzow, C., and Scheffer, T. Static predic-

tion games for adversarial learning problems. The Jour-

nal of Machine Learning Research, 13(1):2617–2654,

2012.

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,

Mueller, A., Grisel, O., Niculae, V., Prettenhofer, P.,

Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,

Joly, A., Holt, B., and Varoquaux, G. API design for

machine learning software: experiences from the scikit-

learn project. In ECML PKDD Workshop: Languages

for Data Mining and Machine Learning, pp. 108–122,

2013.

Chang, C.C. and Lin, C.J. LIBSVM: A library for sup-

port vector machines. ACM Transactions on Intelligent

Systems and Technology, 2, 2011.

Chen, T. and He, T. XGBoost: eXtreme Gradient Boost-

ing. https://github.com/dmlc/xgboost. Ac-

cessed: 2015-06-05.

Dalvi, N., Domingos, P., Mausam, Sanghai, S., and Verma,

D. Adversarial classification. In Proceedings of the tenth

ACM SIGKDD international conference on Knowledge

discovery and data mining, pp. 99–108. ACM, 2004.

Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., and Lin,

C.J. LIBLINEAR: A library for large linear classifica-

tion. Journal of Machine Learning Research, 9, 2008.

Fawzi, A., Fawzi, O., and Frossard, P. Analysis of clas-

sifiers robustness to adversarial perturbations. arXiv

preprint, 2014.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-

ing and harnessing adversarial examples. arXiv preprint,

2014.

Griva, I., Nash, S. G., and Sofer, A. Linear and Nonlinear

Optimization (2nd edition). Society for Industrial Math-

ematics, 2008.

Gu, S. and Rigazio, L. Towards deep neural network archi-

tectures robust to adversarial examples. arXiv preprint,

2015.

Gurobi Optimization, Inc. Gurobi optimizer reference

manual, 2015. URL http://www.gurobi.com.

Kantchelian, A., Tschantz, M. C., Huang, L., Bartlett, P. L.,

Joseph, A. D., and Tygar, J. D. Large-margin convex

polytope machine. In Advances in Neural Information

Processing Systems (NIPS), 2014.

King, James C. Symbolic execution and program testing.

Communications of the ACM, 19(7):385–394, 1976.

L., Daniel. Good word attacks on statistical spam filters.

In Proceedings of the Second Conference on Email and

Anti-Spam (CEAS), 2005.

LeCun, Yann, Cortes, Corinna, and Burges, Christo-

pher J.C. MNIST dataset, 1998. URL http://yann.

lecun.com/exdb/mnist/.

Lowd, D. and Meek, C. Adversarial learning. In Proceed-

ings of the Eleventh ACM SIGKDD International Con-

ference on Knowledge Discovery in Data Mining, KDD

’05, 2005.

Nelson, B., Rubinstein, B. I. P., Huang, L., Joseph, A. D.,

Lee, S. J., Rao, S., and Tygar, J. D. Query strategies for

evading convex-inducing classifiers. Journal of Machine

Learning Research, 13, May 2012.

Norouzi, M., Collins, M., Johnson, M. A, Fleet, D. J., and

Kohli, P. Efficient non-greedy optimization of decision

trees. In Advances in Neural Information Processing

Systems (NIPS), pp. 1720–1728, 2015.

https://github.com/dmlc/xgboost
http://www.gurobi.com
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Evasion and Hardening of Tree Ensemble Classifiers

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami,

A. Distillation as a defense to adversarial perturba-

tions against deep neural networks. arXiv preprint

arXiv:1511.04508, 2015.

Srndic, N. and Laskov, P. Practical evasion of a learning-

based classifier: A case study. In Proceedings of the

2014 IEEE Symposium on Security and Privacy, S&P

’14, 2014.

Stevens, D. and Lowd, D. On the hardness of evading com-

binations of linear classifiers. In Proceedings of the 2013

ACM Workshop on Artificial Intelligence and Security,

AISec ’13, 2013.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,

D., Goodfellow, I., and Fergus, R. Intriguing properties

of neural networks. arXiv preprint, 2013.

Xu, W., Qi, Y., and Evans, D. Automatically evading clas-

sifiers: A case study on PDF malware classifiers. In

Network and Distributed Systems Security Symposium

(NDSS), 2016.

