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Low Vision

Even Moderate Visual Impairments Degrade Drivers’
Ability to See Pedestrians at Night

Joanne M. Wood,1 Richard A. Tyrrell,2 Alex Chaparro,3 Ralph P. Marszalek,1 Trent P. Carberry,1

and Byoung Sun Chu1

PURPOSE. To determine the effect of moderate levels of
refractive blur and simulated cataracts on nighttime pedestrian
conspicuity in the presence and absence of headlamp glare.

METHODS. The ability to recognize pedestrians at night was
measured in 28 young adults (M ¼ 27.6 years) under three
visual conditions: normal vision, refractive blur, and simulated
cataracts; mean acuity was 20/40 or better in all conditions.
Pedestrian recognition distances were recorded while partic-
ipants drove an instrumented vehicle along a closed road
course at night. Pedestrians wore one of three clothing
conditions and oncoming headlamps were present for 16
participants and absent for 12 participants.

RESULTS. Simulated visual impairment and glare significantly
reduced the frequency with which drivers recognized pedes-
trians and the distance at which the drivers first recognized
them. Simulated cataracts were significantly more disruptive
than blur even though photopic visual acuity levels were
matched. With normal vision, drivers responded to pedestrians
at 3.6- and 5.5-fold longer distances on average than for the blur
or cataract conditions, respectively. Even in the presence of
visual impairment and glare, pedestrians were recognized
more often and at longer distances when they wore a
‘‘biological motion’’ reflective clothing configuration than
when they wore a reflective vest or black clothing.

CONCLUSIONS. Drivers’ ability to recognize pedestrians at night is
degraded by common visual impairments, even when the
drivers’ mean visual acuity meets licensing requirements. To
maximize drivers’ ability to see pedestrians, drivers should
wear their optimum optical correction, and cataract surgery
should be performed early enough to avoid potentially
dangerous reductions in visual performance. (Invest Ophthal-

mol Vis Sci. 2012;53:2586–2592) DOI:10.1167/iovs.11-9083

Uncorrected refractive error and cataracts are the leading
causes of visual impairment in adults over the age of 40

years1 and their prevalence increases significantly with age.2

One study reported that uncorrected refractive error (that was
either undiagnosed or inadequately corrected optically) was
the cause of visual impairment in 62% of visually impaired
adults over 49 years of age.1

Although large numbers of individuals with uncorrected
refractive error and cataract currently drive, the functional
impact of these visual impairments on driving performance
and safety is poorly understood. Uncorrected refractive error
was the cause of reduced visual acuity in 80% of current drivers
whose acuity levels were below the widely adopted legal limit
of 20/40,3 and many people live with cataracts for extended
periods of time before having them removed and may continue
driving even if their vision does not meet the visual standards
for driving.4 In an Australian study, 23% of patients about to
undergo cataract extraction surgery were found to be driving
illegally due to poor vision.5

Driving at night is likely to be particularly challenging for
those with visual impairment given the associated reduction in
contrast sensitivity and increased problems with glare.
Problems with driving at night are a common complaint in
patients with visual impairments resulting from cataracts,
glaucoma, and age-related macular degeneration,4,6,7 as well as
in patients following refractive surgery and those wearing
presbyopic corrections.8,9

Few studies have used objective assessments to determine
the impact of visual impairment, particularly those arising from
commonly occurring conditions such as uncorrected refractive
error and cataract, on driving performance at night. Low-
fidelity simulator studies and closed-road driving assessments
have indicated that steering accuracy and lane-keeping are
robust to relatively high levels of optical blur,10–12 whereas
recognition of road signs and pedestrians has been shown to
be differentially affected by refractive surgery in studies using
the Night Driving Simulator (Vision Sciences Research Corp.,
San Ramon, CA).13,14 However, the night driving simulator task
in the latter study required participants to simply detect and
identify pedestrians in projected night driving scenes, which
even with the addition of a glare source does not replicate the
environmental lighting conditions nor the complex visuomotor
demands faced by drivers at night. Still, the finding that subtle
changes in visual performance might have an impact on
drivers’ ability to recognize pedestrians at night is of critical
importance, given that pedestrian fatalities are up to seven
times more common at night than in the day.15

Uncorrected refractive blur may reduce a driver’s ability to
resolve higher spatial frequencies in the environment that
might represent pedestrians or other road hazards. Cataracts
could have even more debilitating effects due to the increased
scatter of light, which produces a veiling luminance that
reduces retinal image contrast. Simulator and on-road driving
studies have also shown that glare reduces the likelihood of
detecting pedestrians,16,17 with these detrimental effects of
glare being observed at relatively low glare intensities typically
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associated with visual discomfort, with older adults being
disproportionally affected.17

It is common for licensing agencies to allow unlimited
access to driving for those with a corrected acuity of 6/12 (20/
40). Yet the extent to which drivers with this suboptimal acuity
level can be expected to respond in visually challenging
conditions (e.g., encountering an unexpected pedestrian at
night) is unclear. The aims of this research were to better
understand how drivers’ ability to recognize pedestrians at
night is affected by moderate visual impairments (refractive
blur and simulated cataracts) that maintain mean acuity within
levels that are typically permitted by licensing standards.
Headlamp glare was manipulated to determine the extent to
which it exacerbates the effects of these visual impairments.

METHODS

Participants

Participants included 28 young adults (mean age ¼ 27.6 6 4.7 years,

range¼ 20 to 36 years; 14 males and 14 females). All participants were

licensed drivers and satisfied the minimum Australian drivers’ licensing

criteria for binocular visual acuity of 20/40 (logMAR þ0.30) or better

when wearing their presenting optical correction (if any).

The study followed the tenets of the Declaration of Helsinki and

was approved by the Queensland University of Technology Human

Research Ethics Committee. All participants were given a full

explanation of the nature and possible consequences of the study,

and written informed consent was obtained with the option to

withdraw from the study at any time.

Visual Impairments

Pedestrian recognition at night was measured under a baseline best-

corrected vision condition and two simulated visual impairment

conditions. One visual impairment condition used frosted lenses that

were designed to simulate the visual effects of cataracts, incorporated

into full aperture lenses and mounted in modified goggles, together

with each participant’s distance refractive correction normally worn

while driving. These cataract filters have been used in previous studies

of vision and driving12,18–20 and, like real cataracts, have a greater

effect on contrast sensitivity and disability glare than on visual acuity.

The filters result in moderate reductions in photopic visual acuity, to

an average level of approximately 20/40 (logMAR þ0.30), with

associated reductions in contrast sensitivity at both high and low

spatial frequencies,20 and increased glare disability, where the glare is

of a magnitude similar to that shown by commercial filters (Vistech),

which have also been used previously to simulate the visual effects of

cataracts.21 The cataract goggles reduce light transmission by 75% with

a negligible effect on color (<0.01 on both x and y CIE 1931

chromaticity coordinates), which again is similar to the effects of the

filters (Vistech) reported previously.22 The goggles preserve the

binocular field to a horizontal extent of 1208 or greater, which satisfies

driver licensing standards in Australia. The second visual impairment

condition was optical blur, where positive lenses induced binocular

optical blur that reduced the photopic visual acuity of each participant

to match as closely as possible the acuity that he or she achieved when

wearing the cataract simulation goggles. For each condition, visual

acuity, contrast sensitivity, and disability glare were measured

binocularly. Distance high-contrast visual acuity was assessed under

standard illumination conditions using a logMAR Bailey Lovie Chart at

a viewing distance of 3 m and scored on a letter-by-letter basis. Letter

contrast sensitivity (CS) was measured using a Pelli-Robson chart

under the recommended viewing conditions. Disability glare was

measured using the Berkeley Glare Test (BGT), which has been used to

measure disability glare in previous studies investigating the functional

effects of cataract surgery.23 The BGT can assess glare sensitivity

monocularly or binocularly, and measures the ability to recognize low-

contrast letters (10% contrast) in the presence and absence of a glare

source at the medium setting of 750 cd/m2.24 The glare score is the

difference in visual acuity for glare and no-glare conditions (expressed

in letters).

Procedures

All testing was conducted at night on a closed-road circuit that has

been used in previous studies. The circuit is representative of a rural

road, and includes hills, bends, curves, intersections, lengthy straight

sections, and standard road signs and lane markings but does not

include ambient lighting.18,25–27

The experimental vehicle was an instrumented right-hand drive

vehicle (1997 Nissan Maxima) with automatic transmission and

halogen headlights. Consistent with the fact that drivers have

repeatedly been shown to be heavily reliant on their low beams,28

the headlamps of the test vehicle were kept on their low-beam setting

during testing. A dual-camera parallax-based video measurement

system was used to determine the distance at which the participant

(as a driver) first recognized the presence of a pedestrian.27

Three sets of headlamps (glare lights), consisting of pairs of

stationary battery-powered halogen headlamps mounted at a height

and width that is typical for sedans, were positioned at three locations

along the road circuit to simulate stationary vehicles that faced toward

the experimental vehicle. The illumination provided by these

headlamps was measured at a series of distances from the pedestrian

at the approximate eye height and lane position that was representa-

tive of an approaching driver. We compared these data to those of the

research vehicle at the same position. The comparison revealed that

the illumination at the driver’s eye was not significantly different from

that of the low-beam setting of the research vehicle [t(18)¼-0.47; P¼
0.641]. To provide a degree of visual complexity, and to act as

distracters, ‘‘clutter’’ zones (arrays of retroreflective objects such as

cones and bollards) were positioned at three locations along the

circuit.

Two pedestrians walked in place on the right shoulder of the

roadway. One was located at the end of a 400 m straight section of

roadway. This straight section of roadway started and finished at

approximately the same elevation but featured a dip halfway along its

length. This pedestrian was not near a clutter zone but walked in place

near headlamp glare lights for 16 of the participants. When viewed

from the experimental vehicle, the glare lights were positioned directly

in line with and 2.5 m to the left of the pedestrian. To reduce the

drivers’ expectation that the pedestrian would always be in a single

location, another pedestrian was located at a corner at the opposite

side of the circuit; data for this pedestrian are not reported due to the

limited sight distance available.

For each lap the pedestrians wore one of three clothing conditions.

To represent a range of pedestrians differing in conspicuity, clothing

configurations that have been shown to provide enhanced pedestrian

recognition (incorporating retroreflective materials) were included

along with more typical, low-reflectance pedestrian clothing.29 The

black condition was a black sweatshirt, sweatpants, and shoe covers

(2% reflectance). The vest condition was the clothing from the black

condition plus a large, silver retroreflective (Scotchlite, 3M, 8910 silver

fabric, initial average RA¼ 500, reflected color was white) rectangular

panel measuring 28.5 · 46.5 cm (1325 cm2) worn on the chest. The

biomotion condition was the clothing from the black condition with

the same silver retroreflective (Scotchlite) fabric used for the vest

condition but configured in strips (50 mm wide) around the wrist,

elbows, ankles, knees, shoulders, and waist. The total area of

retroreflective material was matched to the vest condition. Each

pedestrian wore each of the three clothing conditions three times,

once for each of the three different visual conditions (normal, cataract,

and blur), resulting in a total of nine data collection laps and one lap

where the pedestrian was absent to reduce expectancy effects. In
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addition, an initial (practice) lap familiarized the driver with both the

vehicle and the circuit.

Participants were instructed to follow the specified route, to drive

at a comfortable speed, and to press a large (12 · 6 cm) luminous dash-

mounted touch pad (and announce ‘‘pedestrian!’’) as soon as they

recognized that a pedestrian was present ahead. In an effort to increase

driver workload, we also instructed participants to read aloud all road

signs that were encountered around the circuit; performance on this

task was neither recorded nor analyzed.

Two primary dependent variables are reported. The first is the

percentage of trials in which the participant correctly identified the

presence of the pedestrians and the second is the distance (from the

pedestrian) at which the driver responded to the pedestrian. Response

distances were coded as zero for all trials in which the driver did not

respond to the test pedestrian or had passed the pedestrian before

pressing the touchpad. Recognition distances are not presented for the

secondary pedestrian due to the limited sight distance that was

available. The frequency with which participants correctly identified

pedestrians was analyzed using repeated-measures logistic regressions

(Generalized Estimating Equations [GEEs]) with participant identity as

a random factor, visual condition (Normal, Blur, and Cataract), and

clothing (Black, Vest, and Biomotion) as repeated-measures factors, and

glare as a between-subjects factor with response (correct identification

vs. no correct identification) as a binomial criterion. GEEs were

compared using independence, autoregressive (AR1), and exchange-

able correlation structures using the QICC index; the exchangeable

structure was selected because it provided the best fit to the residuals.

The distance measures were analyzed using repeated-measures ANOVA

with two within-subject factors (visual status and clothing) and one

between-subjects factor (the presence or absence of glare).

RESULTS

Table 1 presents the mean visual function data for each of the
three visual conditions. Relative to the baseline normal vision
condition, binocular visual acuity was significantly reduced in
both the blur and cataract conditions (F2,26 ¼ 187.8; P <
0.001). Although the visual acuity of six of the participants was
reduced below 20/40 for the cataract simulation condition, the
group mean visual acuity while wearing the simulated cataract
goggles was slightly better than 20/40 (6/12). For each
participant, the positive (blurring) lenses in the blur condition
were individually chosen to match the same participant’s
acuity from the simulated cataract condition. The blur and
cataract conditions significantly impaired contrast sensitivity
(F2,26 ¼ 1276.1; P < 0.001). Although the blurring lenses
matched the visual acuity degradation of the simulated
cataracts, they resulted in only a modest reduction in contrast
sensitivity, with a mean reduction in contrast sensitivity of
-0.09 (from 1.88 to 1.79). Conversely, the cataract simulation
markedly impaired contrast sensitivity with a mean difference
of -0.78 (from 1.88 to 1.10 log units). Disability glare was
significantly increased for the cataract condition compared to
the blur and normal conditions, which were not different to
one another (F2,26 ¼ 101.3; P < 0.001).

Figure 1 shows the percentage of pedestrians recognized on
average for each of the visual impairment and glare combina-
tions. The visual manipulations significantly affected pedestri-
an conspicuity: drivers responded to the pedestrian 56.9%,
52.1%, and 29.9% of the laps in the normal vision, blur, and
cataract conditions, respectively [v2(2) ¼ 46.52, P < 0.001].

TABLE 1. Group Mean Visual Function for Each of the Three Visual
Conditions

Visual Conditions

Normal Blur Cataract

Visual acuity

(logMAR)

-0.12 (0.02) þ0.27 (0.03) þ0.28 (0.03)

Letter contrast

Sensitivity

(log CS)

1.88 (0.02) 1.79 (0.02) 1.10 (0.01)

Disability glare

Sensitivity score

(letter difference)

0.96 (0.69) 0.25 (0.55) 23.75 (1.55)

FIGURE 1. Percentage of pedestrians recognized as a function of driver visual status and glare condition.
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The number of pedestrians seen in the cataract condition
differed significantly from both the blur and normal conditions
(P < 0.001), but the blur and normal conditions did not differ
from one another. Drivers responded to pedestrians twice as
often in the absence of headlamp glare compared to when the
headlamps were present (62% vs. 30.6%) [v2(1) ¼ 12.2, P <
0.001].

Pedestrians were recognized on average on only 13.5% of
laps when wearing black clothing; recognition increased by a
factor of more than three on average when the pedestrian
wore the retroreflective vest (43.1% of laps), and by a factor of
greater than six when the pedestrian was wearing the
biomotion clothing (82.3% of laps) [v2(2)¼73.38]. All pairwise
differences were significant (P < 0.001).

A repeated-measures ANOVA was conducted examining the
distances at which participants recognized the pedestrian,
with two within-subject factors (visual status and clothing) and
one between-subjects factor (the presence or absence of
glare). The mean distances at which the drivers responded to
the pedestrian are shown in Figure 2, demonstrating that in the
normal condition, the drivers responded at distances that were
on average 3.6- and 5.5-fold longer than that in the blur or
cataract conditions, respectively. This main effect of visual
status was significant (F2,25 ¼ 22.12, P < 0.001, partial g2 ¼
0.64), and the three means were all significantly different from
one another (P < 0.05). When collapsed across visual status
and glare, drivers responded to the pedestrian at a mean
distance of only 0.57 m (SE ¼ 0.2) when the pedestrian was
wearing black clothing, at 27.7 m (SE ¼ 7.21) for the vest
condition and 110.9 m (SE ¼ 10.93) when wearing the
biomotion clothing. This main effect of clothing was significant
(F2,25 ¼ 49.51, P < 0.001, partial g2 ¼ 0.79) and all pairwise
differences were significant. When averaged across visual
status and clothing, the mean distance at which drivers
responded was 57.5 m (SE ¼ 7.55) when the glare headlamps
were off and 35.3 m (SE ¼ 6.54) when the glare headlamps
were on. This main effect of glare was significant (F1,26¼ 4.95,
P ¼ 0.035).

There was a significant interaction between visual status
and clothes (F4,23 ¼ 11.12, P < 0.001), such that visual status
had no effect on the black clothing condition (since the three
mean distances were all near-zero) but had a substantial effect
when the pedestrian wore the vest or biomotion configura-
tions. For all visual conditions, the pedestrian wearing
biomotion was seen at longer distances than pedestrians
wearing either the vest or black clothing, but this effect was
greater in the visually normal condition than that in the two
visual impairment conditions. The pedestrian wearing the vest
was seen at longer distances than the pedestrian wearing black
in all visual conditions, but the differences did not reach
significance for the cataract condition. The interactions
between visual status and glare (F2,25 ¼ 0.41, P ¼ 0.67),
between pedestrian clothing and glare (F2,25¼ 2.74, P¼ 0.08),
and between visual status, glare, and clothing (F4,23¼ 0.40, P¼
0.81) were not significant.

DISCUSSION

This study demonstrated that drivers’ ability to see and
respond to pedestrians at night is degraded by modest but
common visual impairments, even when drivers’ visual acuity
meets commonly adopted levels of visual acuity required for
driver licensure. Blurred vision (typically encountered when a
driver fails to wear optimal corrective lenses) and simulated
cataracts both reduced the ability of the drivers to recognize
pedestrians, with the cataract condition having a greater
impact. Although both the blur and simulated cataracts

reduced visual acuity to the same extent, cataracts reduced
contrast sensitivity to a greater extent than did blur, and it is
likely that this is the reason for the larger reduction in
pedestrian recognition. Irrespective of whether glare was
present, none of the drivers with simulated cataracts respond-
ed to the pedestrians wearing black, yet drivers wearing
blurring lenses responded to 42% (no glare) and 6% (glare) of
the pedestrians wearing black.

Although no previous studies have systematically investi-
gated the effects of blur and cataracts on the distances at which
drivers respond to pedestrians at night, our previous closed-
road study demonstrated that the frequency that pedestrians
were seen at night was reduced by similar levels of refractive
blur and cataracts.12 There is evidence that drivers with
cataracts have increased crash risk and impaired driving
performance compared with age-matched control driv-
ers,4,30,31 and refractive blur has been shown to significantly
impair other aspects of driving performance.12,32,33 Nonethe-
less, the present study is the first to quantify how these
impairments reduce the distances at which drivers respond to
the presence of pedestrians at night, a critical safety variable.34

Importantly, both the refractive blur and cataract simulation
conditions resulted in a substantial impact on pedestrian
conspicuity at night, even though the reduction in visual acuity
was only moderate. This suggests that even relatively small
reductions in acuity can represent threats to safety. Further,
this finding indicates that not all causes of acuity reduction are
equal, since the cataract-induced acuity loss was far more
debilitating than the blur-induced acuity loss. In addition, these
data support other studies that have suggested that licensing
standards might benefit from including measures such as
contrast sensitivity that may provide additional information
that can be used to predict safety outcomes.35 The strong
impact of visual impairment on pedestrian conspicuity in this
study stands in contrast to the finding that the ability to steer
and maintain proper lane position is more robust to blur.10,32,36

This pattern of optical blur being more disruptive for some
abilities (e.g., seeing pedestrians) than for others (e.g.,
steering) is consistent with the selective degradation hypoth-
esis suggested by Leibowitz and Owens. This hypothesis
asserts that drivers’ robust steering abilities, combined with the
relatively low frequency with which hazards such as pedestri-
ans are encountered at night, can prevent drivers from
appreciating the extent to which their visual abilities are
impaired by low illumination and/or optical blur.37

The effects of headlamp glare effectively halved the
likelihood that drivers detected the presence of a pedestrian
on average, regardless of clothing condition, and also
significantly decreased the distances at which pedestrians
were recognized. This finding that the presence of glare at
night reduces pedestrian conspicuity is in general accord with
that of Theeuwes et al.,17 who found that the ability of drivers
to detect simulated pedestrians at the roadside at night was
significantly decreased, even when the illumination levels of
the simulated glare sources mounted on the vehicle’s hood
were relatively low. Similarly, Ranney et al.,16 using a night
driving simulator, reported that the presence of glare slowed
the detection of pedestrians.

Clothing that included retroreflective tape in a biological
motion configuration was shown to be relatively robust to the
effects of both visual impairment and glare, whereas pedestri-
ans wearing either a reflective vest or black clothing were
rarely recognized in time for drivers to stop at a safe distance.
This finding confirms and extends previous work on pedestrian
clothing.25,26,38,39 The conspicuity benefits of biomotion were
evident in this study for all conditions. Pedestrians wearing the
biomotion clothing configuration were recognized significantly
more often and at significantly longer distances than pedestri-
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ans wearing either the retroreflective vest (that incorporated
the same amount of retroreflective tape) or black clothing.
Importantly, the relative benefit of the biomotion was
consistent; even when vision was impaired, response distances
for biomotion were 5–8 times greater than for vest in the blur
and cataract conditions.

An advantage of the approach taken in this study is that the
only factor that varied between tests was the visual status of
the participants as manipulated by the filters. In studies that

have compared driving performance between participants
with and without cataracts, many other variables may have
differed between groups apart from their visual status. In
studies that compare performance before and after cataract
surgery, performance may also be influenced by the length of
time between tests and by practice effects. In the approach
adopted here it was possible to minimize the effects of practice
on the tests by randomizing the order in which the filters were
applied. There are, however, inherent limitations in simulating

FIGURE 2. Mean distances (þ 1 SEM) at which drivers responded to the presence of a pedestrian as a function of the visual status of the drivers and
pedestrian clothing in the absence (top) and presence (bottom) of glare.
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the effects of cataracts or any other type of visual impairment,
in that although the use of simulated visual impairments
allowed us to isolate the effects of vision, it is recognized that
the effects observed may not perfectly reflect those from
people who have gained substantial experience in living with
their visual impairment.

Collectively these results provide strong evidence that
pedestrian conspicuity at night is decreased by moderate visual
impairments and in the presence of the glare from oncoming
headlamps. Clothing that incorporates retroreflective tape in a
biomotion configuration can significantly improve the conspi-
cuity of pedestrians, especially for drivers with common types
of visual impairment. The implications of these results are that
particularly at night, drivers should be encouraged to wear
their optimum optical correction to maximize their ability to
see pedestrians from distances that allow them to respond
safely. These findings, together with those of Keeffe et al.,3

who showed that 80% of drivers who failed to meet the visual
requirements for driving had uncorrected refractive error,
suggest the need for greater emphasis by licensing and health
care authorities of the need to wear appropriate optical
corrections when driving, particularly at night. Further,
cataract surgery should be encouraged early enough that
potentially dangerous reductions in visual performance are
avoided. Future studies are required to further explore the
impact of uncorrected refractive error, cataracts, and other
forms of visual impairment on driving performance and safety
and to determine the value of visual measures, such as
straylight testing and contrast sensitivity, on predicting driver
performance and safety, particularly at night.
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