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ABSTRACT

This paper considers multicell multiuser MIMO systems witty
large antenna arrays at the base station. We propose arvaligen
decomposition-based approach to channel estimationeshiatates
the channel blindly from the received data. The approactoésp
the asymptotic orthogonality of the channel vectors in Viarge

MIMO systems. We show that the channel to each user can be e

timated from the covariance matrix of the received signajsto a
remaining scalar multiplicative ambiguity. A short traigisequence
is required to resolve this ambiguity. Furthermore, to ioyer the
performance of our approach, we combine it with the iteealdast-
square with projection (ILSP) algorithm. Numerical resulerify
the effectiveness of our channel estimation approach.

1. INTRODUCTION

Recently, there has been a great deal of interest in multM8dO

(MU-MIMO) systems using very large antenna arrays. Suctesys
can provide a remarkable increase in reliability and date véth
simple signal processing [1]. When the number of base stédB&)
antennas grows large, the channel vectors between thearstthe

antennas. This is due to the fact that when we reduce thentians
power of each user, channel estimation errors will becorgrifsi
cant. We call this effect “noise contamination”. Hence,hnéhan-
nels estimated from pilots, the benefits of using very langer=na
arrays are somewhat reduced.

In this paper we investigate whether blind channel estionati
techniques could improve the performance of very large MIM&-
t©ms. Blind channel estimation techniques have been cenesidbe-
fore as a promising approach for increasing the spectraieffty
since they require no or a minimal number of pilot symbols. [4]
Generally, blind methods work well when there are unusedetey
of freedom in the signal space. This is the case in very larfd®™
systems, if the number of users that transmit simultangotygli-
cally is much less than the number of antennas. One patticlass
of blind methods is based on a subspace partitioning of thedh
ceived samples. This approach is powerful and can achieae ne
maximume-likelihood performance when the number of dataptam
is sufficiently large [5]. This approach requires a partéeistructure
on the transmitted signal or system model, for example trasig-
nals are coded using orthogonal space-time block code$. [&&
shown later, in a system with very large antenna arrays ibssible
to apply the subspace estimation technique using eigesddcom-

BS become very long random vectors and under “favorablegsrop position (EVD) on the covariance matrix of the received sksip

gation” conditions, they become pairwisely orthogonal. &Ason-
sequence, with simple maximum-ratio combining (MRC), asisg
that the BS has perfect channel state information (CSI),rtes-
ference from the other users can be cancelled without usioge m
time-frequency resources [1]. This dramatically increatse spec-
tral efficiency. Furthermore, by using a very large antenmayaat
the BS, the transmit power can be drastically reduced. In#@
showed that, with perfect CSI at the BS, we can reduce thakipli
transmit power of each user inversely proportionally to tiuenber
of antennas with no reduction in performance. This holds &ven
with simple linear processing (MRC, or zero-forcing [ZF}) the
base station. These benefits of using large antenna arraybeca
reaped if the BS has perfect CSI.

In practice, the BS does not have perfect CSI. Instead, iit est

mates the channels. The conventional way of doing this isst u
uplink pilots. If the channel coherence time is limited, thember
of possible orthogonal pilot sequences is limited too amttbepilot
sequences have to be reused in other cells. Therefore, ehesii
mates obtained in a given cell will be contaminated by pitciss-
mitted by users in other cells. This causes pilot contariongs].
As for power efficiency, we showed in [2] that, with CSI estteth
from uplink pilots, we can only reduce the uplink transmityes per
user inversely proportionally to the square-root of the hamof BS
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without requiring any specific structure of the transmitséghals.

The specific contributions of this paper are as follows. We-co
sider multicell MU-MIMO systems where the BS is equippedhwit
a very large antenna array. We propose a simple EVD-basetd cha
nel estimation scheme for such systems. We show that when the
number of BS antennas grows large, CSI can be estimated frem t
eigenvector of the covariance matrix of the received sampip to a
multiplicative scalar factor ambiguity. By using a shoditing se-
quence, this multiplicative factor ambiguity can be resdlvFinally,
to improve the performance, we combine our EVD-based cHanne
estimation technique with the iterative least-square pithjection
(ILSP) algorithm of [8].

2. MULTI-CELL MULTI-USER MIMO MODEL

Consider a multicell MU-MIMO system witl cells. Each cell con-
tains K single-antenna users and one BS equipped Witlanten-
nas. The same frequency band is used fol atlells. We consider
the uplink transmission where all users from all cells sitaéously
transmit their signals to their desired BSs. Then,Mie< 1 received
vector at thdth BS is given by

yi(n) =vpu »_ Guxi (n) +ny (n)

i=1

1)

1When reference te is unimportant, we will omit this index for simplic-
ity.



where \/pux; (n) is the K x 1 vector of collectively transmitted
symbols by theKX users in theth cell (the average power used by
each user i®y); n; (n) is M x 1 additive white noise whose el-
ements are Gaussian with zero mean and unit varianceGanes
the M x K channel matrix between tHéh BS and theX users in
theith cell. The channel matri&;; models independent fast fading,
geometric attenuation, and log-normal shadow fading. Esmnent
Guimk = [Guil,,,, is the channel coefficient between tith antenna
of thelth BS and theth user in theth cell, and is given by

glimk = hlimk\/ B, m=1,2,..., M (2)

whereh;;.. i is the fast fading coefficient from tHeh user in theth
cell to themth antenna of thé&h BS. We assume that;,,.x is a ran-
dom variable with zero mean and unit variance. Furthermgi@,
represents the geometric attenuation and shadow fadinighveine
assumed to be independent of the antenna indexd to be constant
and known a priori. These assumptions are reasonable $iechs-
tance between the user and the BS is much greater than thaatst
between the BS antennas, and the valug;pf changes very slowly
with time. Then, the channel matr&;; can be represented as

G, = H;,D,/” @)
whereH,; is the M x K matrix of fast fading coefficients between
the K users in theth cell and thdth BS, i.e.,[Hi],,, = hiimk,

right by H;;, and using (5), we obtain

RyH; ~ Mp.H;D; + Hy;, asM large

=H; (Mp.Dy +1k). (6)
For large M, the columns ofH;; are pairwisely orthogonal, and
Mp.Dy + Ik is a diagonal matrix. Therefore, Equation (6) can
be considered as a characteristic equation for the covaiaratrix
Ry. As a consequence, thigh column ofHj; is the eigenvector
corresponding to the eigenvalddp, Sy, + 1 of Ry.

Remark 1 SinceMpufBur + 1,k = 1,2, ...K, are distinct and can
be known a priori, the ordering of the eigenvectors can bedet
mined. Each column d&;; can be estimated from a corresponding
eigenvector olRy up to a scalar multiplicative ambiguity. This is
due to the fact that ifi; is an eigenvector oR, corresponding to
the eigenvaluéV p.Bur + 1, thenceuy is also an eigenvector cor-
responding to that eigenvalue, for any € C.

Let U;; be theM x K matrix whosekth column is the eigen-
vector of R, corresponding to the eigenvaldép. 3, + 1. Then,
the channel estimate &1;; can be found via

H, =U;= (7)

£ diag{c1,c2, ...,cx }. The multiplicative matrix am-

where =

andDy; is a K x K diagonal matrix whose diagonal elements arebiguity = can be solved by using a short pilot sequence (see Sec-

[Dulyy, = Brik-

3. EVD-BASED CHANNEL ESTIMATION

For multicell MU-MIMO systems with large antenna arrays la t
BS, with conventional LS channel estimation using uplinlotgi
the system performance is limited by pilot contaminatiod anise
limitation. Pilot contamination is caused by the interfere from
other cells during the training phase [1, 3]. Noise contatiom
occurs when the transmit power is small and the channel atin
are dominated by estimation errors [2]. Another inhereaindrack
of the pilot-based channel estimation is the spectral efiicy loss
which results from the bandwidth consumed by training sages.
To reduce these effects, in this section, we propose an Easded
channel estimation method.

3.1. Mathematical Preliminaries

We first consider the properties of the covariance matrixhef rte-
ceived vectory;. From (1) and (3), this covariance matrix is given
by

L
Ry 2E {YLylH} = Pu Z H;; D, Hi + 1,y

i=1

4)

tion 3.2).

3.2. Resolving the Multiplicative Factor Ambiguity

In each cell, a short training sequence of lenggymbols is used for
uplink training. We assume that the training sequencesftgrdnt
cells are pairwisely orthogonal. Then, thé x v received training
matrix at thelth BS is

(8)

where/p: Xy is the K’ x v training matrix p; is the power used
by each user for each training symbol), d¥d, is the noise matrix.
From (7) and (8), the multiplicative matrE can be estimated as

2
.
where A is a set of K x K diagonal matrices. Denote ky,

T
[(yg?l(n))T (y!,(n) T} ,wherey.; (n) is thenth column ofY;,
BF andB’ denote the real and imaginary parts of malixand

_AI}

Y = \/ITtHLLDlll/QXc,z + Ny

[

— arg min HYW ~ JBULEDY/?X,,

9)

L

AR

Ané|: AR

whereA,, 2 /pUyD,/*X,, X, £ diag (x,; (n)). Then, we

From the law of large numbers, it follows that when the numbergptain (the proof is omitted due to space constraints)

of BS antennas is large, if the fast channel coefficients.ade then
the channel vectors between the users and the BS becomesaiyrw
orthogonal, i.e.,

1
M
This is a key property of large MIMO systems which facilist

simple EVD-based channel estimation that does not reqoiyesjpe-
cific structure of the transmitted signals. Multiplying (#pm the

®)

H{ H,; — 6;;1x, asM — oo

& = diag (5) 1)
whereé = [Ix jlx]€, where
N v B B -1 7 B
- (z AzAn> S ATy 12
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Fig. 1. Symbol error probability versus for M = 100, pu = 20 Fjg. 2. Symbol error probability versus SNR fdf = 100, a = 1,
dB, and BPSK modulation. pu = SNR/M, and BPSK modulation.

3.3. Implementation of the EVD-based Channel Estimation (5). Our method exploits the asymptotic orthogonality of thaneh
nel vectors. This property is true only in the asymptotidrey i.e,
whenM — oco. In practice, M is large but finite and hence, an
error results.

As discussed, whef/ is large the channel matrid;; can be deter-
mined by using the EVD of the covariance matRy,. In practice,
this covariance matrix is unavailable. Instead, we use #mepte
data covariance matriR, :

1 4. JOINT EVD-BASED METHOD AND ILSP ALGORITHM
Ry £ = yvi(m)yi(n)" (13)

YN ,;1 As discussed above (see Remark 2), there EVD-based chasiirel e
) mates will suffer from errors owing to a finite coherence tiamel a
whereNV is the number of samples. Here, we assume that the channghite 17. To reduce this error, in this section, we consider comlgjnin

is still constant over at leagf samples. _ our EVD algorithm with the ILSP algorithm of [8].
We summarize our proposed algorithm for estimatiiig as fol- Define theK x N matrix of transmitted signals from th€ users
lows: in the ith cell and theM x N matrix of received signals at tHéh

BS respectively as

. . . _
1. Using a data block ofV samples, compuf®, as(13). Xi =i (1) xi(2) o xi (N)],0=1,2,., L (14)

5 . . Y 2y (1 2) ..y (N)]. 1
2. Perform the EVD oR,. Then obtain an\/ x K matrix Uy r= () yi (@) ey ()] (15)
whosekth column is the eigenvector corresponding to the From (1), we have
eigenvalue which is closest i p. By + 1.2

Algorithm 1 Proposed EVD-based channel estimation method

. L
3. Compute the estimat& of the multiplicative matrix2 from v Y, = /paGuX; + \/p_uz GuX; +N; (16)
pilot symbols using11).2 oy
4. The channel estimate #1;; is determined a#I;; —UNE. N

whereN; = [n; (1) n; (2) ... n; (NV)]. Treating the last two terms
¢ of (16) as noise, and applying the ILSP algorithm in [8], weadt
an iterative algorithm that jointly estimates the chanmel toe trans-
mitted data. The principle of operation of the ILSP algaritis as
follows. Firstly, we assume that the chank&j; is known, from an

initial channel estimation procedure. The data are theaatied via
least-squares, projecting the solution onto the symbostediation

Treating the above channel estimate as the true channehene
use a linear detector (e.g., MRC, ZF) to detect the tranethitg-
nals. Since the columns of the channel estintdfeare pairwisely
orthogonal for largeV/, the performances of MRC and ZF detectors
are the same [2].

Remark 2 There are two main sources of errors in the channel es-¢ @S

timate: (i) The covariance matrix error: this error is due tioe use N ) 1 2

of the sample covariance matrix instead of the true covadama- X = arg min G Y =X 17)
X, €X || \/Pu F

trix. This error will decrease as the number of samplésncreases
(this requires that the coherence time is large); (ii) Theoerdue  \ynere the superscrift)” denotes the pseudo-inverse. Next, the de-

to the channel vectors not being perfectly orthogonal asmesl in tected dat&; are used as if they were equal to the true transmitted
signal and the channel is re-estimated using least-squares

2Since the eigenvalue is obtained from the sample data emaimatrix,
the corresponding eigenvalue is only approximately equal/ip,, 5, + 1. R
3When using (11) replace the true covariance matrix by thepawn- G =

Y. X/ (18)
variance matrix. 1/ Pu




Equations (17) and (18), yield the ILSP algorithm for ourtgemn.
Applying the ILSP algorithm, and using the channel estintased
on EVD method discussed in Section 3 as the initial chanrtel es
mate, we obtain the joint EVD method and ILSP algorithm (EVD-
ILSP).

Algorithm 2 The EVD-ILSP algorithm

1. Initialize Gu,o = HyuD,/? (obtained by using the EVD-based
method). Choose number of iteratioRS;cp. Setk = 0.

2 k=k+1

+ 2
Gll,k—lYl - XLHF

1

o X, = argminx,cx H T

1
VPu

3. Repeat 2 untik = Ktep.

o Gy = leg’k

5. NUMERICAL RESULTS Fig.
a =
We simulate a system with = 3 cells, each containing users.
We consider the uplink of the 1st user in 1st cell, assumin&§BP
modulation. We choos®,; = diag{0.98,0.36,0.47}, D12 =
axdiag {0.36,0.29,0.05}, andD3 = axdiag {0.32,0.14,0.11}.

For the EVD-based method, we uge= 1 (one) training symbol to
resolve the multiplicative factor ambiguity.

Fig. 1 shows the the SEP versusf the EVD-based and the
conventional pilot-based channel estimation methods difterent
N and M atp, = 20 dB. We can see that whenincreases (the
effect of pilot contamination increases), the system perémce de-
grades dramatically when using the pilot-based methods iBtidue
to the fact that the pilot-based method suffers from pilattamina-
tion. In particular, the EVD-based method is not affecteccimby
the pilot contamination, and it can significantly improve gystem
performance when the effect of pilot contamination is lardecan
be also seen from the figure that the effectiveness of our Befed
method increases when the number of sampleend the number of
BS antennad/ increase.

To ascertain the effectiveness of the EVD-based channkel est
mation method under noise-limited conditions, we considelSEP
when the transmit power of each user is chosen to be propaitto
1/M. We choosel/ = 100, anda = 1. Fig. 2 shows the compar-  [4]
isons between the SEPs versus SNR of the EVD-based method and
the pilot-aided method for differerdY. Here, with eaclsNR, we set
pu = SNR/M. We can see that by using the EVD-based method,
the system performance significantly improves compareth tiie
conventional pilot-based method. Whén increases, the sample
covariance matrix tends to the true covariance matrix amtéeas
we can see from the figure, the SEP decreases.

Fig. 3 shows the SEP of the EVD-based method versus the num-
ber of BS antennas at, = 20 dB anda = 1, for different NV, with (6]
and without using the ILSP algorithm. With the ILSP algamithwe
chooseKep = 5. As expected, comparing with the EVD-based
method, the joint EVD-based and ILSP algorithm offers a querf
mance improvement. Also here, the system performance wapro
significantly whenM and N increase.

(1]

(2]

(3]

[5]

[7]

6. CONCLUDING REMARKS [8]
Very large MIMO systems withl/ > K > 1 offer many unused
degrees of freedom. We proposed a channel estimation method
that exploits these excess degrees of freedom, togethér thet

“BPSK, p, =20dB

Symbol error probability

‘| —x— EVD-Based Method
“| - -%-- EVD-ILSP, Kstep = 5

80 100 120 140 160 180 200
Number of BS antennas (M)

40 60

3. Symbol error probability versus/ for p, = 20 dB, and
1.

asymptotic orthogonality between the channel vectors tleatirs
under “favorable propagation” conditions. Combining theposed
method with the ILSP algorithm of [8] further enhances perfo
mance.
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