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Abstract. The computer industry is examining the use of strong syn-
chronization operations such as double compare-and-swap (DCAS) as a
means of supporting non-blocking synchronization on tomorrow’s mul-
tiprocessor machines. However, before such a primitive will be incorpo-
rated into hardware design, its utility needs to be proven by developing
a body of effective non-blocking data structures using DCAS.
In a previous paper, we presented two linearizable non-blocking imple-
mentations of concurrent deques (double-ended queues) using the DCAS
operation. These improved on previous algorithms by nearly always al-
lowing unimpeded concurrent access to both ends of the deque while
correctly handling the difficult boundary cases when the deque is empty
or full. A remaining open question was whether, using DCAS, one can
design a non-blocking implementation of concurrent deques that allows
dynamic memory allocation but also uses only a single DCAS per push
or pop in the best case.
This paper answers that question in the affirmative. We present a new
non-blocking implementation of concurrent deques using the DCAS op-
eration. This algorithm provides the benefits of our previous techniques
while overcoming drawbacks. Like our previous approaches, this imple-
mentation relies on automatic storage reclamation to ensure that a stor-
age node is not reclaimed and reused until it can be proved that the
node is not reachable from any thread of control. This algorithm uses
a linked-list representation with dynamic node allocation and therefore
does not impose a fixed maximum capacity on the deque. It does not
require the use of a “spare bit” in pointers. In the best case (no interfer-
ence), it requires only one DCAS per push and one DCAS per pop. We
also sketch a proof of correctness.

1 Introduction

In academic circles and in industry, it is becoming evident that non-blocking
algorithms can deliver significant performance benefits [3, 20, 17] and resiliency
benefits [9] to parallel systems. Unfortunately, there is a growing realization
that existing synchronization operations on single memory locations, such as
compare-and-swap (CAS), are not expressive enough to support design of ef-
ficient non-blocking algorithms [9, 10, 12], and software emulations of stronger
primitives from weaker ones are still too complex to be considered practical [1,
4, 7, 8, 21]. In response, industry is currently examining the idea of supporting



Array Array Linked Snark
with used as list with (with

centralized circular tagged garbage
access buffer pointers collection)

(see [9]) (see [2]) (see [2]) (this paper)

Left and right accesses interfere yes no no no
Fixed limit on size of deque yes yes no no
Tag bit needed in pointers no no yes no
DCAS ops per unimpeded pop 1 1 2 1
DCAS ops per unimpeded push 1 1 1 1
Number of reserved values 1 1 3 0
Storage allocator calls per push 0 0 1 1
Storage overhead per item none none 2 pointers 2 pointers

Table 1. Comparison of various DCAS-based deque algorithms

stronger synchronization operations in hardware. A leading candidate among
such operations is double compare-and-swap (DCAS), a CAS performed atom-
ically on two memory locations. However, before such a primitive can be incor-
porated into processor design, it is necessary to understand how much of an
improvement it actually offers. One step in doing so is developing a body of effi-
cient data structures and associated algorithms based on the DCAS operation.

There have recently been several proposed designs for non-blocking lineariz-
able concurrent double-ended queues (deques) using the double compare-and-
swap operation [9, 2]. Deques, as described in [15] and currently used in load
balancing algorithms [3], are classic structures to examine, in that they involve
all the intricacies of LIFO-stacks and FIFO-queues, with the added complexity
of handling operations originating at both ends of the deque.

Massalin and Pu [16] were the first to present a collection of DCAS-based con-
current algorithms. They built a lock-free operating system kernel based on the
DCAS operation (CAS2) offered by the Motorola 68040 processor, implementing
structures such as stacks, FIFO-queues, and linked lists.

Greenwald, a strong advocate for using DCAS, built a collection of DCAS-
based concurrent data structures improving on those of Massalin and Pu. In the
best case (no interference from other threads), his array-based deque algorithms
required one DCAS per push and one DCAS per pop. Unfortunately, these al-
gorithms used DCAS in a restrictive way. The first ([9] pp. 196–197) used the
two-word DCAS as if it were a three-word operation, keeping the two deque
end pointers in the same memory word, and DCAS-ing on it and a second word
containing a value; this prevents truly concurrent, noninterfering access to the
two deque ends. The second algorithm ([9] pp. 219–220) assumed an array of
unbounded size, and did not correctly detect when the deque is full in all cases.

Arora et al. [3] present an elegant CAS-based restricted deque with applica-
tions in job-stealing algorithms. This non-blocking implementation needs only a
single CAS operation since it restricts one side of the deque to be accessed by
only a single processor, and the other side to allow only pop operations.



In a recent paper [2], we presented two new linearizable non-blocking imple-
mentations of concurrent deques using the DCAS operation. One used an array
representation, and improved on previous algorithms by allowing uninterrupted
concurrent access to both ends of the deque while correctly handling the diffi-
cult boundary cases when the deque is empty or full. In the best case, this array
technique required one DCAS per push and one DCAS per pop. A drawback of
the array representation was that it imposed a fixed maximum capacity on the
queue. The second implementation corrected this by using a dynamic linked-list
representation, and was the first non-blocking unbounded-memory deque imple-
mentation. Drawbacks of this list-based implementation were that it required a
“spare bit” in certain pointers to serve as a boolean flag and that it required at
least two (amortized) DCAS operations per pop.

A remaining open question was whether, using DCAS, one can design a
non-blocking implementation of concurrent deques that allows dynamic memory
allocation, as in the linked-list algorithms of [2], but also uses only a single DCAS
per push or pop in the best case, as in array-based algorithms [2, 9]. This paper
answers that question in the affirmative. Table 1 outlines the characteristics of
the various algorithms. The first six rows indicate that the algorithm presented
in this paper avoids drawbacks of previous work.

2 Modeling DCAS and Deques

Our computation model follows [5, 6, 14] as well as our own previous paper [2].
A concurrent system is a collection of n processors, which communicate through
shared data structures called objects. Each object provides a set of primitive
operations that are the only means of manipulating that object. Each processor
is a thread of control [14] that sequentially invokes object operations by issuing
an invocation and then receiving the associated response before issuing the next
invocation. A thread behavior is the entire set of invocations and associated
responses associated with a single thread; this set is totally ordered in time
according to the order in which the thread issued and received the invocations
and responses. A system behavior is the (disjoint) union of the thread behaviors
of all the threads in a concurrent system.

A history is a system behavior upon which a total order has been imposed
on invocations and responses that is consistent with the orderings of the thread
behaviors. Each history may be regarded as a “real-time” order of operations
where an operation A is said to precede another operation B if A’s response occurs
before B’s invocation. Two operations are concurrent if they are unrelated by
the real-time order. When we reason about the possible behaviors of a system or
a thread within that system, we typically try to characterize the set of possible
histories of the system.

A sequential history is a history in which each invocation is followed immedi-
ately by its associated response. The sequential specification of an object is a set
of permitted sequential histories. The basic correctness requirement for a con-
current implementation is linearizability [14]: for every history H that may be



realized by the system, there exists a sequential history that is in the intersection
of the sequential specifications of all the objects in the system and whose total
order of operations is consistent with the H ’s partial order of operations. In a
linearizable implementation, each operation appears to take effect atomically at
some point between its invocation and its associated response.

In our model, every shared memory location L of a multiprocessor machine’s
memory is a linearizable implementation of an object that provides every pro-
cessor Pi with a set of sequentially specified machine operations (see [11, 13]):

Read i(&L) reads location L and returns its value.
Writei(&L, v) writes the value v to location L.
DCAS i(&L1, &L2, o1, o2, n1, n2) is a double-compare-and-swap operation with

the semantics described below.

(The address operator & is used to pass the address of a location to an operation.)
Because we assume a linearizable implementation, we can, in effect, assume that
these operations are atomic when reasoning about programs that use them.

For the purposes of this paper, when we write code in a high-level language,
we assume that each field of a high-level-language object and each global variable
may be treated as a shared memory location. A simple reference to such a field
or variable is a Read operation; a simple assignment to such a field or variable is
a Write operation; and a method or subroutine called DCAS is used to perform
the DCAS operation on two fields or variables.

The implementation we present is non-blocking (also called lock-free) [13]. Let
us use the term higher-level operations to refer to operations of an object being
implemented, and lower-level operations to refer to the (machine) operations in
terms of which it is implemented. A non-blocking implementation is one for which
any history that has invocations of some set O of higher-level operations but no
associated responses may contain any number of responses for high-level opera-
tions concurrent with those in O. That is, even if some higher-level operations
(each of which may be continuously taking steps, or not) never complete, other
invoked operations may nevertheless continually complete. Thus the system as a
whole can make progress; individual processors cannot be blocked, only delayed,
by other processors continuously taking steps or failing to take steps. Using locks
would violate the above condition, hence the alternate name lock-free.

Figure 1 contains code for the DCAS operation; for comparison, it also shows
code for the simpler CAS operation (which is not used in the algorithms pre-
sented here). For either operation, the sequence of suboperations is assumed to
be executed atomically, either through hardware support [12, 18, 19] or through
a non-blocking software emulation [7, 21].

A CAS operation examines one memory location and compares its contents
to an expected “old” value. If the contents match, then the contents are replaced
with a specified “new” value and an indication of success is returned; otherwise
the contents are unchanged and an indication of failure is returned.

A DCAS operation may be viewed as two yoked CAS operations: mismatch
in either causes both to fail. (Note: the algorithms in this paper do not require
the overloaded versions of DCAS that we used in our previous paper [2].)



boolean CAS(val *addr, boolean DCAS(val *addr1, val *addr2,

val old, val old1, val old2,

val new1) { val new1, val new2) {

atomically { atomically {

if (*addr == old) { if ((*addr1 == old1) &&

*addr = new; (*addr2 == old2)) {

return true; *addr1 = new1;

} else return false; *addr2 = new2;

} return true;

} } else return false;

}

}

Fig. 1. Single and Double Compare-and-Swap Operations

We assume that a CAS operation is substantially more expensive than a
simple read or write of a shared variable, and that a DCAS is rather more
expensive than a CAS. We also assume that memory operations (Read, Write,
DCAS) that operate on distinct locations can be carried out concurrently, but
those that operate on the same location are carried out sequentially, so there is a
potential performance advantage in, for example, avoiding having operations on
one end of a deque touch variables associated with the other end of the deque.

A deque S is a concurrent shared object created by a makeDeque(length)
operation that allows each processor to perform one of four types of operations
on S: pushRight, popRight, pushLeft, and popLeft.

We require that a concurrent implementation of a deque object be one that
is linearizable to a standard sequential deque of the type described in [15].

The state of a deque is a sequence of items S = 〈v0, . . . , vk〉 having cardinality
|S| where 0 ≤ |S| ≤ length. A deque is initially empty, that is, has cardinality
0. A deque is said to be full when its cardinality is length. (For the purposes
of this paper, the length of the deque is essentially the total amount of storage
available for allocation as deque node objects.)

The four possible push and pop operations induce the following state transi-
tions of the sequence S = 〈v0, . . . , vk〉, with appropriate returned values:

– pushRight(vnew), if S is not full, changes S to be 〈v0, . . . , vk, vnew〉 and
returns “okay”; if S is full, it returns “full” and S is unchanged.

– pushLeft(vnew), if S is not full, changes S to be 〈vnew , v0, . . . , vk〉 and re-
turns “okay”; if S is full, it returns “full” and S is unchanged.

– popRight(), if S is not empty, changes S to be 〈v0, . . . , vk−1〉 and returns
vk; if S is empty, it returns “empty” and S is unchanged.

– popLeft(), if S is not empty, changes S to be 〈v1, . . . , vk〉 and returns v0; if
S is empty, it returns “empty” and S is unchanged.

For example, starting with an empty deque S = 〈〉, pushRight(1) changes
the state to S = 〈1〉; pushLeft(2) transitions to S = 〈2, 1〉; then pushRight(3)
transitions to S = 〈2, 1, 3〉. A subsequent popLeft() transitions to S = 〈1, 3〉
and returns 2; then popLeft() transitions to S = 〈3〉 and returns 1 (which had
been pushed from the right).



3 The “Snark” Linked-list Deque

Our implementation (we have arbitrarily nicknamed it Snark) represents a deque
as a doubly-linked list of nodes. Each node in the list contains two link pointers
R and L and a value V (see Figure 2 below). There are two global “anchor”
variables, arbitrarily called LeftHat and RightHat (lines 7–8), which generally
point to the leftmost node and the rightmost node in the chain.

A node whose L field points to that same node is said to be left-dead; a node
whose R field points to that same node is said to be right-dead. If LeftHat points
to a node that is not left-dead, then the L field of that node points to a right-
dead node; if RightHat points to a node that is not right-dead, then the R field
of that node points to a left-dead node. As we will see, LeftHat points to a left-
dead node if and only if RightHat points to a right-dead node; such a situation
represents a deque with no items in it. The special node Dummy is both left-dead
and right-dead (lines 6–7); as we will see, no other node is ever both left-dead
and right-dead. In all cases, once a node becomes left-dead, it remains left-dead
(until the node is determined to be inaccessible and therefore eligible to be
reclaimed); once a node becomes right-dead, it remains right-dead. These rules
may seem somewhat complicated, but they lead to a uniform implementation of
pop operations.

A typical deque, with values A, B, C, and D in it, looks like this:

���
?

?

�LeftHat

��
�

A

�
�

B

�
�

C

�RightHat

��
�

D

?
���

?

where ? indicates a “don’t care” pointer or value. An empty deque looks like:
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Figures 3 and 4 show non-blocking implementations of push and pop opera-
tions on the right-hand end of the deque. We describe these operations in detail.
The left-hand-side operations shown in Figures 5 and 6 are symmetric.

The right-side push operation first obtains a fresh Node structure from the
storage allocator (Figure 3, line 2). (Note that the problem of implementing a

1 structure Node { 5 Node Dummy = new Node();

2 Node *R; 6 Dummy.L = Dummy.R = Dummy;

3 Node *L; 7 Node *LeftHat = Dummy;

4 val V; } 8 Node *RightHat = Dummy;

Fig. 2. The array-based deque—data structure and hats (anchors).



1 val pushRight(val v) {

2 nd = new Node(); /* Allocate new Node structure */

3 if (nd == null) return "full";

4 nd->R = Dummy;

5 nd->V = v;

6 while (true) {

7 rh = RightHat; /* Labels A, B, */

8 rhR = rh->R; /* etc., are used */

9 if (rhR == rh) { /* in the proof */

10 nd->L = Dummy; /* of correctness */

11 lh = LeftHat;

12 if (DCAS(&RightHat, &LeftHat, rh, lh, nd, nd)) /* A */

13 return "okay";

14 } else {

15 nd->L = rh;

16 if (DCAS(&RightHat, &rh->R, rh, rhR, nd, nd)) /* B */

17 return "okay";

18 } } } // Please forgive this brace style

Fig. 3. Simple linked-list deque—right-hand-side push.

non-blocking storage allocator is not addressed in this paper, but would need
to be solved to produce a completely non-blocking deque implementation.) We
assume that if allocatable storage has been completely exhausted (even after
automatic reclamation has occurred), the new operation will yield a null pointer;
the push operation treats this as sufficient cause to report that the deque is full
(line 3). Otherwise, the R field of the new node is made to point to Dummy (line 4)
and the value to be pushed is stored into the V field (line 5); all that remains is
to splice this new node into the doubly-linked chain. But an attempt to splice
might fail (because of an action by some other concurrent push or pop), so a
“while true” loop (line 6) is used to iterate until a splice succeeds.

The RightHat is copied into local variable rh (line 7)—this is important. If
rh points to a right-dead node (line 9), then the deque is empty. In this case,
the new node should become the only node in the deque. Its L field is made to
point to Dummy (line 10) and then a DCAS is used (line 12) to atomically make
both RightHat and LeftHat point to the new node—but only if neither hat has
changed. If this DCAS succeeds, then the push has succeeded (line 13); if the
DCAS fails, then control will go around the “while true” loop to retry.

If the deque is not empty, then the new node must be added to the right-hand
end of the doubly-linked chain. The copied content of the RightHat is stored
into the L field of the new node (line 15) and then a DCAS is used (line 16) to
make both the RightHat and the former right-end node point to the new node,
which thus becomes the new right-end node. If this DCAS operation succeeds,
then the push has succeeded (line 17); if the DCAS fails, then control will go
around the “while true” loop to retry.

The right-side pop operation also uses a “while true” loop (line 2) to iterate
until an attempt to pop succeeds. The RightHat is copied into local variable rh



1 val popRight() {

2 while (true) {

3 rh = RightHat; // Delicate order of operations

4 lh = LeftHat; // here (see proof of Theorem 4

5 if (rh->R == rh) return "empty"; // and the Conclusions section)

6 if (rh == lh) {

7 if (DCAS(&RightHat, &LeftHat, rh, lh, Dummy, Dummy)) /* C */

8 return rh->V;

9 } else {

10 rhL = rh->L;

11 if (DCAS(&RightHat, &rh->L, rh, rhL, rhL, rh)) { /* D */

12 result = rh->V;

13 rh->R = Dummy; /* E */

14 rh->V = null; /* optional (see text) */

15 return result;

16 } } } } // Stacking braces this way saves space

Fig. 4. Simple linked-list deque—right-hand-side pop.

(line 7)—this is important. If rh points to a right-dead node, then the deque is
empty and the pop operation reports that fact (line 4).

Otherwise, there are two cases, depending on whether there is exactly one
item or more than one item in the deque. There is exactly one item in the
deque if and only if the LeftHat and RightHat point to the same node (line 6).
In that case, a DCAS operation is used to reset both hats to point to Dummy
(line 7); if it succeeds, then the pop succeeds and the value to be returned is
in the V field of the popped node (line 8). (It is assumed that, after exit from
the popRight routine, the node just popped will be reclaimed by the automatic
storage allocator, through garbage collection or some such technique.)

If there is more than one item in the deque, then the rightmost node must
be removed from the doubly-linked chain. A DCAS is used (line 11) to move the
RightHat to the node to the immediate left of the rightmost node; at the same
time, the L field of that rightmost node is changed to contain a self-pointer, thus
making the rightmost node left-dead. If this DCAS operation fails, then control
will go around the “while true” loop to retry; but if the DCAS succeeds, then the
pop succeeds and the value to be returned is in the V field of the popped node.
Before this value is returned, the R field is cleared (line 13) so that previously
popped nodes may be reclaimed. It may also be desirable to clear the V field
immediately (line 14) so that the popped value will not be retained indefinitely
by the queue structure. If the V field does not contain references to other data
structures, then line 14 may be omitted.

The push and pop operations work together in a completely straightforward
manner except in one odd case. If a popRight operation and a popLeft operation
occur concurrently when there are exactly two nodes in the deque, then each
operation may (correctly) discover that LeftHat and RightHat point to different
nodes (line 6 in each of Figures 4 and 6) and therefore proceed to perform a
DCAS for the multinode case (line 11 in each of Figures 4 and 6). Both of these



1 val pushLeft(val v) {

2 nd = new Node(); /* Allocate new Node structure */

3 if (nd == null) return "full";

4 nd->L = Dummy;

5 nd->V = v;

6 while (true) {

7 lh = LeftHat;

8 lhL = lh->L;

9 if (lhL == lh) {

10 nd->R = Dummy;

11 rh = RightHat;

12 if (DCAS(&LeftHat, &RightHat, lh, rh, nd, nd)) /* A’ */

13 return "okay";

14 } else {

15 nd->R = lh;

16 if (DCAS(&LeftHat, &lh->L, lh, lhL, nd, nd)) /* B’ */

17 return "okay";

18 } } } // We were given a firm limit of 15 pages

Fig. 5. Simple linked-list deque—left-hand-side push.

DCAS operations may succeed, because they operate on disjoint pairs of memory
locations. The result is that the hats pass each other:
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But this works out just fine: there had been two nodes in the deque and both have
been popped, but as they are popped they are made right-dead and left-dead,
so that the deque is now correctly empty.

4 Sketch of Correctness Proof for the “Snark” Algorithm

We reason on a state transition diagram in which each node represents a class of
possible states for the deque data structure and each transition arc corresponds
to an operation in the code that can modify the data structure. For every node
and every distinct operation in the code, there must be an arc from that node
for that operation unless it can be proved that, when the deque is in the state
represented by that node, either the operation must fail or the operation cannot
be executed because flow of control cannot reach that operation with the deque
in the prescribed state.

The possible states of a Snark deque are shown in the following state transi-
tion diagram:



1 val popLeft() {

2 while (true) {

3 lh = LeftHat; // Delicate order of operations

4 rh = RightHat; // here (see proof of Theorem 4

5 if (lh->L == lh) return "empty"; // and the Conclusions section)

6 if (lh == rh) {

7 if (DCAS(&LeftHat, &RightHat, lh, rh, Dummy, Dummy)) /* C’ */

8 return lh->V;

9 } else {

10 lhR = lh->R;

11 if (DCAS(&LeftHat, &lh->R, lh, lhR, lhR, lh)) { /* D’ */

12 result = lh->V;

13 lh->L = Dummy; /* E’ */

14 lh->V = null; /* optional (see text) */

15 return result;

16 } } } } // Better to stack braces than to omit a lemma

Fig. 6. Simple linked-list deque—left-hand-side pop.
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The rightmost node shown actually represents an infinite set of nodes, one
for each integer n for n ≥ 1, where there are n+2 items in the deque. The labels
on the transition arcs correspond to the labels on operations that modify the
linked-list data structure in Figures 3, 4, 5, and 6. The labels B+ and B’+ indicate
a transition that increases n by 1; the labels D- and D’- indicate a transition
that decreases n by 1. We will also use labels such as A and A’ in the text that
follows to refer to DCAS and assignment operations in those figures.

We say that a node is “in the deque from the left” if it is not left-dead and
it is reachable from the node referred to by the LeftHat by zero or more steps
of following pointers in the L field. We say that a node is “in the deque from the
right” if it is not right-dead and it is reachable from the node referred to by the
RightHat by zero or more steps of following pointers in the R field.

The Snark algorithm is proved correct largely by demonstrating that, for
every DCAS operation and every possible state of the deque data structure, if
the DCAS operation succeeds then a correct transition occurs as shown in the
state diagram. In cases where there is no corresponding arc on the state diagram,
it is necessary to prove either that the DCAS cannot succeed if the deque is in
that state or that control cannot reach the DCAS with the deque in that state.
Here we provide proofs only for these latter cases.



Lemma 1. A node is in the deque from the left if and only if it is in the deque
from the right (therefore from now on we may say simply “in the deque”).

Lemma 2. If a node is in the deque and then is removed, thereafter that node
is never in the deque again.

Lemma 3. No node except the Dummy node is ever both left-dead and right-dead.

Proof. Initially, only the Dummy node exists. Inspection of the code for pushRight
and pushLeft shows that newly created nodes are never made left-dead or right-
dead. Only operation D ever makes an existing node right-dead, and only oper-
ation D’ ever makes an existing node left-dead. But D and D’ each operate on
a node that is in the deque, and as it makes a node left-dead or right-dead, it
removes it from the deque. By Lemma 2, a node cannot be removed twice. So
the same node is never made right-dead by D and also made left-dead by D’.

Lemma 4. No node is ever made left-dead or right-dead after the node is re-
moved from the deque.

Proof. By Lemma 2, after a node is removed from the deque it is never in the
deque again. Only operation D ever makes an existing node right-dead, and only
operation D’ ever makes a node left-dead. But each of these operations succeeds
only on a node that is in the deque.

Lemma 5. Once a node is right-dead, it stays right-dead as long as it is reach-
able from any thread.

Proof. Only operations B, D’, and E change the R field of a node. But B succeeds
only if the node referred to by rh is not right-dead, and D always makes the
node referred to by rh right-dead. Operation E always stores into the R field
of a node that has been made left-dead as it was removed from the deque. By
Lemma 3, the node was not right-dead when it was removed from the deque;
by Lemma 4, the node cannot become right-dead after it was removed from the
deque. Therefore when operation E changes the R field of a node, that node is
not right-dead.

Lemma 6. Once a node is left-dead, it stays left-dead as long as it is reachable
from any thread.

Lemma 7. The RightHat points to a right-dead node if and only if the deque
is empty, and the LeftHat points to a left-dead node if and only if the deque is
empty.

Proof. Initially both RightHat and LeftHat point to the Dummy node, so this
invariant is initially true. Operations A and A’ make both RightHat and LeftHat
point to a new node that is not left-dead or right-dead, so the deque is not empty.
Operation B can succeed only if the RightHat points to a node that is not right-
dead, and it changes RightHat to point to a new node that is not right-dead. A
symmetric remark applies to B’. Operations C and C’ make both RightHat and



LeftHat point to the Dummy node, which is both left-dead and right-dead, so the
deque is empty. If operation D moves RightHat from a node that it not right-
dead to a node that is right-dead, then the deque had only one item in it; then
the LeftHat also points to the node just removed from the deque by operation D,
and that operation, as it moved the RightHat and emptied the deque, also made
the node left-dead. A symmetric remark applies to D’. Operations E and E’ do
not change whether a node is left-dead or right-dead (see proof of Lemma 5).

Theorem 1. Operation A fails if the deque is not empty.

Proof. Operation A is executed only after the node referred to by rh has been
found to be right-dead. By Lemma 5, once a node is right-dead, it remains right-
dead. Therefore, if the deque is non-empty when A is executed, then RightHat
must point to some other node than the one referred to by rh; therefore RightHat
does not match rh and the DCAS must fail.

Theorem 2. Operation B fails if the deque is empty.

Proof. Operation B is executed only after rhR has been found unequal to rh.
If the deque is empty when B is executed, and RightHat equals rh, then the
node referred to by rh must have become right-dead; but that means that rh->R
equals rh, and therefore cannot match rhR, and so the DCAS must fail.

Theorem 3. Operation C fails unless there is exactly one item in the deque.

Proof. When C is executed, rh equals lh, so C can succeed only when RightHat
and LeftHat point to the same node. If the deque has two or more items in it,
then RightHat and LeftHat contain different values, so the DCAS must fail.

If the deque is empty, and RightHat and LeftHat point to same node, then
by Lemma 7 that node must be both left-dead and right-dead, and by Lemma 3
that node must be the Dummy node, which is created right-dead and (by Lemma 5)
always remains right-dead. But then the test in line 5 of popRight would have
prevented control from reaching operation C. Therefore, if C is executed with the
deque empty, RightHat and LeftHat necessarily contain different values, so the
DCAS must fail.

Theorem 4. Operation D fails if the deque is empty.

Proof. This is the most difficult and delicate of our proofs. Suppose that some
thread of control T is about to execute operation D. Then T , at line 3 of
popRight, read a value from RightHat (now in T ’s local variable rh) that pointed
to a node that was not right-dead when T executed line 5; therefore the deque
was not empty at that time. Also, T must have read a value from LeftHat in
line 4 that turned out not to be equal to rh when T executed line 6.

Now suppose, as T executes D in line 12, that the deque is empty. How
might the deque have become empty since T executed line 5? Only through the
execution of C or C’ or D or D’ by some other thread U . If U executed C or D,
then it changed the value of RightHat; in this case T ’s execution of DCAS D
must fail, because RightHat will not match rh.



So consider the case that U executed C’ or D’. (Note that, for the execution
of D by T to succeed, there cannot have been another thread U ′ that performed
a C’ or D’ after U but before T ’s execution of DCAS D’, because that would
require a preceding execution of A or of A’, either of which would have changed
RightHat, causing T ’s execution of DCAS D to fail.)

Now, if U executed C’, then U changed the value of RightHat (to point to
Dummy); therefore T ’s execution of DCAS D must fail.

If, on the other hand, U executed D’ to make the deque empty, then the
deque must have had one item in it when U executed DCAS D’. But thread U
read values for LeftHat (in line 3 of popLeft) and RightHat (in line 4) that
were found in line 6 not to be equal. Therefore, when U read RightHat in line 4,
either the deque did not have exactly one item in it or the value of LeftHat had
been changed since U read LeftHat in line 3. If LeftHat had been changed, then
execution of D’ by U would have to fail, contrary to our assumption. Therefore,
if there is any hope left for execution of D’ by U to succeed, the deque must not
have had exactly one item in it when U read RightHat in line 4.

How, then, might the deque have come to hold exactly one item after U
executed line 4? Only through some operation by a third thread. If that operation
was A’ or B’ or C’ or D’, that operation must have changed LeftHat; but that
would cause the execution of DCAS D’ by U to fail, contrary to our assumption.
Therefore the operation by a third thread must have been A or B or C or D.
Consider, then, the most recent execution (relative to the execution of D by T )
of DCAS A or B or C or D that caused the deque to contain exactly one item, and
let V be the thread that executed it. (It is well-defined which of these DCAS
executions is most recent because DCAS operations A, B, C, and D all synchronize
on a common variable, namely RightHat.)

If this DCAS operation by thread V occurred after thread T read RightHat
in line 3, then it changed RightHat after T read RightHat, and the execution
of DCAS D by T must fail. Therefore, if there is any hope left for execution of D
by T to succeed, then execution of the most recent DCAS A or B or C or D (by
V ) must have occurred before T read RightHat in line 3.

To summarize the necessary order of events: (a) U reads LeftHat in line 3
of popLeft; (b) V executes A or B or C or D, resulting in the deque containing
one item; (c) T executes lines 3, 4, 5, and 6 of popRight; (d) U executes D’;
(e) T executes D. Moreover, there was no execution of A or B or C or D by any
other thread after event (b) but before event (e), and there cannot have been
any execution of A’ or B’ or C’ or D’ after event (a) but before event (d).

Therefore the deque contained exactly one item during the entire time that
T executed lines 3 though 6 of popRight. But if so, the test in line 6 would have
prevented control from reaching D.

Whew! We have exhausted all possible cases; therefore, if DCAS D is executed
when the deque is empty, it must fail.

Theorem 5. Operation E always succeeds and does not change the number of
items in the deque.

Symmetric theorems apply to operations A’, B’, C’, and D’.



Space limitations prevent us from presenting a proof of linearizability and a
proof that the algorithms are non-blocking—that is, if any subset of the proces-
sors invoke push or pop operations but fail to complete them (whether the thread
be suspended, or simply unlucky enough never to execute a DCAS successfully),
the other processors are in no way impeded in their use of the deque and can
continue to make progress. However, we observe informally that a thread has
not made any change to the deque data structure (and therefore has not made
any progress visible to other threads) until it performs a successful DCAS, and
once a thread has performed a single successful DCAS then, as observed by other
threads, a push or pop operation on the deque has been completed. Moreover,
each DCAS used to implement a push or pop operation has no reason to fail
unless some other push or pop operation has succeeded since it was invoked.

5 Conclusions

We have presented non-blocking algorithms for concurrent access to a double-
ended queue that supports the four operations pushRight, popRight, pushLeft,
and popLeft. They depend on a multithreaded execution environment that sup-
ports automatic storage reclamation in such a way that a node is reclaimed only
when no thread can possibly access it. Our technique improves on previous meth-
ods in requiring only one DCAS per push or pop (in the absence of interference)
while allowing the use of dynamically allocated storage to hold queue items.

We have two remaining concerns about this algorithm and the style of pro-
gramming that it represents. First, the implementation of the pop operations is
not entirely satisfactory because a popRight operation, for example, necessarily
reads LeftHat as well as RightHat, causing potential interference with pushLeft
and popLeft operations even when there are many items in the queue, which in
hardware implementations of interest could degrade performance.

Second, the proof of correctness is complex and delicate. While DCAS op-
erations are certainly more expressive than CAS operations, and can serve as a
useful building block for concurrent algorithms such as the one presented here
that can be encapsulated as a library, after our experience we are not sure that
we can wholeheartedly recommend DCAS as the synchronization primitive of
choice for everyday concurrent applications programming. In an early draft of
this paper, we had transposed lines 4 and 5 of Figure 4 (and similarly lines 4
and 5 of Figure 6); we thought there was no need for popRight to look at the
LeftHat until the case of an empty deque had been disposed of. We were wrong.
As we discovered when the proof of Theorem 4 would not go through, that ver-
sion of the code was faulty, and it was not too difficult to construct a scenario
in which the same node (and therefore the same value) could be popped twice
from the queue. As so many (including ourselves) have discovered in the past,
when it comes to concurrent programming, intuition can be extremely unreli-
able and is no substitute for careful proof. While we believe that non-blocking
algorithms are an important strategy for building robust concurrent systems, we
also believe it is desirable to build them upon concurrency primitives that keep
the necessary proofs of correctness as simple as possible.
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