
 Open access Proceedings Article DOI:10.1109/ICRA40945.2020.9196877

EVDodgeNet: Deep Dynamic Obstacle Dodging with Event Cameras
— Source link

Nitin J. Sanket, Chethan M. Parameshwara, Chahat Deep Singh, Ashwin V. Kuruttukulam ...+3 more authors

Institutions: University of Maryland, College Park, University of Zurich

Published on: 01 Oct 2020 - International Conference on Robotics and Automation

Topics: Obstacle avoidance, Obstacle and Deep learning

Related papers:

 Dynamic obstacle avoidance for quadrotors with event cameras

 Event-based Vision: A Survey

 Small Obstacle Avoidance Based on RGB-D Semantic Segmentation

 Layering Laser Rangefinder Points onto Images for Obstacle Avoidance by a Neural Network

 Vision based obstacle detection for wheeled robots

Share this paper:

View more about this paper here: https://typeset.io/papers/evdodgenet-deep-dynamic-obstacle-dodging-with-event-cameras-
2eqg9cx4nl

https://typeset.io/
https://www.doi.org/10.1109/ICRA40945.2020.9196877
https://typeset.io/papers/evdodgenet-deep-dynamic-obstacle-dodging-with-event-cameras-2eqg9cx4nl
https://typeset.io/authors/nitin-j-sanket-20prn0ix4x
https://typeset.io/authors/chethan-m-parameshwara-296h7z6r7j
https://typeset.io/authors/chahat-deep-singh-ab42nohrn2
https://typeset.io/authors/ashwin-v-kuruttukulam-58jwnuy26p
https://typeset.io/institutions/university-of-maryland-college-park-1t055gc1
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/conferences/international-conference-on-robotics-and-automation-27g6ts5l
https://typeset.io/topics/obstacle-avoidance-3ccjp1le
https://typeset.io/topics/obstacle-pkxpq17l
https://typeset.io/topics/deep-learning-3smk9e5a
https://typeset.io/papers/dynamic-obstacle-avoidance-for-quadrotors-with-event-cameras-3ynzhsbckd
https://typeset.io/papers/event-based-vision-a-survey-2pbof38y40
https://typeset.io/papers/small-obstacle-avoidance-based-on-rgb-d-semantic-33v38zzta9
https://typeset.io/papers/layering-laser-rangefinder-points-onto-images-for-obstacle-3kyytlvc9d
https://typeset.io/papers/vision-based-obstacle-detection-for-wheeled-robots-4ig6vs1967
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/evdodgenet-deep-dynamic-obstacle-dodging-with-event-cameras-2eqg9cx4nl
https://twitter.com/intent/tweet?text=EVDodgeNet:%20Deep%20Dynamic%20Obstacle%20Dodging%20with%20Event%20Cameras&url=https://typeset.io/papers/evdodgenet-deep-dynamic-obstacle-dodging-with-event-cameras-2eqg9cx4nl
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/evdodgenet-deep-dynamic-obstacle-dodging-with-event-cameras-2eqg9cx4nl
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/evdodgenet-deep-dynamic-obstacle-dodging-with-event-cameras-2eqg9cx4nl
https://typeset.io/papers/evdodgenet-deep-dynamic-obstacle-dodging-with-event-cameras-2eqg9cx4nl

Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2020

EVDodgeNet: Deep Dynamic Obstacle Dodging with Event Cameras

Sanket, Nitin J ; Parameshwara, Chethan M ; Singh, Chahat Deep ; Kuruttukulam, Ashwin V ;
Fermuller, Cornelia ; Scaramuzza, Davide ; Aloimonos, Yiannis

Abstract: Dynamic obstacle avoidance on quadrotors requires low latency. A class of sensors that are
particularly suitable for such scenarios are event cameras. In this paper, we present a deep learning
based solution for dodging multiple dynamic obstacles on a quadrotor with a single event camera and
on-board computation. Our approach uses a series of shallow neural networks for estimating both the
ego-motion and the motion of independently moving objects. The networks are trained in simulation and
directly transfer to the real world without any fine-tuning or retraining. We successfully evaluate and
demonstrate the proposed approach in many real-world experiments with obstacles of different shapes
and sizes, achieving an overall success rate of 70% including objects of unknown shape and a low light
testing scenario. To our knowledge, this is the first deep learning - based solution to the problem of
dynamic obstacle avoidance using event cameras on a quadrotor. Finally, we also extend our work to
the pursuit task by merely reversing the control policy, proving that our navigation stack can cater to
different scenarios.

DOI: https://doi.org/10.1109/icra40945.2020.9196877

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-193892
Conference or Workshop Item
Accepted Version

Originally published at:
Sanket, Nitin J; Parameshwara, Chethan M; Singh, Chahat Deep; Kuruttukulam, Ashwin V; Fermuller,
Cornelia; Scaramuzza, Davide; Aloimonos, Yiannis (2020). EVDodgeNet: Deep Dynamic Obstacle Dodg-
ing with Event Cameras. In: 2020 IEEE International Conference on Robotics and Automation (ICRA),
Paris, France, 1 July 2020 - 1 October 2020. IEEE, 10651-10657.
DOI: https://doi.org/10.1109/icra40945.2020.9196877

This paper has been accepted for publication at the IEEE International

Conference on Robotics and Automation (ICRA), Paris, 2020. ©IEEE

EVDodgeNet: Deep Dynamic Obstacle Dodging with Event Cameras

Nitin J. Sanket1, Chethan M. Parameshwara1, Chahat Deep Singh1, Ashwin V. Kuruttukulam1,

Cornelia Fermüller1, Davide Scaramuzza2, Yiannis Aloimonos1

Abstract— Dynamic obstacle avoidance on quadrotors
requires low latency. A class of sensors that are particularly
suitable for such scenarios are event cameras. In this paper,
we present a deep learning based solution for dodging multiple
dynamic obstacles on a quadrotor with a single event camera
and on-board computation. Our approach uses a series of
shallow neural networks for estimating both the ego-motion
and the motion of independently moving objects. The networks
are trained in simulation and directly transfer to the real
world without any fine-tuning or retraining. We successfully
evaluate and demonstrate the proposed approach in many
real-world experiments with obstacles of different shapes and
sizes, achieving an overall success rate of 70% including objects
of unknown shape and a low light testing scenario. To our
knowledge, this is the first deep learning – based solution to
the problem of dynamic obstacle avoidance using event cameras
on a quadrotor. Finally, we also extend our work to the pursuit
task by merely reversing the control policy, proving that our
navigation stack can cater to different scenarios.

SUPPLEMENTARY MATERIAL

The accompanying video, supplementary material, code

and dataset are available at http://prg.cs.umd.edu/

EVDodgeNet

I. INTRODUCTION AND PHILOSOPHY

The never-ending quest to understand and mimic

ultra-efficient flying agents like bees, flies, and birds has

fueled the human fascination to create autonomous, agile

and ultra-efficient small aerial robots. These robots are not

only utilitarian but are much safer to operate in static or

dynamic environments and around other agents as compared

to their larger counterparts. Need for creation of such small

aerial robots has given rise to the development of numerous

perception algorithms for low latency obstacle avoidance.

Here, latency is defined as the time the robot takes to

perceive, interpret and generate control commands [1].

Low latency static obstacle avoidance has been studied

extensively in the last decade [2]. Recently, however,

dynamic obstacle avoidance has gained popularity in the field

of robotics due to the exponential growth of event cameras.

These are bioinspired vision sensors that output per-pixel

temporal intensity differences caused by relative motion with

microsecond latency [3].

Event cameras have the potential to become the de-facto

standard for visual motion estimation problems due to their

Nitin J. Sanket and Chethan M. Parameshwara contributed equally to

this work. (Corresponding author: Nitin J. Sanket.)
1Perception and Robotics Group, University of Maryland Institute for

Advanced Computer Studies, University of Maryland, College Park.
2Robotics and Perception Group, Dep. of Informatics, University of

Zurich, and Dep. of Neuroinformatics, University of Zurich and ETH Zurich.

Fig. 1. (a) A real quadrotor running EVDodgeNet to dodge two
obstacles thrown at it simultaneously. (b) Raw event frame as seen from
the front event camera. (c) Segmentation output. (d) Segmentation flow
output which includes both segmentation and optical flow. (e) Simulation
environment where EVDodgeNet was trained. (f) Segmentation ground truth.
(g) Simulated front facing event frame. All the images in this paper are best

viewed in color.

inherent advantages of low latency, high temporal resolution,

and high dynamic range [4]. These advantages make event

cameras tailor made for dynamic obstacle avoidance.

In this paper, we present a framework to dodge multiple

unknown dynamic obstacles on a quadrotor with event

cameras using deep learning. Although dynamic obstacle

detection using traditional cameras and deep learning has

been extensively studied in the computer vision community

under the umbrellas of object segmentation and detection,

they are either of high latency, computationally expensive

(not enough to be used on micro/nano-quadrotors) and/or

do not generalize to novel objects without retraining or

fine-tuning.

Our work is closely related to [1] with the key difference

being that our approach uses deep learning and generalizes to

unknown real objects after being trained only on simulation.

1

A. Problem Formulation and Contributions

A quadrotor moves in a static scene with multiple

Independently Moving dynamic Objects/obstacles (IMOs).

The quadrotor is equipped with a front facing event camera,

a downfacing lower resolution event camera coupled with

sonar, for altitude measurements, and an IMU.

The problem we address is as follows: Can we present an

AI framework for the task of dodging/evading/avoiding these

dynamic obstacles without any prior knowledge, using only

on-board sensing and computation?

We present various flavors of the dodging problem,

such as hovering quadrotor dodging unknown obstacles,

slow-moving quadrotor dodging unknown shaped obstacles

given a bound on size, hovering and slow moving quadrotor

dodging known objects (particularly targeted to spherical

objects of known radii). We extend our approach by

demonstrating pursuit/intercept of a known object using the

same deep-learning framework. This showcases that our

proposed framework can be used in a general navigation

stack on a quadrotor and can be re-purposed for various

related tasks. A summary of our contributions are (Fig. 1):

• We propose and implement a network (called

EVDeBlurNet) that deblurs event frames, such that

learning algorithms trained on simulated data can

generalize to real scenes without retraining or

fine-tuning.

• We design and implement a network (called

EVSegFlowNet) that performs both segmentation

and optical flow of IMOs to obtain both segmentation

and optical flow in a single network.

• We propose a control policy based on estimated motion

of multiple IMOs under various scenarios.

• We evaluate and demonstrate the proposed approach

on a real quadrotor with onboard perception and

computation.

B. Related Work

We subdivide the related work into three parts, i.e.,

ego-motion estimation, independent motion segmentation,

and obstacle avoidance.

1) Independent Motion Detection and Ego-motion

Estimation – Two sides of the same coin: Information

from complementary sensors, such as standard cameras

and Inertial Measurement Units (IMUs), has given rise to

the field of Visual Inertial Odometry (VIO) [5], [6]. Low

latency VIO algorithms based on event cameras have been

presented in [4], [7], which use classical feature tracking

inspired methods to estimate ego-motion. Other works,

instead, try to add semantic information to enhance the

quality of odometry by adding strong priors about the scene

[8], [9]. Most works in the literature focus on ego-motion

estimation in static scenes which are seldom encountered

in the real world. To account for moving objects, these

algorithms implement a set of outlier rejection schemes to

detect IMOs. We would like to point out that by carefully

modelling these “outliers” one can estimate both ego-motion

and IMO motion [10].

2) Image stabilization as a key to independent motion

segmentation: Keen readers might have contrived that by

performing the process of image stabilization IMOs would

“stand-out”. Indeed, this was the approach most robust

algorithms used in the last two decades. A similar concept

was adapted in some recent works on event-based cameras

for detecting IMOs [11]–[13]. Recently a deep learning based

approach was presented for IMO detection using a structure

from motion inspired approach [14].

3) Obstacle avoidance on aerial robots: The works

presented in the above two subsections have aided the

advancement of obstacle avoidance on aerial robots. [15],

[16] presented approaches for high speed static obstacle

avoidance by estimating depth maps and visual servoing

using a monocular imaging camera respectively. [17]

provides a detailed collation of the prior work on static

obstacle avoidance using stereo cameras. A hardware

and software architecture was proposed in [18], [19] for

high speed quadrotor navigation by mapping the cluttered

environment using a lidar. Using event cameras for high

speed dodging is not new and the first work was presented

in [20] where an approach was presented to avoid a dynamic

spherical obstacle using stereo event cameras. Very recently,

[1] presented a detailed analysis of perception latency for

dodging a dynamic obstacle.

C. Organization of the paper

The paper is structured into perception and control

modules. The perception module (Refer to Fig. 2) is further

divided into three segments.

1. The input to the perception system are event frames

(Sec. II-A). Such a projection of event data to generate

event frames suffers from misalignment [21] unless motion

compensation is performed. We call this misalignment

or loss of contrast/sharpness as blur due to its visual

resemblance to classical image motion blur. To perform

motion compensation and denoising, we present a neural

network called EVDeBlurNet in Sec. II-A.

2. Suppl. Sec. S.III. presents how ego-motion is obtained

using EVHomographyNet.

3. Sec. II-B describes how segmentation and optical flow of

IMOs are obtained using the novel EVSegFlowNet.

Sec. III presents the control scheme for dodging given the

outputs from the perception module. We also bring the

generality of our perception stack into limelight in Suppl.

Sec. S.IX by adapting our approach to the problem of pursuit.

Sec. IV illustrates the experimental setup and provides error

analyses of the approaches presented along with detailed

ablation studies. We finally conclude the paper in Sec. V

with parting thoughts on future work.

II. DEEP LEARNING BASED NAVIGATION STACK FOR

DODGING DYNAMIC OBSTACLES

Fig. 2 shows an overview of our proposed approach. Refer

to Suppl. Sec. S.I for the coordinate frame definitions. Our

hardware setup is shown in Fig. 3.

2

Fig. 2. Overview of the proposed neural network based navigation stack
for the purpose of dodging.

Fig. 3. Representation of coordinate frames on the hardware platform
used. (1) Front facing DAVIS 240C, (2) down facing sonar on PX4Flow,
(3) down facing DAVIS 240B, (4) NVIDIA TX2 CPU+GPU, (5) Intel®

Aero Compute board.

A. EVDeBlurNet

The event frame E consists of three channels. The first

and second channels contain the per-pixel average count of

positive and negative events. The third channel contains the

per-pixel average time between events (refer to Sec. S.II for

a mathematical formulation). Though event representation

offers many advantages regarding computational complexity

and providing tight time bounds on operation, there is a

hitch. Event frames can be “blurry” (projection of misaligned

events) based on a combination of the integration time δt
(observe in Fig. 6 how sharpness of the image decreases

as integration time δt increases), apparent scene movement

on the image plane (which depends on the amount of

camera movement and depth of the scene) and scene contrast

(contrast of the latent image pixels). Here, we define blur on

the event frame E as the misalignment of the events in a

small integration time δt.
An event is triggered when the relative contrast (on the

latent image I) exceeds a threshold τ and is mathematically

modelled as: ‖ log (I) ‖1 ≈ ‖〈∇x log (I) , ẋ∆t〉‖1 ≥ τ .

Here, 〈·, ·〉 denotes the inner/dot product between two

vectors, ∇x is the spatial gradient, ẋ is the motion field

on the image and ∆t is the time since the previous event

at the same location. The above equation elucidates how the

latent image contrast, motion and depth are coupled to event

frames. Note that, ẋ depends on the 3D camera motion and

the scene depth. We refer the reader to [22] for more details.

This “blurriness" of the event frame can adversely affect

the performance of algorithms built on them. To alleviate

this problem, we need to deblur the event images. This

is fairly easy if we directly use the spatio-temporal event

cloud and follow the approach described in [21]. Essentially

the problem deals with finding point trajectories along the

spatio-temporal point cloud to maximize a heuristically

chosen contrast function. Mathematically, we want to solve

the following problem: argmaxθ C (W (E , θ)). Here C is

a heuristic contrast function and θ are the parameters

of point trajectories in the spatio-temporal point cloud

according to which the events are warped and W (E , θ)
represents the event image formed by the warped events.

In our scenario, we want to model the deblurring problem

in 2D, i.e., working on E directly without the use of a

spatio-temporal point cloud so that the problem can be

solved efficiently using a 2D Convolutional Neural Network

(CNN). Such a deblurring problem using a single image

has been studied extensively for traditional cameras for

rectifying motion blurred photos. Our modified problem in

2D can be formulated as: argmaxK C (K ⊛ E). Here K is

the heterogeneous deblur kernel and ⊛ is the convolution

operator. However, estimating K directly is not constrained

enough to be learned in an unsupervised manner. Instead, we

formulate the deblurring problem inspired by Total Variation

(TV) denoising to give us the final optimization problem

as follows: argmax
E

C
(

E

)
+ λ argmin

E
D
(

E ,E

)
. Here E

represents the deblurred event frame, λ is a regularization

penalty and D represents a distance function to measure

similarity between two event frames. Note that directly

solving argmax
E

C
(

E

)
yields trivial solutions of high

frequency noise.

To learn the function using a neural network we convert

the argmax operator into an argmin operator as follows:

argmin
E

−C
(

E

)
+ λD

(
E ,E

)
(1)

Refer to Suppl. Sec. III for a detailed mathematical

description of all the loss functions. Intuitively, the higher

the value of the contrast, the lower the value of the

loss function, but going away too far from the input

will penalize the loss function striking a balance between

high contrast and similarity to the input image. We call

our CNN which generates the deblurred event images

EVDeBlurNet. It takes as input E and outputs deblurred

E . The network architecture is a simple encoder-decoder

with four convolutional and four deconvolutional layers with

batch normalization (Suppl. Sec. S.V). Another benefit of

the encoder decoder’s lossy reconstruction is that it removes

stray events (which are generally noise) and retains events

corresponding to contours, thereby greatly increasing the

signal to noise ratio.

Recently, [23] also presented a method for deblurring

event frames to improve optical flow estimation via a

coupling between predicted optical flow and sharpness in

the event frame in the loss function. In contrast, our

work presents a problem-independent deblurring network

without the supervision from optical flow. We obtain “cheap”

odometry using the EVHomographyNet as described in

3

Suppl. Sec. S.III which is built upon [24], [25].

B. EVSegFlowNet

The end goal of this work is to detect/segment

Independently Moving Objects (IMOs) and to dodge them.

One could fragment this problem into two major parts,

detecting IMOs, and subsequently estimating their motion

to issue a control command to move away from the IMO

in a safe manner. Let’s start by discussing each fragment.

Firstly, we want to segment the object using consecutive

event frames Et and Et+1. A simple way to accomplish this

is by generating simulated data with known segmentation

for each frame and then training a CNN to predict the

foreground (IMO)/background segmentation. Such a CNN

can be trained using a simple cross-entropy loss function:

argminpf
−E (1f log (pf) + 1b log (pb)). Here, 1f ,1b are

the indicator variables denoting if a pixel belongs to

foreground or background. They are mutually exclusive,

i.e., 1f = ¬1b and pf , pb represent the foreground and

background predicted probabilities where pf + pb = 1.

Note that each operation in the above equation is performed

per pixel, and then an average over all pixels is computed.

In the second step we want to estimate the IMO motion.

Without any prior knowledge about the IMO it is impossible

to estimate the 3D motion of the IMO from a monocular

camera (event based or traditional). To make this problem

tractable, we assume a prior about the object. More details

can be found in Sec. III.

Once we have a prior about the object, we can estimate

the 3D IMO motion using optical flow of the pixels

corresponding to the IMO on the image plane. A simple

way to obtain optical flow is to train a CNN in a supervised

manner. However, recent research has shown that these do

not generalize well to new scenes/objects [26]. A better

way is to use a self-supervised or completely unsupervised

loss function: argminẋ E (D (W (Et, ẋ) ,Et+1)). Here ẋ

is the estimated optical flow between Et 7→ Et+1 and

W is a differentiable warp function based on optical

flow and bilinear interpolation implemented using an STN.

The self-supervised flavor of this algorithm [27] utilizes

corresponding image frames instead of event frames for

the loss function but the input is still the stack of event

frames. One could utilize the two networks we talked about

previously and solve the problem of dodging, however, one

would need to run two neural networks for this purpose.

Furthermore, this method suffers from a major problem: any

unsupervised or self-supervised method can estimate rigid

optical flow (optical flow corresponding to the background

regions B) accurately but the non-rigid optical flow (optical

flow corresponding to the foreground regions F) is not very

accurate. This is an artifact because of the number of pixels

corresponding to the foreground is often far less than that

corresponding to the background, i.e., F ≪ B. One would

have to train for a lot of iterations to obtain accurate optical

flow results on these foreground pixels which runs into the

risk of overfitting to the dataset. This defeats the promise of

self-supervised or unsupervised formulations.

To solve both the problems of complexity and accuracy, we

formulate the problem using a semi-supervised approach to

learn segmentation and optical flow at the same time, which

we call EVSegFlowNet. We call the output of the network

segmentation flow denoted by ˜̇p which is defined as follows.

˜̇px = ẋ, if 1f (x) = 1 and ˜̇px = 0, if 1b (x) = 1 (2)

One could intuit that we can obtain a noisy segmentation

for free by simple thresholding on the magnitude of ˜̇px.

To utilize the network to maximum capacity the input to

the network is the ego-motion/odometry based warped event

frame such that the background pixels in the two input event

frames are almost aligned and the only misalignment comes

from the IMOs. This ensures that the network’s capacity

can be utilized fully for learning sub-pixel accurate optical

flow for IMO regions. The input to the EVSegFlowNet is

W
(

Et, H̃4Pt

)
and Et+1. Here, H̃4Pt is transformed to EF

before warping.

A complexity analysis of EVSegFlowNet is given in

Suppl. Sec. S.VI. The success of our approach can be seen

from the experimental results. The loss function for learning
˜̇px is:

argmin
˜̇px

E

(
D
(
W
(

E
′
t, ˜̇px

)
◦ 1f ,Et+1 ◦ 1f

))
+

λ1E

(
‖˜̇px ◦ 1b‖1

)
+ λ2E

(
‖˜̇px ◦ 1b‖

2
2

)
(3)

Here, λ1 and λ2 are regularization parameters. This loss

function is essentially the image difference with elastic net

like regularization penalty. This penalty makes the network

make background flow zero fairly quickly as compared to

simple l1 or quadratic penalty whilst being robust to outliers

(errors in segmentation mask creation).

Note that all our networks were trained in simulation

and directly transfer to the real world without any

re-training/fine-tuning. We call our dataset Moving Object

Dataset (MOD). Detailed information about the dataset can

be found in Suppl. Sec. S.VII.

III. CONTROL POLICY FOR DODGING IMOS

In this section, we present a solution for evading multiple

known and/or unknown IMOs.

Let us consider three different flavors of IMOs: (i) Sphere

with known radius r, (ii) Unknown shaped objects with

known bound on the size and (iii) Unknown objects with no

prior knowledge. We tackle each of these cases differently.

Knowing the prior information about the geometric nature

helps us achieve much more robust results and fine-grain

control. We define F as the projection of all the IMOs on

the image plane such that F =
⋃

∀i Fi, where Fi denotes

the ith IMO’s image plane projection. Now, let’s discuss each

flavor of the problem separately in the following subsections.

A. Sphere with known radius r
Let us first begin with the simplest case, i.e., a single

spherical IMO with known radius r. Evading such an object

under no gravitational influence has been tackled and well

analyzed by [1]. It is known that the projection of a sphere

4

on the image plane is an ellipse [28]. For spherical objects

under the gravitational influence, we estimate the initial 3D

position using the known radius information and then we

track the object over a few E to obtain the initial 3D velocity.

Here, the tracking is done by segmentation on every frame.

Assuming a classical physics model, we predict the future

trajectory XIMO
i of the sphere when it is only under the

influence of gravity. Now, we define the point XIMO
i,p as

the intersection of the trajectory XIMO
i and the image

plane. For the case of a single spherical IMO, we compute

the distance between XIMO
i,p and the initial position of

the quadrotor O, denoted by vector xmin ∈ R
2×1. The

“safe” direction is represented as xs = −xmin. A simple

Proportional-Integral-Derivative (PID) controller based on

the differential flatness model of the quadrotor is used with

high proportional gain for a quick response to move in the

direction xs. The minimum amount of movement is equal to

the extended obstacle size (the size of the quadrotor is added

to the object size).

Now, let’s extend to the evasion of multiple spherical

IMOs. We assume that while objects are detected, there is no

occlusion among different IMOs in the front event camera

frame. Then, each object Fi is clustered using mean shift

clustering. For each object Fi, the 3D position and velocity

are estimated as before. It is important to note that since all

the objects were targeted at the quadrotor, they are bound

to intercept the image plane, say at point XIMO
i,p (Fig. 4).

For evasion from multiple objects, we adapt the following

approach. First, we find the two objects m and m + 1
from a consecutive cyclic pair of vectors such that (here (̂·)
represents a unit vector):

argmin
XIMO

i,p ,XIMO
i+1,p

〈
X̂IMO

i,p , X̂IMO
i+1,p

〉
(4)

In other words, the objects m and m + 1 forms the largest

angle among all the consecutive cyclic pairs. So we deploy a

strategy to move the quadrotor in xs direction in the image

plane such that

Fig. 4. Vectors X
IMO
i,p

and X
IMO
i+1,p

represent the intersection of the

trajectory and the image plane. xs is the direction of the “safe” trajectory.
All the vectors are defined with respect to the center of the quadrotor
projected on the image plane, O. Both of the spheres are of known radii.

xs =

{
−X̂β , if max∀i〈X̂β ,Xi〉 < max∀i〈−X̂β , X̂i〉

X̂β , otherwise

(5)

where Xβ = X̂IMO
m,p + X̂IMO

m+1,p

For unknown shaped objects with bound on size, please

refer Suppl. Sec. S.VIII.

B. Unknown objects with no prior knowledge

Without any prior knowledge about the object, it is

geometrically infeasible to obtain the 3D velocity of an

IMO using a monocular camera. However, we can predict

a possible safe trajectory xs depending on the velocity

direction of the IMOs on the image plane. We compute the

unit vector vIMO
i in which the IMO is moving by tracking

the segmentation mask of the IMO or by computing the

mean optical flow direction of the region of interest. For

a single unknown IMO, a heuristic is chosen such that the

quadrotor moves in the direction perpendicular to the velocity

of the IMO on the image plane, i.e., a safe direction for the

quadrotor motion which satisfies 〈xs,v
IMO
i 〉 = 0.

For evasion from multiple objects, we adapt a similar

approach as in Sec. III-A. First, we find the two objects m
and m+1 from a consecutive cyclic pair of velocity vectors

by replacing X̂ by v̂ in Eq. 4. Now. we deploy a strategy

to move the quadrotor in xs direction in the image plane by

replacing X̂ by v̂ and ‘<’ by ‘>’ in Eq. 5. Refer to Suppl.

Sec. S.IX for an extension of our work to pursuit.

IV. EXPERIMENTS

A detailed description of the hardware and experimental

setup is given in Suppl. Sec. S.X.

A. Experimental Results and Discussion

In this paper, we considered the case of navigating

through different sets of multiple dynamic obstacles. We

dealt with six different evading combinations and one pursuit

experiment: (a) Spherical ball with a known radius of 140

mm, (b) car with a bound on the maximum dimension size of

240 mm (with maximum error of ∼ 20% from the original

size), (c) airplane with no prior information, (d) Bebop 2

flying at a constant velocity, (e) multiple unknown objects, (f)

pursuit of Bebop 2 and (g) low-light dodging experiment. For

each evasion case, the objects (Suppl. Fig. S.8) are directly

thrown towards the Aero quadrotor such that a collision

would definitely occur if the Aero holds its initial position.

For each case, a total of 30 trials were conducted. Notice that

the objects would have hit the quadrotor if it had not moved

from its initial position. We achieved a remarkable success

rate of 86% in cases (a) and (b), 76% in case (c). Both Parrot

Bebop 2 experiments (case (d), (f)) resulted in 83% success

rate. Case (e) was carefully performed with synchronized

throws between the two objects and resulted about 76%
success rate. For the low-light experiment (case (g)), we

achieved a success rate of 70%. Here success is defined

as both a successful detection and evasion for the evade

experiments and both a successful detection and collision

for the pursuit task. Fig. 5 shows sequences of images for

5

Fig. 5. Sequence of images of quadrotor dodging or pursuing of objects. (a)-(d): Dodging a spherical ball, car, airplane and Bebop 2 respectively. (e):
Dodging multiple objects simultaneously. (f): Pursuit of Bebop 2 by reversing control policy. Object and quadrotor transparency show progression of time.
Red and green arrows indicate object and quadrotor directions respectively. On-set images show front facing event frame (top) and respective segmentation
obtained from our network (down).

TABLE I

QUANTITATIVE EVALUATION OF DIFFERENT METHODS FOR HOMOGRAPHY ESTIMATION.

Method (Loss)
RMSEi in px. RMSEo in px.

γ = ±[0, 5] γ = ±[6, 10] γ = ±[11, 15] γ = ±[16, 20] γ = ±[21, 25] γ = ±[0, 5] γ = ±[6, 10] γ = ±[11, 15] γ = ±[16, 20] γ = ±[21, 25]

Identity 3.92 ± 0.83 11.40 ± 0.70 18.43 ± 0.70 25.50 ± 0.70 32.55 ± 0.71 3.92 ± 0.84 11.40 ± 0.70 18.44 ± 0.71 25.49 ± 0.70 32.55 ± 0.71
S 3.23 ± 1.13 3.90 ± 1.34 5.31 ± 2.05 9.63 ± 4.57 17.65 ± 7.00 4.15 ± 1.78 5.05 ± 2.19 6.99 ± 3.11 11.21 ± 4.84 18.37 ± 6.61
US∗ (D1) 2.97 ± 1.22 3.84 ± 1.61 5.99 ± 2.78 11.64 ± 5.69 20.36 ± 7.68 3.92 ± 1.53 5.31 ± 2.43 8.14 ± 3.86 13.63 ± 5.87 21.22 ± 7.35
US∗ (D2) 2.48 ± 0.93 3.53 ± 1.43 5.89 ± 2.70 11.74 ± 5.69 20.51 ± 0.70 3.19 ± 1.26 4.86 ± 2.31 7.92 ± 3.73 13.47 ± 5.71 21.22 ± 7.08
DB + S 2.73 ± 1.01 3.16 ± 1.23 4.00 ± 1.79 6.50 ± 3.54 12.22 ± 6.58 3.69 ± 1.51 4.49 ± 2.10 5.91 ± 3.16 9.04 ± 4.90 14.60 ± 6.95

DB + US (D1) 2.19 ± 0.88 3.04 ± 1.57 4.99 ± 2.75 10.16 ± 5.54 18.62 ± 7.85 3.08 ± 1.37 4.63 ± 2.68 7.57 ± 4.30 13.16 ± 6.25 21.08 ± 7.49
DB + US (D2) 2.41 ± 1.06 3.30 ± 1.77 5.36 ± 3.02 10.39 ± 5.78 18.77 ± 8.07 3.35 ± 1.76 5.05 ± 3.03 8.11 ± 4.65 13.46 ± 6.48 21.08 ± 7.81

∗ Trained for 100 epochs on supervised and then fine-tuned on unsupervised for 100 more epochs. γ denotes the perturbation range in px. for evaluation.

cases (a)-(f) along with sample front facing event frame and

segmentation outputs. Vicon plots can be found in Suppl.

Fig. S.9.

Before the IMO is thrown at the quadrotor, the quadrotor

maintains its position (hover) using the differential XW

and Y W estimates from the EVHomographyNet and ZW

estimates from the sonar.

When the IMO is thrown at the quadrotor, the IMO

is detected for five consecutive frames to estimate either

the trajectory or image plane velocity and to remove

outliers using simple morphological operations. This gives

a perception response lag of 60 ms (each consecutive frame

pair takes 10 ms for the neural network computation and

2 ms for the post-processing). Finally, the quadrotor moves

using the simple PID controller presented before.

Note that, we talked about obtaining both segmentation

and optical flow from EVSegFlowNet. This was based on the

conceptualization of optical flow being used for other tasks

as well. However, if only the dodging task is to be performed,

a smaller segmentation network can be used without much

loss of accuracy.

Fig. 6 shows the input and output of EVDeBlurNet for

losses D2 and D3 under δt = {1, 5, 10} ms. Observe the

amount of noise (stray events not associated with strong

contours) in the raw images (top row of Fig. 6). The

second row shows the output of EVDeBlurNet for D2 loss.

Observe that this works well for smaller integration times

but for larger integration times, the amount of denoising

and deblurring performance deteriorates. However, D3 loss

which is aimed at outlier rejection is more suppressive of

Fig. 6. Output of EVDeBlurNet for different integration time and loss
functions. Top row: raw event frames, middle row: deblurred event frames
with D2 and bottom row: deblurred event frames with D3 with δt. Left to
right: δt of 1 ms, 5 ms and 10 ms. Notice that only the major contours are
preserved and blurred contours are thinned in deblurred outputs.

weak contours and hence one can observe that the frame has

almost no output for smaller integration times. This has the

effect of working well for larger integration times.

Fig. 7 shows the output of EVHomographyNet using the

supervised loss function on both raw (top row) and deblurred

frames (bottom row). Observe that the deblurred homography

estimation is more robust to changes in different integration

times. The extended version of Table I is available in Suppl.

6

Fig. 7. Output of EVHomographyNet for raw and deblurred event frames
at different integration times. Green and red color denotes ground truth and

predicted H̃4Pt respectively. Top row: raw events frames and bottom row:
deblurred event frames. Left to right: δt of 1 ms, 5 ms and 10 ms. Notice
that the deblurred homography outputs are almost not affected by δt.

TABLE II

QUANTITATIVE EVALUATION OF IMO SEGMENTATION METHODS.

Method DRi DRo Run Time FLOPs Num. Params
(Loss) in % in % in ms in M in M

SegNet 49.0 40.4 1.5 222 0.03
DB + SegNet 81.5 68.7 7.5 4900 2.33
DB + H + SegNet 83.2 69.1 10 5150 3.63
SegFlowNet 88.3 81.9 1.5 222 0.03
DB + SegFlowNet 93.3 90.1 7.5 4900 2.33
DB + H + SegFlowNet 93.4 90.7 10 5150 3.63

Sec. S.XI.) shows the quantitative evaluation of different

methods used for training EVHomographyNet. Here, DB

represents deblurring using the combination of D2 and

C2 loss, S and US refer to supervised and unsupervised

losses respectively. RMSEi and RMSEo denote the average

root mean square error [25] in the testing dataset with

textures similar to that of the training set, and completely

novel textures respectively. RMSEo quantifies how well

the network can generalize to unseen samples. Notice that

the supervised flavors of the algorithm work better (lower

RMSEi and RMSEo) than their respective unsupervised

counterparts. We speculate that this is because of the

sparsity in data and that the simple image based similarity

metrics not being well suited for event frames. We leave

crafting a novel loss function for event frames as a potential

avenue for future work. Also, notice how deblur variants

of the algorithms almost always work better than their

respective non-deblurred counterparts highlighting the utility

of EVDeblurNet.

Table II shows the quantitative results of different variants

of segmentation networks trained using the D2 loss for

SegFlowNet. Also, H denotes the stack of warped Et and

Et+1 using the outputs of the network DB + S in Table I.

Here DR denotes the detection rate and is defined as:

DR = E
(
(D ∩ G) ◦ 1E

/(G ◦ 1E) ≥ τ
)
× 100% (6)

where G and D denote the ground truth and predicted

masks respectively, and 1E denotes the presence of an event

in either of the input event frames. For our evaluation,

we choose τ = 0.5. Notice that using both deblur

and homography warping helps improve the results as

anticipated. Again, DRi and DRo denote testing on trained

objects and completely novel objects. As before, deblurring

helps generalize much better to novel objects and deblurring

with homography warping gives better results showing that

the network’s learning capacity is utilized better. Also, notice

that the improvement in segmentation by warping using

homography (last row) is marginal due to the 3D structure

of the scene. The network architectures and training details

are provided in Suppl. Sec. S.V.

V. CONCLUSIONS

We presented an AI-based algorithmic design for

micro/nano quadrotors, taking into account the knowledge

of the system’s computation and latency requirements using

deep learning. The central conception of our approach is to

contrive AI building blocks using shallow neural networks

which can be re-purposed. This philosophy was used to

develop a method to dodge dynamic obstacles using only

a monocular event camera and on-board sensing. To our

knowledge, this is the first deep learning based solution

to the problem of dynamic obstacle avoidance using event

cameras on a quadrotor. Moreover, our networks are trained

in simulation and directly transfer to the real world without

fine-tuning or retraining. We also show the generalizability

of our navigation stack by extending our work to the pursuit

task. As a parting thought, a better similarity scoring metric

between event frames or a more robust construction of event

frames can improve our results.

ACKNOWLEDGEMENT

This work was partly funded by the Brin Family

Foundation, National Science Foundation under grant BCS

1824198, ONR under grant N00014-17-1-2622, the Northrop

Grumman Mission Systems University Research Program.

The authors would like to thank NVIDIA for the grant of an

Titan-Xp GPU and Intel for the grant of the Aero Platform.

REFERENCES

[1] D. Falanga et al. How Fast Is Too Fast? The Role of Perception
Latency in High-Speed Sense and Avoid. IEEE Robotics and

Automation Letters, 4(2):1884–1891, April 2019.

[2] P. Sermanet et al. Speed-range dilemmas for vision-based navigation
in unstructured terrain. IFAC Proceedings Volumes, 40(15):300–305,
2007.

[3] G. Gallego, , et al. Event-based vision: A survey. arXiv preprint

arXiv:1904.08405, 2019.

[4] A. Vidal et al. Ultimate SLAM? Combining events, images, and IMU
for robust visual SLAM in HDR and high-speed scenarios. IEEE

Robotics and Automation Letters, 3(2):994–1001, 2018.

[5] M. Bloesch et al. Robust visual inertial odometry using a direct
ekf-based approach. In 2015 IEEE/RSJ international conference on

intelligent robots and systems (IROS), pages 298–304. IEEE, 2015.

[6] T. Qin et al. VINS-Mono: A robust and versatile monocular
visual-inertial state estimator. IEEE Transactions on Robotics,
34(4):1004–1020, 2018.

[7] A. Zhu et al. Event-based visual inertial odometry. In 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5816–5824. IEEE, 2017.

[8] H. Liang et al. SalientDSO: Bringing attention to direct sparse
odometry. IEEE Transactions on Automation Science and Engineering,
2019.

7

[9] S. Bowman et al. Probabilistic data association for semantic SLAM.
In 2017 IEEE International Conference on Robotics and Automation

(ICRA), pages 1722–1729. IEEE, 2017.
[10] R. Sabzevari and D. Scaramuzza. Multi-body motion estimation from

monocular vehicle-mounted cameras. IEEE Transactions on Robotics,
2016.

[11] V. Vasco et al. Independent motion detection with event-driven
cameras. In 2017 18th International Conference on Advanced Robotics

(ICAR), pages 530–536. IEEE, 2017.
[12] A. Mitrokhin et al. Event-based moving object detection and tracking.

In 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 1–9, Oct 2018.
[13] T. Stoffregen et al. Event-based motion segmentation by motion

compensation. In International Conference on Computer Vision

(ICCV), 2019.
[14] A. Mitrokhin et al. Ev-imo: Motion segmentation dataset and learning

pipeline for event cameras. arXiv preprint arXiv:1903.07520, 2019.
[15] H. Alvarez et al. Collision avoidance for quadrotors with a monocular

camera. In Experimental Robotics, pages 195–209. Springer, 2016.
[16] N. Sanket et al. GapFlyt: Active vision based minimalist structure-less

gap detection for quadrotor flight. IEEE Robotics and Automation

Letters, 3(4):2799–2806, Oct 2018.
[17] A. Barry et al. High-speed autonomous obstacle avoidance with

pushbroom stereo. Journal of Field Robotics, 35(1):52–68, 2018.
[18] K. Mohta, , et al. Fast, autonomous flight in gps-denied and cluttered

environments. Journal of Field Robotics, 35(1):101–120, 2018.
[19] K. Mohta et al. Experiments in fast, autonomous, gps-denied quadrotor

flight. In 2018 IEEE International Conference on Robotics and

Automation (ICRA), pages 7832–7839. IEEE, 2018.
[20] E. Mueggler et al. Towards evasive maneuvers with quadrotors using

dynamic vision sensors. In 2015 European Conference on Mobile

Robots (ECMR), pages 1–8. IEEE, 2015.
[21] G. Gallego et al. A unifying contrast maximization framework for

event cameras, with applications to motion, depth, and optical flow
estimation. In The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2018.
[22] G. Gallego et al. Event-based camera pose tracking using a generative

event model. arXiv preprint arXiv:1510.01972, 2015.
[23] A. Zhu et al. Unsupervised event-based learning of optical flow, depth,

and egomotion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 989–997, 2019.
[24] D. DeTone et al. Method and system for performing convolutional

image transformation estimation, November 23 2017. US Patent App.
15/600,545.

[25] Ty Nguyen et al. Unsupervised deep homography: A fast and
robust homography estimation model. IEEE Robotics and Automation

Letters, 3(3):2346–2353, 2018.
[26] S. Meister et al. Unflow: Unsupervised learning of optical flow with

a bidirectional census loss. In Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.
[27] A. Zhu et al. Ev-flownet: self-supervised optical flow estimation for

event-based cameras. arXiv preprint arXiv:1802.06898, 2018.
[28] C. Wylie. Introduction to projective geometry. Courier Corporation,

2011.

8

Supplementary Material for
EVDodgeNet: Deep Dynamic Obstacle Dodging with Event Cameras

Nitin J. Sanket1, Chethan M. Parameshwara1, Chahat Deep Singh1, Ashwin V. Kuruttukulam1,

Cornelia Fermüller1, Davide Scaramuzza2, Yiannis Aloimonos1

Figure S1. Representation of coordinate frames on the hardware platform
used. (1) Front facing DAVIS 240C, (2) down facing sonar on PX4Flow, (3)
down facing DAVIS 240B, (4) NVIDIA TX2 CPU+GPU, (5) Intel® Aero
Compute board.

S.I. DEFINITIONS OF COORDINATE FRAMES USED

The letters I , EF , ED, S and W denote coordinate

frames on the Inertial Measurement Unit (IMU), front facing

event camera, down facing event camera, down facing sonar

and the world respectively (Fig. S1). All the sensors are

assumed to be rigidly attached with the intrinsic and extrinsic

calibration between them known. A pinhole camera model

is used for the formation of the image. The world point

X gets projected onto the image plane point x. Unless

otherwise stated, the points on the image plane are used after

undistortion.

S.II. EVENT FRAME E

A traditional grayscale (global-shutter) camera records

frames at a fixed frame rate by integrating the number of

photons for the chosen shutter time. This is done for all pixels

synchronously. In contrast, an event camera only records the

polarity of logarithmic brightness changes asynchronously at

each pixel. If the brightness at time t of a pixel at location

x is given by It,x, an event is triggered when:

‖ log (It+1,x)− log (It,x) ‖1 ≥ τ

Here τ is a threshold which will determine if an event is

triggered or not. τ is set at the driver level as a combination

of multiple parameters. Each triggered event outputs the

following data:

e = {x, t, p}

Nitin J. Sanket and Chethan M. Parameshwara contributed equally to

this work. (Corresponding author: Nitin J. Sanket.)
1Perception and Robotics Group, University of Maryland Institute for

Advanced Computer Studies, University of Maryland, College Park.
2Robotics and Perception Group, Dep. of Informatics, University of

Zurich, and Dep. of Neuroinformatics, University of Zurich and ETH Zurich.

where p = ±1 denotes the sign of the brightness change.

The event data unlike an image can vary in data rate and are

generally output as a vector of four numbers per triggered

event. The data rate is small when the amount of motion

and/or scene contrast are small and large when either the

motion or the scene contrast is large. This can be beneficial

for asynchronous operation, however on a low power digital

processor like the one on-board a micro-quadrotor, this can

be appalling. To maintain a near constant computational

bottle-neck for event processing, we create event frames

denoted as E . An event frame is essentially a collection

events triggered in a spatio-temporal window starting at t0
and a temporal depth of δt. The event frame E is formed as

follows.

E (x, δt)+ =

t0+δt∑

t=t0

✶ (x, t, p = +1)

E (x, δt)
−
=

t0+δt∑

t=t0

✶ (x, t, p = −1)

E (x, δt)τ =

(
t0+δt∑

t=t0

✶ (x, t, p = ±1)

)−1

E (t− t0)

Here ✶ is an indicator function which has a value of 1 for an

event triggered with polarity of p. For E+ the value of p is

+1. Here E is the expectation/averaging operator. Finally E+,

E− and Eτ are normalized such that minimum and maximum

values are scaled between [0, 1]. Essentially E+/E− captures

the per-pixel average number of positive/negative event

triggers in the spatio-temportal window spanned between

t0 and t0 + δt. Eτ captures the average trigger time per

pixel. This event frame representation is inspired by previous

works [1] [2]. The event frame E is composed by depthwise

stacking E+, E− and Eτ , i.e., E = {E+,E−,Eτ}. Using

event frames has some pragmatic advantages as compared

to processing event by event on the raw event stream.

• The control command can be produced within a constant

time bound as event frames are produced at a near

constant rate.

• The spatial relationships between event triggers are

preserved along with polarity and timing information

which is exploited by convolutional neural networks

employed in this paper.

• Event frames can be produced in linear time in the

number of event triggers.

1

S.III. EVHOMOGRAPHYNET

A simple and computationally inexpensive way to obtain

odometry on a quadrotor is to use a downfacing camera

looking at a planar surface. This approximation coupled

with data from an IMU and a distance sensor enables

high speed “cheap” odometry for navigation. Recently, deep

learning approaches have shown more robust homography

estimation in traditional images [3], [4]. Inspired by this,

we propose the first deep learning based solution to the

problem of homography estimation using event cameras

which can be run on an embedded computer at reasonably

high speeds and good accuracy. Also, the added benefit of

using a deep network for homography is that the tradeoff

between speed and accuracy could be altered easily (by

changing number of parameters). Let us mathematically

formulate our problem statement. Let Et and Et+1 be the

event frames captured at times t and t + 1, respectively,

and δt ≪ ∆t where ∆t is the time difference between

the start times of event frame accumulation. In the scenario

presented before, the transformation between the two events

frames is a homography. This can be written as xt+1 =
Ht+1

t xt, where xt+1,xt represent the homogeneous point

correspondences in the two event frames and Ht+1
t is the

resulting non-singular 3×3 homography matrix between the

two frames. We adapt the previous works on deep learning

based homography estimation [3] [4] for both supervised

and unsupervised flavors of deep learning based homography

estimation. For the supervised flavor of the algorithm, we

generate synthetic homography warped event frames and

train them using the following loss function.

argmin
H̃4Pt

E

(
‖H̃4Pt − Ĥ4Pt‖2

)
(S1)

Here, H̃4Pt and Ĥ4Pt are the predicted and ground truth

4-point homographies. We refer the readers to [3] for more

details.

For the unsupervised version, we adapt the mathematical

formulation [4] for TensorDLT and the Spatial Transformer

Network (STN) using bilinear interpolation. The final loss

function is given as:

argmin
H̃4Pt

E

(
D
(
W
(

Et, H̃4Pt

)
,Et+1

))
(S2)

where W is a generic differentiable warp function and

can take on different mathematical formulations based on

it’s second argument (model parameters). In this case, W
contains both the TensorDLT and the STN. As before, D
represents a distance measuring image similarity between

two event frames (Refer to the Sec. S.IV for the mathematical

formulations of D).

S.IV. LOSS FUNCTIONS

In this Section, we present the mathematical formulations

for variants of the loss functions used in this work.

The two flavors of the heuristic Contrast function C used

in Section II-A of the main paper is inspired by [5] are given

below (denoted by C1 and C2).

C1 (E) = E (‖Var (∇E) ‖1)

Var (E) = E
(
(E (x)− E (E)) 2

)

C2 (E) = E (‖∇E‖1)

where ∇ =
[
∇x ∇y

]T
is the 2D gradient operator (sobel

in our case), Var is the variance operator and x denotes the

pixel location. The key difference from [5] is that we use the

variance operator on the gradients instead on raw values as

empirically this gave us better results and was more stable

during training.

Mathematical formulations of the different variants of the

distance function D used in Sections II-A, II-B of the main

paper and S.III which measures the similarity between two

event frames are given below (denoted as D1, D2 and D3).

D1 (E1,E2) = E (‖E1 − E2‖1)

D2 (E1,E2|α, ǫ) = E

((
(E1 − E2)

2
+ ǫ2

)α)

D3 (E1,E2|α, ǫ, c) = E


 b

d



(
((E1 − E2)/c)

2

b
+ 1

)d/2

− 1






b = ‖2− α̂‖1 + ǫ; d =

{
α̂+ ǫ if α̂ ≥ 0

α̂− ǫ if α̂ < 0

α̂i = (2− 2ǫα)
eαi

eαi + 1
∀i

Here, D1 is the generic l1 photometric loss [6] commonly

used for traditional images, D2 is the Chabonnier loss [7]

commonly used for optical flow estimation for traditional

images and D3 is the robust loss function presented in [8].

In D3, the value of α is output from the network (Refer to

S.V for architecture details).

S.V. NETWORK DETAILS

In this Section, we will present the information on network

architecture and training details.

The network architecture is shown in Fig. S2. Notice the

simplicity in our network owing our performance to the

approach of stacking multiple shallow networks to obtain

good performance. It must be noted that using advanced

architectures might lead to better performance. We leave this

as an avenue for future work.

EVDeblurNet was trained for 200 epochs with a learning

rate of 10−3 for 200 epochs with a batch size of 256 for

losses using D1 and D2 and with a batch size of 32 for losses

using D3. Also, the loss part associated with the contrast is

scaled by a factor of 2.0 and the loss part associated with

the distance is scaled by a factor of 1.0. This is equivalent

to setting λ = 0.33.

EVSegNet, EVFlowNet, and EVSegFlowNet were trained

for 50 epochs with a learning rate of 10−4 and a batch size

of 256. EVHomographyNet was trained for 200 epochs with

learning rate 10−4 and a batch size of 256.

For all the networks, the event frames E were normalized

by dividing each pixel value by 255 and then subtracting by

2

Figure S2. Network Architectures used in the proposed pipeline. Left:
EVDeblurNet, Middle: EVHomographyNet and Right: EVSegFlowNet.
Green blocks show the convolutional layer with batch normalization and
ReLU activation, cyan blocks show deconvolutional layer with batch
normalization and ReLU activation and orange blocks show dropout layers.
The numbers inside convolutional and deconvolutional layers show kernel
size, number of filters and stride factor. The number inside dropout layer
shows the dropout fraction. N is 3 and 6 respectively for EVDeblurNet when
using losses D1/D2 and D3. N is 2 and 5 respectively for EVSegFlowNet
when using losses D1/D2 and D3.

0.5 and finally scaling by 2.0 to bound all values between

[−1, 1].
For networks using D3 loss, the values of α are output

by the networks last n channels. Here n denotes the number

of input channels per image (3 in our case of event frame).

N = 2n when using D3 loss.

S.VI. COMPRESSION ACHIEVED BY USING

EVSEGFLOWNET

Now, let’s analyze the complexity of EVSegFlowNet

as compared to a combination of separate segmentation

and flow networks we call EVSegNet and EVFlowNet

respectively. Let O denote the complexity measure as

the minimum number of neurons to obtain a satisfactory

generalization performance on a specific task. We also

assume that for smaller and shallow networks complexity

scales with number of neurons almost linearly. The

complexity for a combination of EVSegNet and EVFlowNet

is given by O(S)+O(F). Let the complexity of segmentation

and flow obtained by EVSegFlowNet be O(S̃), O(F̃)
respectively. A compression/speedup is achieved when

O(S̃) +O(F̃)

O(S) +O(F)
< 1. Now, because we are only estimating

flow for foreground pixels in EVSegFlowNet we have

O(F̃)

O(F)
≈

F

B
. Also, as we mentioned before we

get segmentation for free from EVSegFlowNet hence

O(S̃) ≈ 0 ≪ O(S). This also implies that we

achieved good compression/speedup by our formulation as

O(S̃) +O(F̃)

O(S) +O(F)
≪ 1.

S.VII. MOVING OBJECT DATASET (MOD)

Extensive and growing research on visual (inertial)

odometry or SLAM have lead to the development of a

large number of datasets. Recent adaption of deep learning

to solve these aforementioned problems have fostered the

development of large scale datasets (large amount of

data). However, most of these datasets are built with the

fundamental assumption of static scenes in mind and as a

manifestation of which moving or dynamic objects are often

not included in these datasets [9]–[11].

To this end, we propose to use synthetic scenes for

generating “unlimited” amount of training data with one or

more moving objects in the scene. We accomplish this by

adapting and proliferating the simulator presented in [10].

To incubate generalization to novel scenes and to utilize the

algorithm trained on simulation directly in the real world, we

create synthetic moving objects which vary significantly in

their texture, shape and trajectory. We also choose random

textures for the walls of the 3D room in which objects will

move about.

To generate data, we randomize wall textures, objects

and object/camera trajectories to obtain seven unique

configurations out of which one is exclusively used for

test of generalization on more complex structures. Each

configuration has a room with three objects moving as shown

in Fig. S3. Images are rendered at 1000 frames per second

at a resolution of 346 × 260 and a field of view of 90◦ for

each configuration. Using these images, events are generated

following the approach described in [10]. Later event frames

E are generated with three different integration times δt of

{1, 5, 10} ms. Details about the room, lighting and objects

are given next.

A. 3D room and moving objects

Each room is of size 10×10×5 m and has random textures

on all the walls. These random textures consist of different

3

Figure S3. Various Scene setups used for generating data. Red box indicates the scene used for generating out of dataset testing data to evaluate
generalization to novel scenes.

Figure S4. Moving objects used in our simulation environment. Left to right: ball, cereal box, tower, cone, car, drone, kunai, wine bottle and airplane.
Notice the variation in texture, color and shape. Note that the objects are not presented to scale for visual clarity.

Figure S5. Random textures used in our simulation environment

patterns, colors and shapes. These textures mimic those

which occur in real-world indoor and outdoor environments

such as skyscrapers, flowers, landscape, bricks, wood, stone

and carpet. Each room contains seven light sources inside it

for uniform illumination.

The camera is moved inside the 3D room on trajectories

such that almost all possible combinations of rotation and

translation are obtained. This is aimed at replicating the

movement which could be encountered on a real quadrotor.

We have three Independently Moving Objects (IMOs) in

each room. Each object is unique in color, shape, texture and

size. The objects are chosen to range from simple shapes and

textures to complex ones. The objects chosen are ball, cereal

box, tower, cone, car, drone, kunai, wine bottle and airplane.

The trajectories of the objects are chosen such that many

different combinations of relative pose between the camera

and the objects are encountered. Also, the objects are moving

ten times faster than the camera simulating objects being

thrown at a hovering or a slow moving (drifting) quadrotor.

The wall textures and moving objects are shown in Figs. S4

and S5 respectively.

B. Dataset for EVDeblurNet

To learn a simple deblur function, we obtaian data from

a down facing camera looking at a planar texture and such

that no moving objects appear in the frame. The textures

for the floor are chosen to replicate the common floor

patterns such as wooden flooring, stone, kid’s play carpet,

and tiles. A total of 15K event frames corresponding to five

different textures and integration times δt of {1, 5, 10} ms

are obtained. Random crops of 128 × 128 are used to train

the network.

C. Dataset for EVSegNet, EVFlowNet and EVSegFlowNet

In this dataset, the camera follows the same trajectory

given in Section S.VII.B to capture the moving objects in

the 3D environment. The camera is moving approximately

at 0.005 m per frame and moving objects are ranging from

0.05 to 0.06 m per frame. There are some instances where

moving objects collide with the camera. We specifically

included these scenarios in the dataset so that the learning

approaches could learn utilizing both small and large changes

in object appearances between consecutive event frames.

Average of two objects per frame is captured from the camera

(minimum of 0 objects to maximum of 3 objects). Using

the six scenarios, 70K event frames are obtained (including

data from integration times of {1, 5, 10} ms). Event frames

from two random integration times per scenario are chosen

for training. We obtain 60K images for training and 10K

images for testing (we only use 1 ms data not used for

training for testing due to mask alignment errors at higher

integration times). During training, we use frame skips of

4

Table SI

QUANTITATIVE EVALUATION OF DIFFERENT METHODS FOR HOMOGRAPHY ESTIMATION.

Method (Loss)
RMSEi in px. RMSEo in px.

γ = ±[0, 5] γ = ±[6, 10] γ = ±[11, 15] γ = ±[16, 20] γ = ±[21, 25] γ = ±[0, 5] γ = ±[6, 10] γ = ±[11, 15] γ = ±[16, 20] γ = ±[21, 25]

Identity 3.92 ± 0.83 11.40 ± 0.70 18.43 ± 0.70 25.50 ± 0.70 32.55 ± 0.71 3.92 ± 0.84 11.40 ± 0.70 18.44 ± 0.71 25.49 ± 0.70 32.55 ± 0.71
S 3.23 ± 1.13 3.90 ± 1.34 5.31 ± 2.05 9.63 ± 4.57 17.65 ± 7.00 4.15 ± 1.78 5.05 ± 2.19 6.99 ± 3.11 11.21 ± 4.84 18.37 ± 6.61
US∗ (D1) 2.97 ± 1.22 3.84 ± 1.61 5.99 ± 2.78 11.64 ± 5.69 20.36 ± 7.68 3.92 ± 1.53 5.31 ± 2.43 8.14 ± 3.86 13.63 ± 5.87 21.22 ± 7.35
US∗ (D2) 2.48 ± 0.93 3.53 ± 1.43 5.89 ± 2.70 11.74 ± 5.69 20.51 ± 0.70 3.19 ± 1.26 4.86 ± 2.31 7.92 ± 3.73 13.47 ± 5.71 21.22 ± 7.08
DB + S 2.73 ± 1.01 3.16 ± 1.23 4.00 ± 1.79 6.50 ± 3.54 12.22 ± 6.58 3.69 ± 1.51 4.49 ± 2.10 5.91 ± 3.16 9.04 ± 4.90 14.60 ± 6.95

DB + US (D1) 2.19 ± 0.88 3.04 ± 1.57 4.99 ± 2.75 10.16 ± 5.54 18.62 ± 7.85 3.08 ± 1.37 4.63 ± 2.68 7.57 ± 4.30 13.16 ± 6.25 21.08 ± 7.49
DB + US (D2) 2.41 ± 1.06 3.30 ± 1.77 5.36 ± 3.02 10.39 ± 5.78 18.77 ± 8.07 3.35 ± 1.76 5.05 ± 3.03 8.11 ± 4.65 13.46 ± 6.48 21.08 ± 7.81

SI 1.67 ± 0.69 2.16 ± 0.92 2.92 ± 1.29 5.13 ± 2.83 11.45 ± 6.08 3.02 ± 1.61 4.42 ± 2.15 6.34 ± 2.84 9.38 ± 3.86 14.70 ± 5.17

USI (D1) 1.50 ± 0.59 2.16 ± 0.98 3.31 ± 1.66 6.57 ± 3.85 13.45 ± 6.93 2.11 ± 0.90 3.26 ± 1.46 5.34 ± 2.22 9.20 ± 3.67 15.05 ± 5.27

USI (D2) 1.49 ± 0.68 2.14 ± 1.03 3.40 ± 1.69 6.91 ± 3.97 14.19 ± 6.96 2.03 ± 0.92 3.31 ± 1.53 3.44 ± 2.34 9.32 ± 3.60 15.53 ± 5.34
∗ Trained for 100 epochs on supervised and then fine-tuned on unsupervised for 100 more epochs. γ denotes the perturbation range in px. for evaluation.

Figure S6. Different textured carpets laid on the ground during real
experiments to aid robust homography estimation from EVHomographyNet.

Table SII

COMPARSION OF HOMOGRAPHY NETWORK PERFORMANCE FOR EVENT

AND RGB FRAMES.

Input Run Time FLOPs Num. Params
in ms in M in M

Event Frame E 2.5 250 1.3
RGB Frame I 3.7 582 9.7

Figure S7. Network Architectures used in Table SII. Left: Homography
network used on event frames, Right: Homography network used on image
frames. Green blocks show the convolutional layer with batch normalization
and ReLU activation, cyan blocks show deconvolutional layer with batch
normalization and ReLU activation and orange blocks show dropout layers.
The numbers inside convolutional and deconvolutional layers show kernel
size, number of filters and stride factor. Notice the similarity in architectures
but difference in number of parameters.

one to four to faciliate variable baseline learning of flow

and segmentation. We call this test set as “in dataset” testing

because the test set though differs significantly in appearance

due to integration times still contains the same objects and

5

Figure S8. Objects used in experiments. Left to right: Airplane, car,
spherical ball and Bebop 2.

Figure S9. Vicon estimates for the trajectories of the objects and quadrotor.
(a) Perspective and top view for single unknown object case, (b) perspective
and top view for multiple object case. Object and quadrotor silhouettes are
shown to scale. Time progression is shown from red to yellow for objects
and blue to green for the quadrotor.

textures as the training set.

For measuring the amount of generalization of our

approach, we created a more complex and completely

different scenario for testing. This scenario contains

immovable 3D objects such as table, chair and a box to 3D

room with different textures (different per wall and different

from training set textures). The textures on the wall are more

realistic depicting a real indoor environment (Refer to the

scenario in the red box in Fig. S3). We particularly designed

such a scene to highlight that our network is mostly learning

from contours and motion information of the objects which is

agnostic to scene appearance. Here, we use integration times

δt of {1, 2} ms. We obtain 6K frames for “out of dataset”

testing.

D. Dataset for EVHomographyNet

To train EVHomographyNet, we use the same training set

from EVSegFlowNet with the major difference being that

here only one frame is used at a time. A random patch of

size 128× 128 is obtained from the 346× 260 frame. Then

a random perturbation between ±γ is applied to each of the

corners. This is used to obtain the homography warped event

frame. This approach is exactly the same as given in [3], [4].

For testing “in dataset” the center crops of all the images used

for training are chosen and random perturbations of different

±γ are applied. (Refer to Table SI).

For “out of dataset” testing a similar treatment is given to

the out of dataset used for evaluating EVSegFlowNet.

S.VIII. UNKNOWN SHAPED OBJECTS WITH BOUND ON

SIZE

Now, consider the case of evading an IMO of an arbitrary

shape S . As the projection of S on the image plane can be

either convex or non-convex, we first obtain the convex hull

of S denoted by H. Clearly, an evasive maneuver performed

using H guarantees evasion from the object when the rotation

of the IMO with respect to the camera is small.

Next, we find the principal axes of the projection of H on

the image plane. Because we have a bound on size, i.e., we

have a bound on the length of the maximum principle axis

in 3D, we can evade this object assuming it to be a sphere

of this diameter. Note that this method is more conservative

than the previous approach constraining the sensing range

and latency based on how close the bound is to actual object

size.

S.IX. PURSUIT: A REVERSAL OF EVASION?

The generality of our perception stack for navigation is

demonstrated by showing that pursuit can be accomplished

using a simple reversal of the control policy for the cases

presented in Sec. III.A. and III.B. of the main paper.

Additionally, for an IMO which is self-propelled like a

quadrotor, one can perform both pursuit and evade tasks by

assuming a linear motion model. Note that here no concept

of the agent’s intent is used but it can be introduced with an

additional neural network for predicting the motion model

of the agent (intent) [12]. We leave this for future work.

S.X. EXPERIMENTAL SETUP

The experiments were conducted in the Autonomy

Robotics and Cognition (ARC) lab’s indoor flying space at

the University of Maryland, College Park. The total flying

volume is about 6× 5.5× 3.5 m3. A Vicon motion capture

system with 8 vantage V8 cameras are used to obtain ground

truth at 100 Hz. The objects were either thrown or flown

(in-case of the bebop experiment) at the quadrotor during

hover or slow flight (simulating slow drift) at speeds ranging

from 4.4 ms−1 to 6.8 ms−1 from a distance ranging from

3.6 m to 5.2 m. To enable robust homography estimation,

we laid down carpets of different textures on the ground to

obtain strong contours in event frames (Refer to Fig. S6).

We used four different objects in our experiments, (a) a

spherical ball of diameter 140 mm, (b) a car of size 185 ×
95×45 mm (here a bound of 240 mm is used), (c) an airplane

of size 270 × 250 × 160 mm (size information not used in

experiments), (d) a Bebop 2 of size 330 × 380 × 200 mm.

6

Also, we used an integration time δt of 30 ms for all our

experiments.

The proposed framework was tested on a modified Intel®

Aero Ready to Fly Drone. The Aero platform was selected

for its rugged carbon fiber chassis and integrated flight

controller running the PX4 flight stack.

For our experiments, we mounted a front facing DAVIS

240C event camera mated to a 3.3 - 10.5 mm f /1.4 lens set

at 3.3 mm giving us a diagonal Field Of View (FOV) of

84.5◦, a downfacing DAVIS 240B event camera mated to a

4.5 mm f /1.4 lens giving us a diagonal FOV of 67.4◦ and

a down facing PX4Flow sensor for altitude measurements.

Additionally, we obtain inertial measurments from the IMU

on the flight controller. We also mounted an NVIDIA Jetson

TX2 GPU to run all the perception and control algorithms

on-board (Fig. S1). All the communications happen over

serial port or USB. The takeoff weight of the flight setup

including the battery is 1400 g with dimensions being

330 × 290 × 230 mm. This gives us a maximum thrust to

weight ratio of 1.35.

All the neural networks were prototyped on a PC running

Ubuntu 16.04 with and Intel® Core i7 6850K 3.6GHz CPU,

an NVIDIA Titan-Xp GPU and 64GB of RAM in Python

2.7 using TensorFlow 1.12. The final code runs on-board the

NVIDIA Jetson TX2 running Linux for Tegra® (L4T) 28.1.

All the drivers for creating event frames and sensor fusion

are written in C++ for efficiency and all the neural network

codes run on the TX2’s GPU in Python 2.7. We obtain a

flight time of about 3 mins.

To enable robust homography estimation, we laid down

carpets of different textures on the ground to obtain strong

contours in event frames (Refer to Fig. S6).

S.XI. COMPARISON OF HOMOGRAPHY ESTIMATION

USING EVENT AND RGB FRAMES

With 1.3 Million parameters, homography estimation

using classical RGB images would not train due to the

dearth of number of parameters. The minimum number

of parameters required to get reasonable results was 9.7

Million for RGB images and the results are given in Tables

SI and SII. These networks were trained on RGB images

corresponding to that used for event frame homography

networks.

Table SI represents the error comparison of different

methods for homography estimation. The last three rows with

superscript I (which were omitted from the original draft due

to lack of space) have been included here and they represent

the methods trained on RGB images (eighth row denoted by

SI) of same resolution as the event frames (fifth row denoted

by DB+S). Note that the architecture for the network is the

same but the number of parameters is higher (more details

about this are given in Table SII and architecture comparisons

are shown in Fig. S7). The homography network with the

same number of parameters as that used for event frames

does not train on RGB frames due to dearth of parameters.

Notice that the preformance of best networks for both RGB

images and event frames are almost similar despite the dearth

in number of parameters in event frame based homography

networks, this is because the contour information is more

important for homography estimation when the motion is

large (large γ). However, for small perturbations (low γ),

the RGB frame based homography estimation works better

due to the dense nature of RGB data which is required for

fine alignment. Also, note that the images used for training

and testing did not have any motion blur, we expect that in

real-world motion blur would degrade the performance of

the networks trained on RGB images unless a network to

debur RGB frames is used.

REFERENCES

[1] A. Mitrokhin, C. Fermüller, C. Parameshwara, and Y. Aloimonos.
Event-based moving object detection and tracking. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS),
pages 1–9, Oct 2018.

[2] Ana I Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso
Garcı́a, and Davide Scaramuzza. Event-based vision meets deep
learning on steering prediction for self-driving cars. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5419–5427, 2018.

[3] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Deep
image homography estimation. arXiv preprint arXiv:1606.03798,
2016.

[4] Ty Nguyen, Steven W Chen, Shreyas S Shivakumar, Camillo Jose
Taylor, and Vijay Kumar. Unsupervised deep homography: A fast and
robust homography estimation model. IEEE Robotics and Automation

Letters, 3(3):2346–2353, 2018.
[5] Guillermo Gallego, Henri Rebecq, and Davide Scaramuzza. A unifying

contrast maximization framework for event cameras, with applications
to motion, depth, and optical flow estimation. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June 2018.
[6] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions

for image restoration with neural networks. IEEE Transactions on

computational imaging, 3(1):47–57, 2016.
[7] Deqing Sun, Stefan Roth, and Michael J Black. A quantitative analysis

of current practices in optical flow estimation and the principles behind
them. International Journal of Computer Vision, 106(2):115–137,
2014.

[8] Jonathan T. Barron. A general and adaptive robust loss function.
CVPR, 2019.

[9] Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark, Dimos
Tzoumanikas, Qing Ye, Yuzhong Huang, Rui Tang, and Stefan
Leutenegger. Interiornet: Mega-scale multi-sensor photo-realistic
indoor scenes dataset. In British Machine Vision Conference (BMVC),
2018.

[10] Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza. ESIM: an open
event camera simulator. Conf. on Robotics Learning (CoRL), October
2018.

[11] A. Z. Zhu, D. Thakur, T. Özaslan, B. Pfrommer, V. Kumar, and
K. Daniilidis. The multivehicle stereo event camera dataset: An event
camera dataset for 3d perception. IEEE Robotics and Automation

Letters, 3(3):2032–2039, July 2018.
[12] Riccardo Spica, Davide Falanga, Eric Cristofalo, Eduardo Montijano,

Davide Scaramuzza, and Mac Schwager. A real-time game theoretic
planner for autonomous two-player drone racing. arXiv preprint

arXiv:1801.02302, 2018.

7

