
* This research was supported by the SRC under contract 00-DC-684.

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 235 - 240, 2001.
© Springer-Verlag Berlin Heidelberg 2001

EVC: A Validity Checker for the Logic of Equality with
Uninterpreted Functions and Memories, Exploiting

Positive Equality, and Conservative Transformations*

Abstract. The property of Positive Equality [2] dramatically speeds up validity
checking of formulas in the logic of Equality with Uninterpreted Functions and
Memories (EUFM) [4]. The logic expresses correctness of high-level micropro-
cessors. We present EVC (Equality Validity Checker)—a tool that exploits Positive
Equality and other optimizations when translating a formula in EUFM to a propo-
sitional formula, which can then be evaluated by any Boolean satisfiability (SAT)
procedure. EVC has been used for the automatic formal verification of pipelined,
superscalar, and VLIW microprocessors.

1 Introduction

Formal verification of microprocessors has historically required extensive manual
intervention. Burch and Dill [4] raised the degree of automation by using flushing—
feeding the implementation processor with bubbles in order to complete partially
executed instructions—to compute a mapping from implementation to specification
states. The correctness criterion is that one step of the implementation should be
equivalent to 0, or 1, or up to k (for an implementation that can fetch up to k instruc-
tions per cycle) steps of a specification single-cycle processor when starting from
equivalent states, where equivalency is determined via flushing. However, the veri-
fication efficiency has still depended on manually provided case-splitting expres-
sions [4][5] when using the specialized decision procedure SVC [16]. In order to
apply the method to complex superscalar processors, Hosabettu [9] and Sawada
[15] required months of manual work, using the theorem provers PVS [13] and
ACL2 [10], respectively. We present EVC, a validity checker for the logic of EUFM,
as an alternative highly efficient tool.

2 Hardware Description Language

In order to be verified with EVC, a high-level implementation processor and its
specification must be defined in our Hardware Description Language (HDL). That

Miroslav N. Velev1 and Randal E. Bryant1,2

1 Department of Electrical and Computer Engineering
2 School of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.
http://www.ece.cmu.edu/~mvelev
http://www.cs.cmu.edu/~bryant

mvelev@ece.cmu.edu, randy.bryant@cs.cmu.edu

236 Miroslav N. Velev and Randal E. Bryant

HDL is similar to a subset of Verilog [17], except that word-level values do not have
dimensions but are represented with a single term-level expression, according to the
syntax of EUFM [4]. Hence, nets are required to be declared of type term or type
bit. Additionally, a net can be declared as input, e.g., the phase clocks that deter-
mine the updating of state or the signals that control the flushing. The HDL has con-
structs for the definition of memories and latches (see Fig. 2 for the description of
two stages of the processor in Fig. 1). Memories and latches can have multiple input
and/or output ports—of type inport and outport, respectively. Latch ports have
an enable signal and a list of data signals. Memory ports additionally have an address
signal after the enable. Logic gates—and, or, not, = (term-level equality compara-
tor), and mux (multiplexor, i.e., ITE operator)—are used for the description of the
control path of a processor. Uninterpreted functions and uninterpreted predicates—
such as ALU in Fig. 2—are used to abstract blocks of combinational logic—the
ALU in Fig. 1—as black boxes. Uninterpreted functions and uninterpreted predicates
with no arguments are considered as term variables and Boolean variables, respec-
tively, and can be used to abstract constant values that have special semantic mean-
ing, e.g., the data value 0.

Fig. 1. Block Diagram of a 3-Stage Pipelined Processor.

In order to fully exploit the efficiency of Positive Equality, the designer of high-level
microprocessors must follow some simple restrictions. Data operands must not be
compared by equality comparators, e.g., in order to determine a branch-on-equal
condition. Instead, the equality comparison must be abstracted with the same uninter-
preted predicate in both the implementation and the specification processor. Also, a
flush signal must be included in the implementation processor, as shown in Fig. 1, in
order to turn newly fetched instructions into bubbles during flushing. That extra input
will be optimized away by setting it to 0 (the value during normal operation) when
translating the high-level processor description to a gate-level synthesizable HDL.

IMem

IF_EX

RegFile

PC

+4

1
0

Flush
phi1

phi2

SrcReg

DestReg

Valid

Op

Data

EX_WB

ALU
Result

=

EX_Op

EX_DestReg

EX_Valid

EX_Data

WB_Result
WB_DestReg
WB_Valid

forward

ALU_Data

RegsEqual

write_RegFile

EX_SrcReg

EVC: A Validity Checker for the Logic of Equality 237

Flush_bar = (not Flush)
IF_Valid = (and Valid Flush_bar)
(latch IF_EX
 (inport phi2 (SrcReg Data Op DestReg IF_Valid))
 (outport phi1 (EX_SrcReg EX_Data EX_Op EX_DestReg EX_Valid)))
RegsEqual = (= EX_SrcReg WB_DestReg)
forward = (and RegsEqual WB_Valid)
ALU_Data = (mux forward WB_Result EX_Data)
Result = (ALU EX_Op ALU_Data)
(latch EX_WB
 (inport phi2 (Result EX_DestReg EX_Valid))
 (outport phi1 (WB_Result WB_DestReg WB_Valid)))
write_RegFile = (and phi1 WB_Valid)
(memory RegFile
 (inport write_RegFile WB_DestReg (WB_Result))
 (outport phi2 SrcReg (Data)))

Fig. 2. Using our HDL to Describe the Execution and Write-Back Stages.

3 Tool Flow

Our term-level symbolic simulator, TLSim, takes as input an implementation and a
specification processor described in our HDL, as well as a command file that
defines simulation sequences by asserting the input signals—phase clocks and flush
controls—to binary values. Symbolic initial state for latches and memories is intro-
duced automatically and event-driven symbolic simulation is performed according
to the command file. TLSim allows for multiple simulation sequences to start from
the same initial state, as well as to use the final state reached after symbolically sim-
ulating one processor as the initial state for another. States of the same memory or
latch, reached after different simulation sequences, can be compared for equality.
The resulting formulas can be connected with similar formulas for other memories
and latches via Boolean connectives in order to form the EUFM correctness for-
mula. The symbolic simulation and generation of the correctness formula take less
than a second even for complex designs. The formula is output in the SVC command
language [16].

Our second tool, EVC (Equality Validity Checker), automatically translates the
EUFM correctness formula to an equivalent propositional formula by exploiting
Positive Equality [2] and a number of other optimizations [3][18][20][21]. The
implementation processor is correct if the propositional formula is a tautology. Oth-
erwise, a falsifying assignment is a counterexample. The propositional formula can
be output in a variety of formats, including CNF and ISCAS, allowing the use of
many SAT procedures for evaluating it. BDD [6] and BED [23] packages are inte-
grated in EVC.

238 Miroslav N. Velev and Randal E. Bryant

4 Summary of Results

A single-issue 5-stage pipelined DLX processor [8] can be formally verified with
EVC in 0.2 seconds on a 336 MHz Sun4. In contrast, SVC [16]—a tool that does not
exploit Positive Equality—does not complete the evaluation of the same formula in
24 hours. Furthermore, the theorem proving approach of completion functions [9]
could be applied to a similar design after 1 month of manual work by an expert user.
Finally, the symbolic simulation tool of Ritter, et al. [14] required over 1 hour of
CPU time for verification of that processor. A dual-issue superscalar DLX with one
complete and one arithmetic pipeline can be formally verified with EVC in 0.8 sec-
onds [21]. A comparable design was verified by Burch [5], who needed 30 minutes
of CPU time only after manually identifying 28 case-splitting expressions, and man-
ually decomposing the commutative diagram for the correctness criterion into three
diagrams. Moreover, that decomposition was sufficiently subtle to warrant publica-
tion of its correctness proof as a separate paper [24]. The theorem proving approach
of completion functions [9] required again 1 month of manual work for a comparable
dual-issue DLX.
EVC has been used to formally verify processors with exceptions, multicycle func-

tional units, and branch prediction [19]. It can automatically abstract the forwarding
logic of memories that interact with stalling logic in a conservative way that results
in an order of magnitude speedup with BDDs [21]. A comparative study [22] of 28
SAT-checkers, 2 decision diagrams—BDDs [1][6] and BEDs [23]—and 2 ATPG
tools identified the SAT-checker Chaff [11] as the most efficient means for evalu-
ating the Boolean formulas generated by EVC, outperforming the other SAT proce-
dures by orders of magnitude. We also compared the eij [7] and the small domains
[12] encodings for replacing equality comparisons that are both negated and not
negated in the correctness EUFM formula. We found the eij encoding to result in 4
times faster SAT checking when verifying complex correct designs and to consis-
tently perform better for buggy versions. Now a 9-wide VLIW processor that imi-
tates the Intel Itanium in many speculative features such as predicated execution,
register remapping, branch prediction, and advanced loads can be formally verified
in 12 minutes of CPU time by using Chaff. That design was previously verified in
31.5 hours with BDDs [20]. It can have up to 42 instructions in flight and is far more
complex than any other processor formally verified in an automatic way previously.
We also found Positive Equality to be the most important factor for our success—
without this property the verification times increase exponentially for very simple
processors [22], even when using Chaff.

A preliminary version of the tools has been released to the Motorola M•Core
Microprocessor Design Center for evaluation.

5 Conclusions and Future Work

EVC is an extremely powerful validity checker for the logic of Equality with Uninter-
preted Functions and Memories (EUFM) [4]. Its efficiency is due to exploiting the
property of Positive Equality [2] in order to translate a formula in EUFM to a propo-

EVC: A Validity Checker for the Logic of Equality 239

sitional formula that can be evaluated with SAT procedures, allowing for gains from
their improvements. In the future, we will automate the translation of formally veri-
fied high-level microprocessors, defined in our HDL and verified with EVC, to syn-
thesizable gate-level Verilog [17]. TLSim and EVC, as well as the benchmarks used
for experiments, are available by ftp (http://www.ece.cmu.edu/
~mvelev).

References

[1] R.E. Bryant, “Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams,” ACM Computing Surveys, Vol. 24, No. 3 (September 1992), pp. 293-318.

[2] R.E. Bryant, S. German, and M.N. Velev, “Processor Verification Using Efficient
Reductions of the Logic of Uninterpreted Functions to Propositional Logic,” ACM
Transactions on Computational Logic (TOCL), Vol. 2, No. 1 (January 2001).
Available from: http://www.ece.cmu.edu/~mvelev.

[3] R.E. Bryant, and M.N. Velev, “Boolean Satisfiability with Transitivity Constraints,
Computer-Aided Verification (CAV’00), E.A. Emerson and A.P. Sistla, eds., LNCS
1855, Springer-Verlag, July 2000, pp. 86-98. Available from: http://
www.ece.cmu.edu/~mvelev.

[4] J.R. Burch, and D.L. Dill, “Automated Verification of Pipelined Microprocessor Con-
trol,” Computer-Aided Verification (CAV’94), D.L. Dill, ed., LNCS 818, Springer-Ver-
lag, June 1994, pp. 68-80. http://sprout.stanford.edu/papers.html.

[5] J.R. Burch, “Techniques for Verifying Superscalar Microprocessors,” 33rd Design
Automation Conference (DAC ’96), June 1996, pp. 552-557.

[6] CUDD-2.3.0, http://vlsi.colorado.edu/~fabio.
[7] A. Goel, K. Sajid, H. Zhou, A. Aziz, and V. Singhal, “BDD Based Procedures for a The-

ory of Equality with Uninterpreted Functions,” Computer-Aided Verification (CAV ’98),
A.J. Hu and M.Y. Vardi, eds., LNCS 1427, Springer-Verlag, June 1998, pp. 244-255.

[8] J.L. Hennessy, and D.A. Patterson, Computer Architecture: A Quantitative Approach,
2nd edition, Morgan Kaufmann Publishers, San Francisco, CA, 1996.

[9] R. Hosabettu, “Systematic Verification of Pipelined Microprocessors,” Ph.D. thesis,
Department of Computer Science, University of Utah, August 2000.

[10] M. Kaufmann, P. Manolios, J.S. Moore, Computer-Aided Reasoning: ACL2 Case Stud-
ies, Kluwer Academic Publishers, Boston/Dordrecht/London, 2000.

[11] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering
an Efficient SAT Solver,” 38th Design Automation Conference (DAC’01), June 2001.

[12] A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel, “Deciding Equality Formulas by
Small-Domain Instantiations,” Computer-Aided Verification (CAV’99), N. Halbwachs
and D. Peled, eds., LNCS 1633, Springer-Verlag, June 1999, pp. 455-469.

[13] PVS Specification and Verification System (PVS), http://pvs.csl.sri.com.
[14] G. Ritter, H. Eveking, and H. Hinrichsen, “Formal Verification of Designs with Com-

plex Control by Symbolic Simulation,” Correct Hardware Design and Verification
Methods (CHARME’99), L. Pierre and T. Kropf, eds., LNCS 1703, Springer-Verlag,
September 1999, pp. 234-249.

[15] J. Sawada, “Formal Verification of an Advanced Pipelined Machine,” Ph.D. thesis,
Department of Computer Science, University of Texas at Austin, December 1999.

[16] Stanford Validity Checker (SVC), http://sprout.stanford.edu.
[17] D.E. Thomas, and P.R. Moorby, The Verilog Hardware Description Language, 4th edi-

tion, Kluwer Academic Publishers, Boston/Dordrecht/London, 1998.
[18] M.N. Velev, and R.E. Bryant, “Superscalar Processor Verification Using Efficient

Reductions of the Logic of Equality with Uninterpreted Functions to Propositional

240 Miroslav N. Velev and Randal E. Bryant

Logic,” Correct Hardware Design and Verification Methods (CHARME’99), L. Pierre
and T. Kropf, eds., LNCS 1703, Springer-Verlag, September 1999, pp. 37-53. Available
from: http://www.ece.cmu.edu/~mvelev.

[19] M.N. Velev, and R.E. Bryant, “Formal Verification of Superscalar Microprocessors with
Multicycle Functional Units, Exceptions, and Branch Prediction,” 37th Design Automa-
tion Conference (DAC’00), June 2000, pp. 112-117. Available from: http://
www.ece.cmu.edu/~mvelev.

[20] M.N. Velev, “Formal Verification of VLIW Microprocessors with Speculative Execu-
tion,” Computer-Aided Verification (CAV’00), E.A. Emerson and A.P. Sistla, eds., LNCS
1855, Springer-Verlag, July 2000, pp. 296-311. Available from: http://
www.ece.cmu.edu/~mvelev.

[21] M.N. Velev, “Automatic Abstraction of Memories in the Formal Verification of Super-
scalar Microprocessors,” Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’01), T. Margaria and W. Yi, eds., LNCS, Springer-Verlag, April 2001,
pp. 252-267. Available from: http://www.ece.cmu.edu/~mvelev.

[22] M.N. Velev, and R.E. Bryant, “Effective Use of Boolean Satisfiability Procedures in the
Formal Verification of Superscalar and VLIW Microprocessors,” 38th Design Automa-
tion Conference (DAC’01), June 2001. Available from: http://www.ece.cmu.edu/
~mvelev.

[23] P.F. Williams, “Formal Verification Based on Boolean Expression Diagrams,” Ph.D. the-
sis, Department of Information Technology, Technical University of Denmark, Lyn-
gby, Denmark, August 2000.

[24] P.J. Windley, and J.R. Burch, “Mechanically Checking a Lemma Used in an Automatic
Verification Tool,” Formal Methods in Computer-Aided Design (FMCAD’96), M. Srivas
and A. Camilleri, eds., LNCS 1166, Springer-Verlag, November 1996, pp. 362-376.

	1 Introduction
	2 Hardware Description Language
	3 Tool Flow
	4 Summary of Results
	5 Conclusions and Future Work
	References

