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ABSTRACT 
 

We study an extension of the standard rationing problem, consisting of the 
allocation of utility losses. We assume neither linearly transferable utilities nor risk 
averse agents. As a consequence, the utility possibility sets need not be convex or 
smooth. This problem is referred to as the generalised rationing problem. We 
introduce the notion of even allocations as a solution concept that extends the 
random arrival rule to this general scenario. Moreover, we show that, when the 
feasible set is convex, this solution can be characterised by a suitable 
reformulation of the axioms that define the Nash bargaining solution. 
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1 Introduction

A rationing problem describes a situation in which a given amount of a di-
visible good must be allocated among a group of agents, when there is not
enough to satisfy their demands. This problem is usually formalised as a
triple (N, t, x), where N is a finite set of agents, t is a positive real num-
ber that represents the amount of resources to be divided, and x = (xi)i∈N
is an n-vector in Rn+ that specifies the agents’ claims, with i∈N xi > t.
Bankruptcy problems and cost-sharing problems are the best known exam-
ples of these situations. In the bankruptcy problem there is a given amount
of commodity which is insufficient to cover the claims of all the agents. The
cost-sharing problem refers to the realization of a public project whose ben-
efits exceed the associated costs. This model can also be interpreted as a
particular tax problem in which t is the amount of taxes to be collected and
x corresponds to the agents’ gross income vector. A solution to a rationing
problem is a procedure, or rule, to allocate costs that meets some ethical
and operational criteria. Different rationing situations may recommend the
choice of different properties and therefore the use of different solutions.1

A characteristic feature of this model is that the only information avail-
able refers to the number of agents, their corresponding claims, and the
amount of the good to be distributed. No explicit reference is made to the
space of preferences or utilities, contrary to the standard social choice prob-
lems. This can be rationalised in terms of linear transferable utilities, as in
coalitional TU games. In that case one can interpret claims and outcomes
as utility values, and the available amount of the good as the aggregate util-
ity. A solution would thus correspond to a special social choice function,
that in some cases can be associated with explicit solution functions of TU
games (e.g. O’Neill [15], Young [21], Curiel, Maschler & Tijs [5], Aumann &
Maschler [1], Herrero, Maschler & Villar [9]). Dagan & Volij ([6]) also for-
mulate the bankruptcy problem as a bargaining problem with transferable
utilities.
This paper deals with the analysis of the rationing problem in a more

general context. More specifically we introduce the following extensions: (i)
utilities are not assumed to be linearly transferable; (ii) agents may or may
not be risk averse; and (iii) no smoothness assumption is required. Extension
(i) amounts to formulate the rationing problem in the theoretical framework
of axiomatic bargaining à la Nash ([14]). Namely, utility functions are as-
sumed to be cardinal and non-comparable, and the only information used to

1See e.g. Young ([22], Ch. 6), Moulin ([11] Ch. 6, [12], [13] Ch. 2), Herrero & Villar
([10]), and Thomson ([19]) for a discussion.
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solve the problem is given in utility terms. Extension (ii) implies that the
utility possibility set may be non-convex. Finally, extension (iii) says that
no assumption is made on the differentiability of the Pareto frontier.
We will use the term generalised rationing problem to refer to this col-

lective choice problem. Given are a finite set of n agents, a convex and
comprehensive feasible set of alternatives in Rn, and a claims point also in
Rn. The claims point is not feasible and Pareto dominates some feasible
Pareto optimal point. The interpretation is that the feasible set contains the
cardinal and non-comparable utility allocations from which a choice must
be made, while the claims point is a distinguished utility vector on which
the choice can be made to depend. The framework is fairly abstract and
admits a number of alternative interpretations. For example, c could be the
status quo utilities prior to the choice, or the agents’ aspiration levels, or the
benefits associated to the provision of a new public facility.
A solution on a given domain of generalised rationing problems is a map-

ping that selects a non-empty subset of feasible utility vectors for each prob-
lem in the domain (i.e. a social choice correspondence).2 We propose a
solution concept that associates to each problem the set of even allocations.
These allocations are the maximisers of a weighted utilitarian social welfare
function with the following characteristic: the weights are chosen so that
all agents’ weighted utilities at the solution point are equal. This implies
that at the solution point any marginal movement in favour of one agent
decreases his loss, in percentage terms, by exactly the amount by which the
loss of the other agents increases. This notion can be given two alternative
interpretations. One is an extension of the random arrival rule. The other
is an application of the principles of the Nash bargaining solution to this
context. Indeed, we show that, when the utility possibility set is convex, the
even allocation correspondence is the unique minimal (in the order of set in-
clusion) solution that satisfies (suitable generalisations of) affine invariance,
symmetry and contraction consistency.
Note that the generalised rationing problem is not a bargaining problem

because the agents are not sharing a surplus but a loss (measured from the
claims point); or, more formally, the point on which the choice depends is not
dominated by any feasible alternative. It is not a “bargaining problem with
claims”, as analyzed by Chun & Thomson ([3]) and Herrero ([8]), because
there is no disagreement point defined. Finally, it is not a classical rationing,

2While in the rationing literature one usually focusses on choice functions, choice cor-
respondences for bargaining problems were first introduced by Thomson ([18]). Social
choice correspondences have recently received some attention regarding the robustness of
the Gibbard-Satterthwaite theorem (see for instance Barberà, Dutta & Sen [2] and the
references provided there).
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bankruptcy or cost-sharing problem because we work in utility space and the
Pareto frontier will be typically nonlinear.

2 The model

We are interested in a social choice problem consisting of the allocation of
utility losses among a group of agents with non-transferable utilities. Let
N = {1, 2, ..., n} stand for a collection of agents. Each agent i ∈ N is
characterised by a pair (ui, ci), where ui is a von Neumann-Morgenstern
utility function, defined on some suitable (commodity) space, and ci is a
reference utility value. The reference vector c = (ci)i∈N can be interpreted
as an expression of rights, needs, demands, or aspirations which are deemed
to be relevant for the the decision on how to allocate the losses. This type of
problem can be summarised in a utility possibility set S ⊂ Rn, and a point
c ∈ Rn. The set S ⊂ Rn describes the collection of utility allocations which
are feasible, while the vector c ∈ Rn \S denotes the reference vector, with
c >> s for some s ∈ S.3 A choice must be made out of the feasible set of
utility allocations S depending on the distinguished reference utility vector
c. To fix ideas we can think of this situation as a case in which agents in N
have to share the cost of some collective project whose benefits are measured
by c.

2.1 Preliminary definitions

A generalised rationing problem (or a problem, for short) is a pair
(S, c), with S ⊂ Rn, c ∈ Rn \S. The set of admissible utility allocations,
denoted by A(S, c), is defined as follows:

A(S, c) = {s ∈ S / s ≤ c}
This set is made of those utility allocations in which agents obtain utilities
which are bounded above by the reference vector c. Moreover, we define the
(weak) Pareto frontier of the set of admissible allocations, as follows:

PA(S, c) = {s ∈ A(S, c) / s� >> s =⇒ s� /∈ A(S, c)}
One more element is to be defined. For a given problem (S, c) the point

wi(S, c) describes the maximum value of agent i’s utility when uj = cj for all
j 9= i. That is, wi(S, c) represents agent i’s worst admissible outcome. One

3Vector notation: s >> t means si > ti for all i. s > t means si ≥ ti for all i with
strict inequality for some i.
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can interpret the point w(S, c) = [w1(S, c), ..., wn(S, c)] as the dual of the
reference vector c = (c1, ..., cn).
We concentrate on a family Σ of problems that satisfies some elementary

restrictions. We assume c = 0 for all the problems in that family, for the
sake of simplicity in exposition (i.e. we take the origin of the utility space as
the reference vector). Note that there is no loss of generality in this choice
as long as the only equivalent utility representations that are possible in this
context are those of the form u�i = αiui, for some scalar αi > 0, i ∈ N.
Definition 1 The family Σ of generalised rationing problems consists
of all those problems (S,0) such that:
(i) S ⊂ Rn is closed and comprehensive.
(ii) 0 /∈ S.
(iii) For all i ∈ N, wi(S,0) > −∞.
Closedness of S is related to the continuity of utility functions with respect

to the underlying variables. Comprehensiveness means that if s ∈ S and
s� ∈ Rn is such that s� ≤ s, then s� ∈ S. It is related to the monotonicity
of the utility functions and implies that the relevant boundary of the utility
possibility set is downward sloping and thus coincides with the set of weakly
efficient utility allocations. Part (ii) of the definition stipulates that there
is a net loss to be allocated. Finally, part (iii) says that agents’ admissible
losses are bounded. From a geometrical viewpoint it implies that PA(S,0)
intersects all axes of Rn. Note that these properties ensure that PA(S,0) is
a non-empty compact subset of −Rn+.
Definition 2 A solution to a generalised rationing problem is a correspon-
dence φ : Σ→ Rn such that that ∅ 9= φ(S,0) ⊂ PA(S,0) for all (S,0) ∈ Σ.

Points in φ(S,0) represent sensible compromises in the allocation of utility
losses that is chosen in the Pareto frontier of the set of admissible allocations.
Note that the way in which this notion is defined implies that si ≤ ci = 0 for
all i ∈ N, whenever s ∈ φ(S,0). Also observe that the solution is defined as
a set-valued mapping rather than as a function.

Now we introduce two sub-families of the generalised rationing problem
that will play an auxiliary role in the ensuing discussion. They correspond
to hyperplane and convex problems, denoted by H and C , respectively,
which are defined as follows:

Definition 3 The family ΣH of hyperplane rationing problems consists
of all those problems (S,0) ∈ such that PA(S,0) is a subset of a hyper-
plane. The family ΣC of convex rationing problems consists of all those
problems (S,0) ∈ such that S is a convex set.
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Hyperplane rationing problems can be associated with problems in which
utilities are linerarly transferable (standard bankruptcy or cost-sharing prob-
lems). Convex rationing problems are those in which utilities are not linearly
transferable but agents are risk averse. Clearly, H ⊂ C ⊂ .

2.2 Even allocations for hyperplane and convex prob-
lems

Let (H,0) be a hyperplane problem. For each problem (H,0) ∈ H , all
i ∈ N, wi(H,0) ∈ R tells us the minimum value of agent i’s utility when
uj = 0 for all j 9= i.

Definition 4 An even allocation for a hyperplane problem (H,0) ∈ H

is a point

e(H,0) =
1

n
(w1(H,0), ...., wn(H,0))

An even allocation picks the feasible utility point which yields the ex-
pected utilities of the lottery assigning all agents equal probabilities of get-
ting their full claim ci = 0 and also equal probabilities of getting wi(H,0).
This is a well-known method of fair division with linear utilities (random
priority). In the more specific environment of estate division problems, in
which the utility possibility frontier has slope −1, this solution corresponds
to the equal loss solution. From a geometrical point of view, the even solu-
tion selects the utility distribution that corresponds to the centre of gravity
of the strong Pareto frontier. Note that this point is uniquely defined for
each problem in H .

Remark 1 If the hyperplane problem is not normalised by setting c = 0, an
even allocation is a utility distribution that gives to each agent:

ei(H,0) =
1

n
wi(H,0) +

n− 1
n

ci

Let now (S,0) ∈ C denote a convex problem, normalised to 0. We say
that a hyperplane rationing problem (H,0) is an even support of (S,0) at
s∗ ∈ PA(S,0), if PA(H) = T ∩ −Rn+, where T is a supporting hyperplane
to S at a point s∗ = e(H,0). We say, by extension, that s∗ is an even
allocation of the convex rationing problem (S,0).
The notion of even support allows us to extend the concept of even allo-

cation to situations where the agents are risk-averse and the feasible utility
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space does not have a linear frontier, and where as a consequence the lottery-
equivalent method of division yields Pareto-dominated outcomes. Note that
each problem (S,0) ∈ C may have a multiplicity of even allocations.
Let (S,0) be a convex problem and e(S,0) an even allocation. The

marginal rates of substution between agents at e(S,0) are identical to those
corresponding to the even allocation in an associated hyperplane rationing
problem. This means, taking n = 2 for simplicity, that any marginal move-
ment in favour of one agent decreases his loss, in percentage terms, by exactly
the amount by which the loss of the other agent increases. One can imagine
that the agents can appeal against the planner’s decision by using arguments
of the following type: ‘if you make the other agent pay a bit more it will
only cost little to him but it will improve my welfare a lot’. The property
just described invalidates such objections, at least ‘locally’. When the even
allocation is unique the objection holds globally. Note that, obviously, we
are expressing ourselves in terms of percentages, because utility comparisons
of any other type are forbidden.

3 Solving the generalised rationing problem

This section applies the former ideas to the family Σ of generalised rationing
problems in which the feasible set S is not assumed to be convex. This case
corresponds to von Neumann-Morgenstern agents whose risk attitudes are
not restricted. The key issue is, of course, finding a suitable extension of the
notion of even allocations that is applicable to this general context. We shall
discuss first the way of defining even allocations for generalised rationing
problems and then prove that even allocations so defined exist.

3.1 The approach

We now provide an alternative interpretation of the notion of even allocations
as solutions to the convex rationing problem, that will help us to solve the
general case. Even allocations in the family ΣC of problems can be viewed
as the maximisers of a weighted utilitarian social welfare function, with a
weighting system such that the social marginal worth of agent i is inversely
proportional to his utility level. This becomes apparent if we re-write the
notion of even allocation in the following terms:

Definition 5 Let (S,0) be a convex problem. A point s∗ ∈ PA(S,0) is an
even allocation if there exists a vector of weights p∗ ∈ Rn+, with n

i=1 p
∗
i = 1,

such that:
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(i) p∗s∗ ≥ p∗s for all s ∈ S.
(ii) p∗i s

∗
i = p

∗
js
∗
j for all i, j ∈ N.

Part (i) of the definition describes the tangency of the associated hyper-
plane problem. The hyperplane on which lies the Pareto frontier of (H,0)
has normal p∗. Therefore, p∗ is perpendicular to S at the boundary point
s∗ ∈ S. Vector p∗ can be interpreted as an endogenous social weighting sys-
tem and s∗ is a maximiser of a weighted utilitarian social welfare function
with endogenous weights. Part (ii) introduces an equity requirement that
tells us about the choice of these weights. It postulates that the coefficients
p∗i , p

∗
j associated with any two agents i, j ∈ N are inversely proportional to

their utilities. Hence, we give more weight in social welfare to those agents
with smaller utilities (which is reminiscent of Sen’s (1973) minimal equity
axiom).
Let (S,0) be a convex problem and s∗ an even allocation. Let (H,0) be

an even support of S at s∗ and let p∗ denote the corresponding weighting
system that satisfies (i) and (ii) above. Then, it follows that:

p∗i
p∗j
=
wj(H,0)

wi(H,0)
, ∀ i, j ∈ N

How can we define the notion of even support to a comprehensive, not
necessarily convex nor smooth sharing problem? Note that we may fail to
ensure the existence of allocations with the properties (i) and (ii) in the
definition above because now not all points in the boundary of S can be
supported by a hyperplane. Or, put in other words, for a given s� ∈ PA(S,0)
we cannot ensure the existence of a perpendicular vector p�, that is, a vector
such that p�s� ≥ p�s for all s ∈ S. We need a more general notion of tangent
plane or perpendicular vector. The Clarke normal cone provides such an
object, as briefly explained in the next subsection.

3.2 Pause: A pinch of cones

The Clarke normal cone is a mathematical concept that provides a suitable
extension of the notion of perpendicular vectors (or, equivalently, tangent
planes) that can be applied without reference to either smoothness or con-
vexity. In order to define this concept, let us introduce two preliminary
notions [the reader is referred to Clarke ([4], ch. 2) and Villar (2000, ch. 5)
for a detailed discussion of all these notions].
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For S ⊂ Rn, let φ : S → Rn be a set valued mapping, and let s� be a
point in S. The Limsup of φ at s� is given by:

Lim sup
s→s�

φ(s�) ≡ {p = lim pν / ∃ {sν} ⊂ S, {sν}→ s� and pν ∈ φ(sν) ∀ν}

In words: By Limsup of φ at s� we denote the set of all points which are
limits of sequences of points pν ∈ φ(sν), when sν → s�. Observe that when
φ is a closed correspondence Lim sup

y→y∗
φ(s�) = φ(s�), for each s� ∈ S. When

this is not so, the Limsup may be thought of as an operator which “closes
the graph” of φ.
A vector p ∈ Rn is perpendicular to a closed set S at s, if s is the point in

S at minimum distance of p, that is, if dS(p+ s) =|| p || (i.e. if the distance
between (p + s) and S is precisely the norm of p). Let S ⊂ Rn be closed,
and let s ∈ S. The cone of vectors which are perpendicular to S at s�,
denoted by ⊥S(s�), is given by:

⊥S(s�) = {p = λ(s− s�),λ ≥ 0, s ∈ Rn and dS(s) =|| s− s� ||}
When S is a closed convex set ⊥S(s�) is a non-degenerate convex cone for

each s� in the boundary of S. Moreover, ⊥S(s�) is precisely the set of vectors
p ∈ Rn for which ps� ≥ ps, for all s ∈ S.
When S is not a convex set there may be points s ∈ S for which no

perpendicular vector exists. A natural way to circumvent this problem is by
making use of the Limsup operator. The notion of Clarke cone at s� ∈ S
is now easy to understand: it consists of the convex hull of Lim sup

s→s�
⊥S (s).

Formally:

Definition 6 Let S be a closed subset of Rn and s� ∈ S. Then, the Clarke
Normal Cone NS(s�) to S at s� is given by

NS(s�) ≡ Co{Lim sup
s→s�

⊥S (s)}

By this definition the Clarke Normal Cone at a point s� is the convex cone
generated by the vectors perpendicular to S at s�, and the limits of vectors
which are perpendicular to S in a neighbourhood of s�.
The following properties are worth reminding:

• Claim: Let S be a nonempty, closed and comprehensive set in Rn.
Then: (i) NS(s) is a cone in Rn+ with vertex zero, ∀ s ∈ S. (ii) The
correspondence NS : S → Rn which associates NS(s) to each s ∈ S, is
closed. (iii) NS(s) = {0} if and only if s ∈ intS.
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The set of hyperplanes generated by vectors in NS(s) is also a cone, called
the tangent cone TS(s). That is, for each p “perpendicular” (in the sense of
Clarke) to S at the boundary point s, there exists a hyperplane T with
normal p which is “tangent” to S at the boundary point s.

3.3 Even allocations for generalised rationing prob-
lems

We can now easily adapt the notion of even allocation to this general context:

Definition 7 A point s∗ ∈ S is an even allocation for the generalised
rationing problem (S,0) ∈ if there exists a vector of weights p∗ ∈ Rn+−{0},
with n

i=1 p
∗
i = 1, such that:

(i) p∗ ∈ NS(s∗).
(ii) p∗i s

∗
i = p

∗
js
∗
j for all i, j ∈ N.

An even allocation for a problem (S,0) ∈ is thus a point that admits
an even support, in this more general sense.
The next result tells us about the existence of even allocations:

Proposition 1 Every generalised rationing problem (S,0) ∈ has an even
allocation.

Proof.
Let (S,0) be a problem in and let P denote unit simplex in Rn, that

is, P = {q ∈ Rn+ / n
i=1 qi = 1}. Recall that PA(S,0) is a closed compact

set that is made of the upper boundary of a comprehensive set. Under these
conditions PA(S,0) is homeomorphic to P [e.g. Villar ([20], Prop. 5.2)].
That is, there exists a continuous function h : PA(S,0)→ P, such that, for
each s ∈ PA(S,0), there exists a unique z ∈ P such that z = h(s), and for
each z ∈ P there exists a unique s ∈ PA(S,0) such that s = h−1(z), with
h−1 continuous.
Let NS denote the Clarke normal cone, and let NS denote the restriction

of this correspondence to the set PA(S,0). Note that NS is an upper hemi-
continuous correspondence with nonempty, closed and covex values, when S
is a closed comprehensive set, with {0} 9= NS(s) ⊂ Rn+. Now define a new
correspondence ϕ : P→ P as follows:

ϕ(z) = NS(h−1(z)) P

By construction, ϕ is an upper hemicontinuous correspondence with nonempty,
compact and convex values.
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Let γ : P× P→ P be defined as follows:

γ(p, z) =
{z}+ pih

−1
i (z)

ph−1(z)

n

i=1
− { 1

n
1} if ph−1(z) 9= 0

{z}+ P− { 1
n
1} otherwise

Here again γ is an upper hemicontinuous correspondence with nonempty,

compact and convex values, as the vector pih
−1
i (z)

ph−1(z)

n

i=1
is a continuous func-

tion of (p, z) whenever ph−1(z) 9= 0, and becomes the whole image set other-
wise.
Finally, construct a mapping β : P× P→ P× P as follows:

β(p, z) = ϕ(z)× γ(p, z)

By construction, this is an upper hemicontinuous correspondence with nonempty,
compact and convex values, that applies a nonempty convex set over it-
self. Therefore, Kakutani’s fixed point theorem ensures the existence of
(p∗, z∗) ∈ P× P, such that p∗ ∈ ϕ(z∗), z∗ ∈ γ(p∗, z∗). The first relation es-
tablishes that p∗ is a normal vector to S at s∗ = h−1(z∗). Therefore, p∗ >> 0
and it follows from the second relation that:

p∗ih
−1
i (z

∗)
p∗h−1(z∗)

=
p∗i s

∗
i

p∗s∗
=
1

n
, for all i ∈ N

This in turn amount to saying that p∗i s
∗
i =

1
n
p∗s∗ for all i, which shows

that s∗ is an even allocation.

4 Even allocations on ΣC and the Nash solu-
tion

Even allocations constitute a solution to the generalised rationing problem
that satisfies some appealing ethical properties and are applicable to a large
family of problems. We shall now argue that, when the utility possibility set is
convex, even allocations are characterised by the same principles underlying
the Nash barganing solution. First we show that there is no single-valued
solution to the convex rationing problem that satisfies the Nash’s axioms,
nor there exists a multi-valued solution for a certain standard extension of
Nash’s Independence of Irrelevant Alternatives. Then we shall prove that
the solution φ : ΣC → Rn that associates to each problem the set of even
allocations is the unique minimal (in the order of set inclusion) solution that
satisfies a suitable extension of those axioms.
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4.1 Impossibility results

We now introduce those axioms that are adaptations of standard properties
in the bargaining framework. We use the following notation. A positive
transformation is a function τ : Rn → Rn such that there exist numbers
αi > 0, i = 1, 2, ..., n, with τ i(x) = αixi. Given X ⊂ Rn and a positive
transformation τ , denote τ(X) = {y ∈ Rn / y = τ(x) for some x ∈ X}.
Given a generalised rationing problem (S,0) and a transformation τ , denote
τ(S,0) = [τ(S),0].
The first axiom postulates that solutions must be independent of posi-

tive transformations. This translates the underlying assumption of cardinal
non-comparable utility functions, as in the original bargaining problem for-
mulated by Nash. Formally:

Axiom 1 (Positive Invariance) For all positive transformations τ : φ(τ (S) ,0) =
τ (φ(S,0)).

The next axiom introduces an equity restriction. It states that if agents
cannot be distinguished in a problem, they cannot be distinguished in a
solution. To simplify notation let 1 denote the unit vector in Rn, that is,
1 = (1, 1, ..., 1).

Axiom 2 (Symmetry) For all (S,0) ∈ Σ, if S is symmetric with respect
the λ1 line, then {λ�1} ∈ φ(S,0) for some scalar λ�.

Our final axioms are alternative standard extensions of Nash’s “indepen-
dence of irrelevant alternatives” to the multi-valued solution case.

Axiom 3 (Contraction Consistency) For all (S,0), (T,0) ∈ Σ with S ⊂
T and φ(T,0) ∩ S 9= ∅ : φ(T,0) ∩ S ⊂ φ(S,0).

Axiom 4 (Strong Contraction Consistency) For all (S,0), (T,0) ∈ Σ
with S ⊂ T and φ(T,0) ∩ S 9= ∅ : φ(T,0) ∩ S = φ(S,0).

These properties can be interpreted as follows: Take a given problem
and suppose that the utility possibility set is reduced, without the reference
vector c = 0 being altered. Suppose furthermore that a subset of the original
solution is still part of the reduced set. Then, that subset of the original
solution must be the solution in the reduced problem (strong contraction
consistency), or that subset of the original solution must be part of the
solution in the reduced problem (contraction consistency).
For single-valued mappings these axioms correspond precisely to the Nash

bargaining axioms. Yet assuming single-valued solutions and convex utility
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possibility sets does not yield some solution analogous to the Nash Bargaining
Solution, but rather an impossibility result.4

Proposition 2 Let ΣC denote the class of convex rationing problems. Then,
(i) There is no single-valued mapping f defined on ΣC that satisfies in-

variance, symmetry and contraction consistency.
(ii) There is no (multi-valued) solution φ defined on ΣC that satisfies

invariance, symmetry and strong contraction consistency.

Proof.
(i) Let f : ΣC → Rn be a function that satisfies the axioms of invari-

ance, symmetry and contraction consistency. Construct a family of convex
rationing problems k(Si,0)li=1,...,n+1 in ΣC by means of n + 1 hyperplanes,
which are defined as follows. For i = 1, 2, ..., n, Hi is the hyperplane going
through the points −e1,−e2, ...,−ei−1, (−n) ei,−ei+1, ....,−en, and Hn+1 is
the hyperplane going through the points −ei, i = 1, ..., n. Let Si be the com-
prehensive hull of Hi Rn−. By Symmetry, f (Sn+1,0) = − 1

n
1. Note that

the problem (Si,0) can be obtained from (Sn+1,0) by applying the linear
transformation

τ i(x) = (x1, x2, ..., xi−1, nxi, xi+1, ..., xn)

Therefore, invariance implies:

f Si,0 = −1
n
,−1
n
, ...,−1,−1

n
, ...,−1

n

with the −1 in ith place. We have f (Si,0) ∈ Sj for all i 9= j = 1, ..., n, since
for example −ei ∈ Sj Pareto dominates f (Si,0). Now define S∗ = n

i=1 S
i

and consider the problem (S∗,0). Contraction consistency, applied when
viewing each of the (Si,0) as the ‘large’ problem, implies that f (S∗,0) =
f (Si,0), for all i, a contradiction.
(ii) The same argument above provides a counter-example for a corre-

spondence that fails to satisfy strng contraction consistency.

This proposition shows that invariance, symmetry, and contraction con-
sistency are incompatible with single-valued solutions, even when we consider
convex problems. And also that the same incompatibility applies to multi-
valued solutions if we use the stronger version of contraction consistency. The

4A closely related result appears in Roth ([16]), in a discussion of ideal point dependent
solutions.
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same argument can be easily adapted to show that there are similar incom-
patibilities when we substitute symmetry by “strong claims boundedness”.5

The results in Proposition 2 imply that no solution satisfying symmetry
and invariance can be derived by the maximisation of a Social Welfare Or-
dering (for in that case it would satisfy strong contraction consistency). In
this sense choice mappings on the domain under study are intrinsically more
complex objects than bargaining solutions. The way out of these impossibil-
ity results is to both allow multi-valued solutions and require only the weaker
extension of independence of irrelevant alternatives.

4.2 Characterisation

Let E(S, c) denote the set of even allocations of a convex problem (S, c) in
ΣC . Our next result shows that even allocations correspond precisely to the
outcome of the unique minimal solution that satisfies invariance, symmetry
and contraction consistency. Formally:

Proposition 3 There is one and only one minimal (in the order of set in-
clusion) solution φ defined on ΣC satisfying invariance, symmetry and con-
traction consistency. It is the solution that associates to each convex problem
(S,0) ∈ ΣC the set of even allocations, φ(S,0) = E(S,0).

Proof.
First observe that the mapping defined in the statement is a solution.

This follows directly from the definition and Proposition 1 above. Now we
show that all even allocations must be in the solution mapping.
Let (S,0) ∈ ΣC and let s be an even allocation. Therefore,

s = e(H,0) =
1

n
(w1(H,0), w2 (H,0) , ..., wn (H,0)

for some hyperplane problem (H,0). Let Ch(H) denote the comprehensive
hull of H −Rn+. Clearly S ⊆ Ch(H) and s is an even allocation of Ch(H).
Define the linear transformation τ by

τ (x) =
1

w1 (H,0)
x1,

1

w2 (H,0)
x2, ...,

1

wn (H,0)
xn

Observe that, for any linear transformation, the transformation of an even
allocation remains an even allocation of the transformed problem: in fact

5Strong claims boundedness states that for all (S, c) ∈ , all i ∈ N , fi(S, c) < ci (that
is to say, all agents have to suffer some utility reduction).
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both the property of being the support point of a hyperplane and the property
of being the centre of gravity of a polygon hold for any linear transformation.
So in particular τ (s) is an even allocation of τ (Ch(H)) . Therefore, since
τ i (w1(H,0)) = −1, we have:

τ (s) = −1
n
1

By Symmetry, τ (s) ∈ φ (τ (ch(H)) ,0). Contraction Consistency then im-
plies τ (s) ∈ φ (τ (S) ,0), and the proof is concluded by an application of
invariance.

This result points out that the solution mapping that associates to each
problem (S, c) the set of even allocations may be regarded as a suitable ‘trans-
lation’ of the Nash Bargaining Solution (NBS) to this setting. In fact, the
NBS can also be characterised by the described tangent hyperplane ‘splitting’
property. Note that a selection from the minimisers of the product of the
losses from c, another affine invariant and contraction consistent solution,
does not satisfy symmetry because it must assign to at least one player its
claim in full.

Remark 2 This approach bears some resemblance with the analysis of bar-
gaining solutions defined on a domain which includes non-convex problems.
However, in that setting there exist single-valued solutions satisfying both
contraction consistency and affine invariance, as well as multivalued solu-
tions satisfying both strong contraction consistency and affine invariance.
As shown by Zhou ([23]) and by Denicolò and Mariotti ([7]) these solutions
must all be selections from the set of maximisers of the Nash product6 on
Rn++. On the contrary in our setting the maximisation on convex problems of
the corresponding non-concave value function in −Rn++ generates a conflict.

5 An illustration: sharing a cost in utility
space

Let us illustrate the nature of the results presented above with a simple cost-
sharing model. Consider a society given by a set N = {1, 2, ..., n} of agents
and a commodity space with two commodities, an indivisible public project
and a divisible private good (e.g. money). Each agent is characterized by

6Denicolò and Mariotti ([7]) in particular exploit the fact that (single-valued) bargain-
ing solutions satisfying Contraction Consistency and defined on particular domains which
include non-convex problems define a Social Welfare Ordering on Rn++.
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a von Neumann-Morgenstern utility function ui : {0, 1} × R → R, and an
initial endowment ωi, where ui(1, yi) and ui(0, yi) describe agent i’s utility
when consuming yi units of the private consumption good, with or without
the public project. Assume that ui(1, yi) > ui(0, yi) for all yi, and also that
ui is monotone and continuous in yi, and also that ωi = (0, zi), as usual. The
question is how to finance the provision of the public project by individual
contributions t = (t1, t2, ..., tn), such that i∈N ti ≥ γ, where γ represents
the cost of the public project measured in units of the private good.
Let ci = ui(1, zi) denote agent i’s individual (gross) utility benefit, and S

is the set of utility vectors [ui(1, zi − ti)]i∈N with zi− ti ≥ 0 and i∈N ti ≥ γ.
We normalise utilities so that ui(1, zi) = 0 for all i ∈ N, so that the
cost sharing problem can be formalised as a generalised ratioing problem
in (S,0) ∈ . Under the assumptions established, S is closed and compre-
hensive. Moreover, the set A(S,0) of admissible allocations corresponds to
the set of points [ui(1, zi − ti)]i∈N with zi− ti ≥ 0 for all i, and i∈N ti ≥ γ.
The set PA(S,0) is the subset of A(S,0) which satisfies i∈N ti = γ. A
solution is a point [ui(1, zi − t∗i )]i∈N in the set PA(S,0). Therefore, solv-
ing a problem in this case amounts to finding a suitable vector t∗ ∈ Rn+ of
individual contributions.
An even allocation entails the choice of a vector t∗ of contributions and

a vector p∗ in the unit simplex P such that:
(i) i∈N p

∗
iui(1, zi − t∗i )i∈N ≥ i∈N p

∗
iui(1, zi − ti)i∈N , for all vectors t ∈

Rn+ such that i∈N ti = γ.
(ii) p∗iui(1, zi − t∗i ) = p∗juj(1, zj − t∗j) for all i, j ∈ N.
Therefore, the solution chooses a vector of contributions t∗ that maximizes

a weighted sum of utilities over the utility possibility set S, with respect to
an endogenous weighting system in which the social marginal worth of an
agent is inversely proportional to his utility.
It is easy to see that, when utilites are differentiable, the weight ratio

between any two agents corresponds to inverse of their marginal utilities.
More precisely, 7

∂ui/∂ti
∂uj/∂tj

=
ui(1, zi − t∗i )
uj(1, zj − t∗j)

=
p∗j
p∗i

for all i, j ∈ N

That is, p∗ is a vector that equalizes the ratios of total utilities with that of
marginal utilities for every two agents.

7This follows from the F.O.C. when we take p∗ as given and consider the maximization
of the weighted utilitarian social welfare utility function n

i=1 p
∗
i ui(1, zi − ti), subject to

i∈N ti = γ.

17



References

[1] Aumann, R.J. & Maschler, M. (1985), Game Theoretic Analysis of a
Bankruptcy Problem from the Talmud, Journal of Economic The-
ory, 36 : 195—213.

[2] Barberà, S. Dutta, B. & Sen, A. (2001), Stragegy-Proof Social Choice
Correspondences, Journal of Economic Theory, 101 : 374-394.

[3] Chun, Y. & Thomson, W. (1992), Bargaining Problems with Claims,
Mathematical Social Sciences, 24 : 19-33.

[4] Clarke, F. (1983), Optimization and Nonsmooth Analysis, New
York, Wiley.

[5] Curiel, I.J., Maschler, M. & Tijs, S.H. (1988), Bankruptcy Games,
Zeitschrift für Operations Research, 31 : A143—A159.

[6] Dagan, N. & Volji, O. (1993), The Bankruptcy Problem: A Cooperative
Bargaining Approach,Mathematical Social Sciences, 26 : 287-297.

[7] Denicolò, V. and Mariotti, M. (2000), Nash Bargaining Theory, Non-
Convex Problems and Social Welfare Orderings, Theory and Deci-
sion, 48 : 351-58.

[8] Herrero, C. (1998), Endogenous Reference Points and the Adjusted Pro-
portional Solution for Bargaining problems with Claims, Social Choice
and Welfare, 15 : 113-119.

[9] Herrero, C., Maschler, M. &Villar, A. (1999), Individual Rights and Col-
lective Responsibility: The Rights Egalitarian Solution,Mathematical
Social Sciences, 37 : 59-77.

[10] Herrero, C. & Villar, A. (2001), The Three Musketeers: Four Classical
Solutions to Bankruptcy Problems, Mathematical Social Sciences,
42 : 307-328.

[11] Moulin, H. (1988), Axioms for Cooperative Decision Making,
Cambridge University Press, Cambridge.

[12] Moulin, H. (2001), Axiomatic Cost and Surplus-Sharing, Chapter 17 of
K. Arrow, A. Sen and K. Suzumura (eds.), The Handbook of Social
Choice and Welfare, forthcoming.

18



[13] Moulin, H. (2003) Fair Division and Collective Welfare, MIT Press,
Cambridge, Ma.

[14] Nash, J.F. (1950), The Bargaining Problem, Econometrica, 28 : 155-
162.

[15] O’Neill, B. (1982), A Problem of Rights Arbitration from the Talmud,
Mathematical Social Sciences, 2 : 345—371.

[16] Roth, A. (1977), Independence of Irrelevant Alternatives and Solutions
to Nash’s Bargaining Problem, Journal of Economic Theory, 16:
247-251.

[17] Sen, A. (1973), On Economic Inequality, Oxford University Press,
Oxford.

[18] Thomson, W. (1981), A Class of Solutions to Bargaining Problems,
Journal of Economic Theory, 25: 431-441.

[19] Thomson, W. (2002), Axiomatic and Game-Theoretic Analysis of
Bankruptcy and Taxation Problems: A Survey,Mathematical Social
Sciences, forthcoming.

[20] Villar, A. (2000), Equilibrium and Efficiency in Production
Economies, Springer-Verlag, Berlin.

[21] Young, P. (1987), On Dividing an Amount According to Individual
Claims or Liabilities, Mathematics of Operation Research, 12 :
398—414.

[22] Young, P. (1994), Equity, Princeton University Press, Princeton.

[23] L. Zhou (1997), The Nash Bargaining Theory with Non-Convex Prob-
lems, Econometrica, 65 : 681-686.

19


