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EVD-BASED CHANNEL ESTIMATION IN MULTICELL MULTIUSER MIMO SYSTEMS
WITH VERY LARGE ANTENNA ARRAYS

Hien Quoc Ngo Erik G. Larsson

Department of Electrical Engineering (ISY), Linköping University, 581 83 Linköping, Sweden

ABSTRACT

This paper considers multicell multiuser MIMO systems withvery
large antenna arrays at the base station. We propose an eigenvalue-
decomposition-based approach to channel estimation, thatestimates
the channel blindly from the received data. The approach exploits
the asymptotic orthogonality of the channel vectors in verylarge
MIMO systems. We show that the channel to each user can be es-
timated from the covariance matrix of the received signals,up to a
remaining scalar multiplicative ambiguity. A short training sequence
is required to resolve this ambiguity. Furthermore, to improve the
performance of our approach, we combine it with the iterative least-
square with projection (ILSP) algorithm. Numerical results verify
the effectiveness of our channel estimation approach.

1. INTRODUCTION

Recently, there has been a great deal of interest in multiuser MIMO
(MU-MIMO) systems using very large antenna arrays. Such systems
can provide a remarkable increase in reliability and data rate with
simple signal processing [1]. When the number of base station (BS)
antennas grows large, the channel vectors between the usersand the
BS become very long random vectors and under “favorable propa-
gation” conditions, they become pairwisely orthogonal. Asa con-
sequence, with simple maximum-ratio combining (MRC), assuming
that the BS has perfect channel state information (CSI), theinter-
ference from the other users can be cancelled without using more
time-frequency resources [1]. This dramatically increases the spec-
tral efficiency. Furthermore, by using a very large antenna array at
the BS, the transmit power can be drastically reduced. In [2], we
showed that, with perfect CSI at the BS, we can reduce the uplink
transmit power of each user inversely proportionally to thenumber
of antennas with no reduction in performance. This holds true even
with simple linear processing (MRC, or zero-forcing [ZF]) at the
base station. These benefits of using large antenna arrays can be
reaped if the BS has perfect CSI.

In practice, the BS does not have perfect CSI. Instead, it esti-
mates the channels. The conventional way of doing this is to use
uplink pilots. If the channel coherence time is limited, thenumber
of possible orthogonal pilot sequences is limited too and hence, pilot
sequences have to be reused in other cells. Therefore, channel esti-
mates obtained in a given cell will be contaminated by pilotstrans-
mitted by users in other cells. This causes pilot contamination [3].
As for power efficiency, we showed in [2] that, with CSI estimated
from uplink pilots, we can only reduce the uplink transmit power per
user inversely proportionally to the square-root of the number of BS
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antennas. This is due to the fact that when we reduce the transmit
power of each user, channel estimation errors will become signifi-
cant. We call this effect “noise contamination”. Hence, with chan-
nels estimated from pilots, the benefits of using very large antenna
arrays are somewhat reduced.

In this paper we investigate whether blind channel estimation
techniques could improve the performance of very large MIMOsys-
tems. Blind channel estimation techniques have been considered be-
fore as a promising approach for increasing the spectral efficiency
since they require no or a minimal number of pilot symbols [4].
Generally, blind methods work well when there are unused degrees
of freedom in the signal space. This is the case in very large MIMO
systems, if the number of users that transmit simultaneously typi-
cally is much less than the number of antennas. One particular class
of blind methods is based on a subspace partitioning of the the re-
ceived samples. This approach is powerful and can achieve near
maximum-likelihood performance when the number of data samples
is sufficiently large [5]. This approach requires a particular structure
on the transmitted signal or system model, for example that the sig-
nals are coded using orthogonal space-time block codes [6, 7]. As
shown later, in a system with very large antenna arrays it is possible
to apply the subspace estimation technique using eigenvalue decom-
position (EVD) on the covariance matrix of the received samples,
without requiring any specific structure of the transmittedsignals.

The specific contributions of this paper are as follows. We con-
sider multicell MU-MIMO systems where the BS is equipped with
a very large antenna array. We propose a simple EVD-based chan-
nel estimation scheme for such systems. We show that when the
number of BS antennas grows large, CSI can be estimated from the
eigenvector of the covariance matrix of the received samples, up to a
multiplicative scalar factor ambiguity. By using a short training se-
quence, this multiplicative factor ambiguity can be resolved. Finally,
to improve the performance, we combine our EVD-based channel
estimation technique with the iterative least-square withprojection
(ILSP) algorithm of [8].

2. MULTI-CELL MULTI-USER MIMO MODEL

Consider a multicell MU-MIMO system withL cells. Each cell con-
tainsK single-antenna users and one BS equipped withM anten-
nas. The same frequency band is used for allL cells. We consider
the uplink transmission where all users from all cells simultaneously
transmit their signals to their desired BSs. Then, theM ×1 received
vector at thelth BS is given by1

yl (n) =
√
pu

L
∑

i=1

Glixi (n) + nl (n) (1)

1When reference ton is unimportant, we will omit this index for simplic-
ity.



where
√
puxi (n) is theK × 1 vector of collectively transmitted

symbols by theK users in theith cell (the average power used by
each user ispu); nl (n) is M × 1 additive white noise whose el-
ements are Gaussian with zero mean and unit variance; andGli is
theM × K channel matrix between thelth BS and theK users in
theith cell. The channel matrixGli models independent fast fading,
geometric attenuation, and log-normal shadow fading. Eachelement
glimk , [Gli]mk is the channel coefficient between themth antenna
of thelth BS and thekth user in theith cell, and is given by

glimk = hlimk

√

βlik, m = 1, 2, ...,M (2)

wherehlimk is the fast fading coefficient from thekth user in theith
cell to themth antenna of thelth BS. We assume thathlimk is a ran-
dom variable with zero mean and unit variance. Furthermore,

√
βlik

represents the geometric attenuation and shadow fading, which are
assumed to be independent of the antenna indexm and to be constant
and known a priori. These assumptions are reasonable since the dis-
tance between the user and the BS is much greater than the distance
between the BS antennas, and the value ofβlik changes very slowly
with time. Then, the channel matrixGli can be represented as

Gli = HliD
1/2
li (3)

whereHli is theM×K matrix of fast fading coefficients between
theK users in theith cell and thelth BS, i.e.,[Hli]mk = hlimk,
andDli is aK×K diagonal matrix whose diagonal elements are
[Dli]kk = βlik.

3. EVD-BASED CHANNEL ESTIMATION

For multicell MU-MIMO systems with large antenna arrays at the
BS, with conventional LS channel estimation using uplink pilots,
the system performance is limited by pilot contamination and noise
limitation. Pilot contamination is caused by the interference from
other cells during the training phase [1, 3]. Noise contamination
occurs when the transmit power is small and the channel estimates
are dominated by estimation errors [2]. Another inherent drawback
of the pilot-based channel estimation is the spectral efficiency loss
which results from the bandwidth consumed by training sequences.
To reduce these effects, in this section, we propose an EVD-based
channel estimation method.

3.1. Mathematical Preliminaries

We first consider the properties of the covariance matrix of the re-
ceived vectoryl. From (1) and (3), this covariance matrix is given
by

Ry , E

{

yly
H
l

}

= pu

L
∑

i=1

HliDliH
H
li + IM . (4)

From the law of large numbers, it follows that when the number
of BS antennas is large, if the fast channel coefficients are i.i.d. then
the channel vectors between the users and the BS become pairwisely
orthogonal, i.e.,

1

M
H

H
li Hlj → δijIK , asM → ∞ (5)

This is a key property of large MIMO systems which facilitates a
simple EVD-based channel estimation that does not require any spe-
cific structure of the transmitted signals. Multiplying (4)from the

right byHll, and using (5), we obtain

RyHll ≈ MpuHllDll +Hll, asM large

= Hll (MpuDll + IK) . (6)

For largeM , the columns ofHll are pairwisely orthogonal, and
MpuDll + IK is a diagonal matrix. Therefore, Equation (6) can
be considered as a characteristic equation for the covariance matrix
Ry. As a consequence, thekth column ofHll is the eigenvector
corresponding to the eigenvalueMpuβllk + 1 of Ry.

Remark 1 SinceMpuβllk +1, k = 1, 2, ...K, are distinct and can
be known a priori, the ordering of the eigenvectors can be deter-
mined. Each column ofHll can be estimated from a corresponding
eigenvector ofRy up to a scalar multiplicative ambiguity. This is
due to the fact that ifuk is an eigenvector ofRy corresponding to
the eigenvalueMpuβllk + 1, thenckuk is also an eigenvector cor-
responding to that eigenvalue, for anyck ∈ C.

Let Ull be theM × K matrix whosekth column is the eigen-
vector ofRy corresponding to the eigenvalueMpuβllk + 1. Then,
the channel estimate ofHll can be found via

Ĥll = UllΞ (7)

whereΞ , diag {c1, c2, ..., cK}. The multiplicative matrix am-
biguity Ξ can be solved by using a short pilot sequence (see Sec-
tion 3.2).

3.2. Resolving the Multiplicative Factor Ambiguity

In each cell, a short training sequence of lengthν symbols is used for
uplink training. We assume that the training sequences of different
cells are pairwisely orthogonal. Then, theM × ν received training
matrix at thelth BS is

Yt,l =
√
ptHllD

1/2
ll Xt,l +Nt,l (8)

where
√
ptXt,l is theK × ν training matrix (pt is the power used

by each user for each training symbol), andNt,l is the noise matrix.
From (7) and (8), the multiplicative matrixΞ can be estimated as

Ξ̂ = arg min
Ξ∈Λ

∥

∥

∥
Yt,l −

√
ptUllΞD

1/2
ll Xt,l

∥

∥

∥

2

F
(9)

whereΛ is a set ofK × K diagonal matrices. Denote bȳyn ,
[

(

yR
t,l(n)

)T (

yI
t,l(n)

)T
]T

, whereyt,l (n) is thenth column ofYt,l,

BR andBI denote the real and imaginary parts of matrixB; and

Ān ,

[

AR
n −AI

n

AI
n AR

n

]

(10)

whereAn ,
√
ptUllD

1/2
ll X̄n, X̄n , diag (xt,l (n)). Then, we

obtain (the proof is omitted due to space constraints)

Ξ̂ = diag
(

ξ̂ξξ
)

(11)

whereξ̂ξξ = [IK jIK ] ˆ̄ξξξ, where

ˆ̄ξξξ =

(

ν
∑

n=1

Ā
T
n Ān

)−1 L
∑

n=1

Ā
T
n ȳn. (12)
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Fig. 1. Symbol error probability versusa for M = 100, pu = 20
dB, and BPSK modulation.

3.3. Implementation of the EVD-based Channel Estimation

As discussed, whenM is large the channel matrixHll can be deter-
mined by using the EVD of the covariance matrixRy. In practice,
this covariance matrix is unavailable. Instead, we use the sample
data covariance matrix̂Ry:

R̂y ,
1

N

N
∑

n=1

yl (n)yl (n)
H (13)

whereN is the number of samples. Here, we assume that the channel
is still constant over at leastN samples.

We summarize our proposed algorithm for estimatingHll as fol-
lows:

Algorithm 1 Proposed EVD-based channel estimation method

1. Using a data block ofN samples, computêRy as(13).

2. Perform the EVD ofR̂y. Then obtain anM × K matrix UN

whosekth column is the eigenvector corresponding to the
eigenvalue which is closest toMpuβllk + 1.2

3. Compute the estimatêΞ of the multiplicative matrixΞ from ν
pilot symbols using(11).3

4. The channel estimate ofHll is determined as̃Hll=UNΞ̂.

Treating the above channel estimate as the true channel, we then
use a linear detector (e.g., MRC, ZF) to detect the transmitted sig-
nals. Since the columns of the channel estimateH̃ll are pairwisely
orthogonal for largeM , the performances of MRC and ZF detectors
are the same [2].

Remark 2 There are two main sources of errors in the channel es-
timate: (i) The covariance matrix error: this error is due tothe use
of the sample covariance matrix instead of the true covariance ma-
trix. This error will decrease as the number of samplesN increases
(this requires that the coherence time is large); (ii) The error due
to the channel vectors not being perfectly orthogonal as assumed in

2Since the eigenvalue is obtained from the sample data covariance matrix,
the corresponding eigenvalue is only approximately equal to Mpuβllk + 1.

3When using (11) replace the true covariance matrix by the sample co-
variance matrix.
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Fig. 2. Symbol error probability versus SNR forM = 100, a = 1,
pu = SNR/M , and BPSK modulation.

(5). Our method exploits the asymptotic orthogonality of the chan-
nel vectors. This property is true only in the asymptotic regime, i.e,
whenM → ∞. In practice,M is large but finite and hence, an
error results.

4. JOINT EVD-BASED METHOD AND ILSP ALGORITHM

As discussed above (see Remark 2), there EVD-based channel esti-
mates will suffer from errors owing to a finite coherence timeand a
finiteM . To reduce this error, in this section, we consider combining
our EVD algorithm with the ILSP algorithm of [8].

Define theK×N matrix of transmitted signals from theK users
in the ith cell and theM × N matrix of received signals at thelth
BS respectively as

Xi , [xi (1) xi (2) ... xi (N)] , i = 1, 2, ..., L (14)

Yl , [yl (1) yl (2) ... yl (N)] . (15)

From (1), we have

Yl =
√
puGllXi +

√
pu

L
∑

i6=l

GliXi +Nl (16)

whereNl , [nl (1) nl (2) ... nl (N)]. Treating the last two terms
of (16) as noise, and applying the ILSP algorithm in [8], we obtain
an iterative algorithm that jointly estimates the channel and the trans-
mitted data. The principle of operation of the ILSP algorithm is as
follows. Firstly, we assume that the channelGll is known, from an
initial channel estimation procedure. The data are then detected via
least-squares, projecting the solution onto the symbol constellation
X as

X̂l = arg min
Xl∈X

∥

∥

∥

∥

1√
pu

G
†
llYl −Xl

∥

∥

∥

∥

2

F

(17)

where the superscript(·)† denotes the pseudo-inverse. Next, the de-
tected datâXl are used as if they were equal to the true transmitted
signal and the channel is re-estimated using least-squares,

Ĝll =
1√
pu

YlX̂
†
l . (18)



Equations (17) and (18), yield the ILSP algorithm for our problem.
Applying the ILSP algorithm, and using the channel estimatebased
on EVD method discussed in Section 3 as the initial channel esti-
mate, we obtain the joint EVD method and ILSP algorithm (EVD-
ILSP).

Algorithm 2 The EVD-ILSP algorithm

1. Initialize Ĝll,0 = H̃llD
1/2
ll (obtained by using the EVD-based

method). Choose number of iterationsKstep. Setk = 0.

2. k := k + 1

• X̂l,k = argminXl∈X

∥

∥

∥

1√
pu

Ĝ
†
ll,k−1Yl −Xl

∥

∥

∥

2

F

• Ĝll,k = 1√
pu

YlX̂
†
l,k

3. Repeat 2 untilk = Kstep.

5. NUMERICAL RESULTS

We simulate a system withL = 3 cells, each containing3 users.
We consider the uplink of the 1st user in 1st cell, assuming BPSK
modulation. We chooseD11 = diag {0.98, 0.36, 0.47}, D12 =
a×diag {0.36, 0.29, 0.05}, andD13 = a×diag {0.32, 0.14, 0.11}.
For the EVD-based method, we useν = 1 (one) training symbol to
resolve the multiplicative factor ambiguity.

Fig. 1 shows the the SEP versusa of the EVD-based and the
conventional pilot-based channel estimation methods withdifferent
N andM at pu = 20 dB. We can see that whena increases (the
effect of pilot contamination increases), the system performance de-
grades dramatically when using the pilot-based method. This is due
to the fact that the pilot-based method suffers from pilot contamina-
tion. In particular, the EVD-based method is not affected much by
the pilot contamination, and it can significantly improve the system
performance when the effect of pilot contamination is large. It can
be also seen from the figure that the effectiveness of our EVD-based
method increases when the number of samplesN and the number of
BS antennasM increase.

To ascertain the effectiveness of the EVD-based channel esti-
mation method under noise-limited conditions, we considerthe SEP
when the transmit power of each user is chosen to be proportional to
1/M . We chooseM = 100, anda = 1. Fig. 2 shows the compar-
isons between the SEPs versus SNR of the EVD-based method and
the pilot-aided method for differentN . Here, with eachSNR, we set
pu = SNR/M . We can see that by using the EVD-based method,
the system performance significantly improves compared with the
conventional pilot-based method. WhenN increases, the sample
covariance matrix tends to the true covariance matrix and hence, as
we can see from the figure, the SEP decreases.

Fig. 3 shows the SEP of the EVD-based method versus the num-
ber of BS antennas atpu = 20 dB anda = 1, for differentN , with
and without using the ILSP algorithm. With the ILSP algorithm, we
chooseKstep = 5. As expected, comparing with the EVD-based
method, the joint EVD-based and ILSP algorithm offers a perfor-
mance improvement. Also here, the system performance improves
significantly whenM andN increase.

6. CONCLUDING REMARKS

Very large MIMO systems withM ≫ K ≫ 1 offer many unused
degrees of freedom. We proposed a channel estimation method
that exploits these excess degrees of freedom, together with the
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Fig. 3. Symbol error probability versusM for pu = 20 dB, and
a = 1.

asymptotic orthogonality between the channel vectors thatoccurs
under “favorable propagation” conditions. Combining the proposed
method with the ILSP algorithm of [8] further enhances perfor-
mance.
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