
EVE, an Object Oriented SIMD Library

Joel Falcou and Jocelyn Sérot

LASMEA, UMR 6602 CNRS/Univ. Blaise Pascal, Clermont-Ferrand, France,
{falcou,jserot}@lasmea.univ-bpclermont.fr

Abstract. This paper describes eve (Expressive Velocity Engine), an
object oriented C++ library designed to ease the process of writing effi-
cient numerical applications using AltiVec, the SIMD extension designed
by Apple, Motorola and IBM for PowerPC processors. Compared to the
Altivec original C API, eve, offers a significant improvement in terms of
expressivity. By relying on template metaprogramming techniques, this
is not obtained at the expense of efficiency.

1 Introduction

AltiVec [4] is an extension designed to enhance PowerPC1 processor performance
on applications handling large amounts of data. The AltiVec architecture is
based on a SIMD processing unit integrated with the PowerPC architecture. It
introduces a new set of 128 bit wide registers distinct from the existing general
purpose or floating-point registers. These registers are accessible through 160
new “vector” instructions that can be freely mixed with other instructions (there
are no restriction on how vector instructions can be intermixed with branch,
integer or floating-point instructions with no context switching nor overhead for
doing so). Altivec handles data as 128 bit vectors that can contain sixteen 8
bit integers, eight 16 bit integers, four 32 bit integers or four 32 bit floating
points values. For example, any vector operation performed on a vector char
is in fact performed on sixteen char simultaneously and is theoretically running
sixteen times faster as the scalar equivalent operation. AltiVec vector functions
cover a large spectrum, extending from simple arithmetic functions (additions,
subtractions) to boolean evaluation or lookup table solving.

Altivec is natively programmed by means of a C API [2]. Programming at
this level can offer significant speedups (from 4 to 12 for typical signal process-
ing algorithms) but is a rather tedious and error-prone task, because this C
API is really “assembly in disguise”. The application-level vectors (arrays, in
variable number and with variable sizes) must be explicitly mapped onto the
Altivec vectors (fixed number, fixed size) and the programmer must deal with
several low-level details such as vector padding and alignment. To address this
programmability issue, we have investigated the possibility to provide a higher
level API, in the form of a C++ class library. This class library should encap-
sulate all the low-level details related to the manipulation of Altivec vectors
1 PPC 74xx (G4) and PPC 970 (G5).

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 314–321, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

EVE, an Object Oriented SIMD Library 315

and provide a fully abstract Array/Vector object and the associated functions
as overloaded operators – allowing for example code to be written in the style
of Fig. 1.

Vector<float> a(1000),b(1000),c(1000),r(1000);
r = a * b + c;

Fig. 1. Vector processing with a high-level API

It is well known, however, that the code generated by such “naive” class
libraries is often very inefficient [7], due to the unwanted copies caused by tem-
poraries2. This has led, at least in the domain of C++ scientific computing,
to the development of Active Libraries [13,12,8,9], which both provide domain-
specific abstractions and dedicated code optimization mechanisms. This paper
describes how this approach can be applied to the specific problem of efficient
Altivec code generation from a high-level C++ API. It is organized as follows.
Sect. 2 explains why generating efficient code for vector expressions is not triv-
ial and introduces the concept of template-based meta-programming. Sect. 3
explains how this can used to generate optimized Altivec code. Sect. 4 rapidly
presents the API of the library we built upon these principles. Performance re-
sults are presented in Sect. 5. Sect. 6 is a brief survey of related work and Sect. 7
concludes.

2 Template Based Meta-programming

The problem of generating efficient code for vector expressions can be understood
– in essence – starting with the code sample given in Fig. 1. Ideally, this code
should be inlined as:

for (i=0; i<1000; i++) r[i] = a[i] * b[i] + c[i];

In practice, due to the way overloaded operators are handled in C++, it is
developed as:

Vector<float> __t1(1000), __t2(1000);
for (int i=0; i < 1000; ++i) __t1[i] = a[i] * b[i];
for (i=0; i < 1000; ++i) __t2[i] = __t1[i] * c[i];
for (i=0; i < 1000; ++i) r[i] = __t2[i];

The allocation of temporary vectors and the redundant loops result in poor ef-
ficiency. For more complex expressions, the performance penalty can easily reach
one order of magnitude. In this case, it is clear that expressiveness is obtained
at a prohibitive cost. This problem can be overcome by using an advanced C++
technique known as expression templates. The basic idea of expression templates
2 In our case, the observed speedup for code like the one given in Fig. 1 went down

from 3.9 – when coded with the native C API – to less than 0.8 – with a “naive”
Vector class.

316 J. Falcou and J. Sérot

is to create parse trees of vector expressions at compile time and to use these
parse trees to generate customized loops. This is actually done in two steps3.
In the first step, the parse trees – represented as C++ types – are constructed
using recursive template instantiations and overloaded versions of the vector op-
erators (+, *, etc.). In the second step, these parse trees are “evaluated” using
overloaded versions of the assignment (=) and indexing ([]) operators to com-
pute the left-hand side vector in a single pass, with no temporary. Both steps
rely on the definition of two classes:

– an Array class, for representing application-level vectors (arrays); this class
has a member data_, where the array elements are stored and an operator
[] for accessing these elements:

float Array::operator[](int index) { return data_[index]; }

– an Xpr class, for representing (encoding) vector expressions :

template<class LEFT,class OP,class RIGHT> class Xpr {};

Consider for example, the statement r=a*b+c given in the code sample above.
Its right-hand side expression (a*b+c, where a, b and c have type Array) will
be encoded with the following C++ type:

Xpr<Xpr<Array,mul,Array>,add,Array>

This type will be automatically built from the expression syntax a*b+c using
overloaded versions of the + and * operators:

template<class T> Xpr<T,add,Array> operator+(T, Array)
{ return Xpr<T,add,Array>(); }

template<class T> Xpr<T,mul,Array> operator*(T, Array)
{ return Xpr<T,mul,Array>(); }

The “evaluation” (at compile time) of the encoded vector expression is carried
out by an overloaded version of the assignment operator (=):

template<class T> Array& Array::operator=(const T& xpr) {
for(int i=0;i<size;i++) data_[i] = xpr[i];
return *this;

}

For this, the Xpr class provides an operator[] method, so that each element
of the result vector (data_[i]) gets the value xpr[i]:

template<class LEFT,class OP,class RIGHT>
float X<LEFT,OP,RIGHT>::operator[](int index)
{ return OP::eval(left_[index],right_[index]); }

3 The presentation given here is deliberately simplified, due to space limitations. More
details can be found, for example, in Veldhuizen’s papers [5,6,7].

EVE, an Object Oriented SIMD Library 317

where left_ and _right are the members storing the left and right sub-
expressions of an Xpr object and eval the static method of the C++ functor
associated with the vector operation OP. Such a functor will be defined for each
possible operation. For example, the add and mul functors associated with the
+ and * vector operators are defined as:

class add { static float eval(float x,float y) { return x+y; } };
class mul { static float eval(float x,float y) { return x*y; } };

Using the mechanism described above, a standard C++ compiler can reduce
the statement r=a*b+c to the following “optimal” code:

for (i=0; i<1000; ++i) r[i] = a[i]*b[i]+c[i];

3 Application to the Generation of Efficient AltiVec Code

The template-based meta-programming technique described in the previous sec-
tion can readily be adapted to support the generation of efficient Altivec code.
For this:

– the Array class must provide a load method returning an Altivec vector
instead of a scalar,

– the add (resp. mul, etc.) functor must call the native vec add (resp. vec mul,
etc.) instruction,

– the assignment operator must use the native vec st instruction to store the
result:

vector float Array::load(int index) { return vec_ld(data_,index*16); }

class add {eval(vector float x,vector float y) { return vec_add(x,y); }};

template<class T>
Array& Array::operator=(T xpr) {
for(int i=0;i<size/4;i++) vec_st(xpr.load(i),0,data);
return *this;

}

With this approach, the assembly code resulting from the compilation of the
previous example (r=a*b+c) contains three vector load operations, one vector
addition, one vector multiplication and one vector store, which is clearly optimal.

4 The EVE Library

Using the code generation technique described in the previous section, we have
produced a high-level array manipulation library aimed at scientific computing
and taking advantage of the SIMD acceleration offered by the Altivec extension
on PowerPC processors. This library, called eve (for Expressive Velocity Engine)
basically provides two classes, array and matrix – for 1D and 2D arrays –, and a
rich set of operators and functions to manipulate them. This set can be roughly
divided in four families:

318 J. Falcou and J. Sérot

1. Arithmetic and boolean operators, which are the direct vector extension
of their C++ counterparts. For example:

array<char> a(64),b(64),c(64),d(64);
d = (a+b)/c; // d[i] = (a[i]+b[i])/c[i], for i=0...63

2. Boolean predicates. These functions can be used to manipulate boolean
vectors and use them as selection masks. For example:
array<char> a(64),b(64),c(64);
c = where(a<b, a, b); // c[i] = a[i]<b[i] ? a[i] : b[i], for i=0...63

3. Mathematical and STL functions. These functions work like their STL
or math.h counterparts. The only difference is that they take an array (or
matrix) as a whole argument instead of a couple of iterators. Apart from
this difference, eve functions and operators are very similar to their STL
counterparts (the interface to the eve array class is actually very similar to
the one offered by the STL valarray class. This allows algorithms developed
with the STL to be ported (and accelerated) with a minimum effort on a
PowerPC platform with eve. Example:
array<float> a(64),b(64);
b = tan(a); // b[i] = tan(a[i]) for each i=0..63
float r = inner_product(a, b); // r = a[0]*b[0]+...+a[63]*b[63]

4. Signal processing functions. These functions allow the direct expression
(without explicit decomposition into sums and products) of 1D and 2D FIR
filters. For example:
array<float> a(64),b(64);
filter< 3,1,mask<1,2,1> > gaussian;
res = gaussian(image);

5 Performance

Two kinds of performance tests have been performed: basic tests, involving only
one vector operation and more complex tests, in which several vector operations
are composed into more complex expressions. All tests involved vectors of differ-
ent types (8 bit integers, 16 bit integers, 32 bit integers and 32 bit floats) but of
the same total length (16 Kbytes) in order to reduce the impact of cache effects
on the observed performances4. They have been conducted on a 1.2GHz Pow-
erPC G4 with gcc 3.3.1 and the following compilation switches: -faltivec
-ftemplate-deph-128 -O3. A selection of performance results is given in Ta-
ble 1. For each test, four numbers are given: the maximum theoretical speedup5

(TM), the measured speedup for a hand-coded version of the test using the na-
tive C API (NC), the measured speedup with a “naive” vector library – which
does not use the expression template mechanism described in Sect. 2 (NV), and
the measured speedup with the eve library.
4 I.e. the vector size (in elements) was 16K for 8 bit integers, 8K for 16 bit integers

and 4K for 32 bits integers or floats.
5 This depends on the type of the vector elements : 16 for 8 bit integers, 8 for 16 bit

integers and 4 for 32 bit integers and floats.

EVE, an Object Oriented SIMD Library 319

Table 1. Selected performance results

Test Vector type TM NC NV EVE
1. v3=v1+v2 8 bit integer 16 15.7 8.0 15.4
2. v2=tan(v1) 32 bit float 4 3.6 2.0 3.5
3. v3=v1/v2 32 bit float 4 4.8 2.1 4.6
4. v3=v1/v2 16 bit integer 8(4) 3.0 1.0 3.0
5. v3=inner_prod(v1,v2) 8 bit integer 8 7.8 4.5 7.2
6. v3=inner_prod(v1,v2) 32 bit float 4 14.1 4.8 13.8
7. 3x1 FIR 8 bit integer 8 7.9 0.1 7.8
8. 3x1 FIR 32 bit float 4 3.7 0.1 3.7
9. v5=sqrt(tan(v1+v2)/cos(v3*v4)) 32 bit float 4 3.9 0.04 3.9
10. Image processing algorithm 16 bit integer 8 6.9 0.1 2.7

It can be observed that, for most of the tests, the speedup obtained with eve
is close to the one obtained with a hand-coded version of the algorithm using
the native C API. By contrast, the performances of the “naive” class library
are very disappointing (especially for tests 7-10). This clearly demonstrates the
effectiveness of the metaprogramming-based optimization.

Tests 1-3 correspond to basic operations, which are mapped directly to a
single AltiVec instruction. In this case, the measured speedup is very close to the
theoretical maximum. For test 3, it is even greater. This effect can be explained
by the fact that on G4 processors, and even for non-SIMD operations, the Altivec
FPU is already faster than the scalar FPU6. When added to the speedup offered
by the SIMD parallelism, this leads to super-linear speedups. The same effect
explains the result obtained for test 6. By contrast, test 4 exhibits a situation in
which the observed performances are significantly lower than expected. In this
case, this is due to the asymmetry of the Altivec instruction set, which does not
provide the basic operations for all types of vectors. In particular, it does not
include division on 16 bit integers. This operation must therefore be emulated
using vector float division. This involves several type casting operations and
practically reduces the maximum theoretical speedup from 8 to 4.

Tests 5-9 correspond to more complex operations, involving several AltiVec
instructions. Note that for tests 5 and 7, despite the fact that the operands are
vectors of 8 bit integers, the computations are actually carried out on vectors of
16 bit integers, in order to keep a reasonable precision. The theoretical maximum
speedup is therefore 8 instead of 16.

In order to show that eve can be used to solve realistic problems, while still
delivering significant speedups, we have used it to vectorize several complete
image processing algorithms. Test 10, for example, give the performances ob-
tained with an algorithm performing the detection of points of interest in grey
scale images using the Harris filter [1]. This algorithm involves several filtering
steps (on both directions of the image) and matrix computations. The measured
speedup, while being lower than the one obtained with the hand-coded version,

6 It has more pipeline stages and a shortest cycle time.

320 J. Falcou and J. Sérot

is still satisfactory if we take into account the large difference in code size and
complexity between the two versions (15 lines of C++ with eve, 80 lines of C
with the Altivec native API).

6 Related Work

Since its introduction, most of the development for the Altivec has been con-
ducted using the native C API and very few projects have proposed higher-level
alternatives to this design flow.

Apple proposes the VecLib [3] library, as a complement to the native C API.
This framework provides software equivalent of some missing functions and more
complex operations such as FFT or convolution. Compared to eve, the level of
expressiveness is lower (VecLib does not support the construction of complex
vector expressions by means of overloaded operators, in particular). Correla-
tively, no syntax directed optimization can be performed and performances drop
when a lot of function calls are sequenced in the same program.

The VAST code optimizer [10] – which offers automatic vectorization and
parallelization from source – has a specific back-end for generating Altivec code.
This tool automatically replaces loops in C/C++ programs with inline vector
extensions, and loops in Fortran programs with calls to newly-generated C func-
tions with inline vector extensions. These vector extensions allow VAST to access
the AltiVec unit at close to instruction level efficiency while remaining at the
source code level. VAST’s speedups are generally very close to those obtained
with hand-vectorized code. VAST is a commercial product and costs 3000$.

The Mac STL [11] C++ library is very similar, in goals and design princi-
ples, to eve. It provides a fast valarray class optimized for Altivec and relies
on template-based metaprogramming techniques for code optimization. The only
difference is that MacSTL only provides STL-compliant functions and operators
(it is viewed as a specific implementation of the STL for G4/G5 computers)
whereas eve offers additional domain-specific functions (for signal processing,
for example). Mac STL is available for a low-cost license.

7 Conclusion

We have shown how a classical technique – template-based metaprogramming –
can be applied to the design and implementation of an efficient high-level array
manipulation library aimed at scientific computing on PowerPC platforms. This
library offers a significant improvement in terms of expressivity over the native
C API traditionnaly used for taking advantage of the SIMD capabilities of this
processor. It allows developers to obtain significant speedups without having to
deal with low level implementation details. The eve API is largely compliant
with the STL standard and therefore provides a smooth transition path for appli-
cations written with other scientific computing libraries. A prototype version of
the library can be downloaded from the following URL: http://wwwlasmea.univ-
bpclermont.fr/Personnel/falcou/EVE/download.html. We are currently working

EVE, an Object Oriented SIMD Library 321

on improving the performances obtained with this prototype for complex, real-
istic applications. This involves, for instance, globally minimizing the number of
vector load and store operations, using more judiciously Altivec-specific cache
manipulation instructions or taking advantage of fused operations (e.g. multi-
ply/add). Finally, it can be noted that, although the current version of eve has
been designed for PowerPC processors with Altivec, it could be retargeted, with
a moderate effort, to Pentium 4 processors with MMX/SSE2 because the code
generator itself (using the expression template mechanism) can be made largely
independent of the SIMD instruction set.

References

1. C. Harris and M. Stephens. A combined corner and edge detector. In 4th Alvey
Vision Conference, 1988.

2. Apple. AltiVec Instructions References, Tutorials and Presentation.
http://developer.apple.com/hardware/ve.

3. Apple. The VecLib framework.
http://developer.apple.com/hardware/ve/vector_libraries.html

4. I. Ollman. AltiVec Velocity Engine Tutorial. http://www.simdtech.org/altivec.
March 2001.

5. T. Veldhuizen. Using C++ Template Meta-Programs. In C++ Report, vol. 7, p.
36-43,1995.

6. T. Veldhuizen. Expression Templates. In C++ Report, vol. 7, p. 26-31, 1995.
7. T. Veldhuizen. Techniques for Scientific C++.

http://osl.iu.edu/˜tveldhui/papers/techniques/
8. T. Veldhuizen. Arrays in Blitz++. In Dr Dobb’s Journal of Software Tools, p.

238-44, 1996.
9. The BOOST Library. http://www.boost.org/.

10. VAST. http://www.psrv.com/vast_altivec.html/.
11. G. Low. Mac STL. http://www.pixelglow.com/macstl/.
12. The POOMA Library. http://www.codesourcery.com/pooma/.
13. T. Veldhuizen and D. Gannon. Active Libraries: Rethinking the roles of compilers

and libraries Proc. of the SIAM Workshop on Object Oriented Methods for Inter-
operable Scientific and Engineering Computing SIAM Press, 1998

	Introduction
	Template Based Meta-programming
	Application to the Generation of Efficient AltiVec Code
	The EVE Library
	Performance
	Related Work
	Conclusion

