
DOI: 10.1111/j.1467-8659.2009.01352.x COMPUTER GRAPHICS forum
Volume 28 (2009), number 6 pp. 1618–1631

Evenly Spaced Streamlines for Surfaces: An Image-Based

Approach

Benjamin Spencer1, Robert S. Laramee1, Guoning Chen2 and Eugene Zhang2

1Department of Computer Science, Swansea University, SA2 8PP Wales, United Kingdom

{csbenjamin, R.S.Laramee}@swansea.ac.uk
2School of Electrical Engineering and Computer Science, Oregon State University, 2111 Kelley Engineering Center, Corvallis, OR 97331

{chengu, zhange}@eecs.oregonstate.edu

Abstract

We introduce a novel, automatic streamline seeding algorithm for vector fields defined on surfaces in 3D space.

The algorithm generates evenly spaced streamlines fast, simply and efficiently for any general surface-based

vector field. It is general because it handles large, complex, unstructured, adaptive resolution grids with holes and

discontinuities, does not require a parametrization, and can generate both sparse and dense representations of the

flow. It is efficient because streamlines are only integrated for visible portions of the surface. It is simple because

the image-based approach removes the need to perform streamline tracing on a triangular mesh, a process which

is complicated at best. And it is fast because it makes effective, balanced use of both the CPU and the GPU. The

key to the algorithm’s speed, simplicity and efficiency is its image-based seeding strategy. We demonstrate our

algorithm on complex, real-world simulation data sets from computational fluid dynamics and compare it with

object-space streamline visualizations.

Keywords: flow visualization, vector field visualization, streamline seeding, surfaces

1. Introduction

The problem of developing fast and intuitive methods of

vector field visualization has received a great deal of attention

in recent years. The analysis of flow in computational fluid

dynamics models is of particular importance since modern

solvers generate very large, complex data sets.

One popular approach to the task is the class of texture-

based methods. Examples include spot noise [vW91], LIC

[CL93] and more recently, LEA [JEH01] and IBFV [vW02].

These methods operate by mapping a noise function and

texture onto every point of the data set, generating a dense

and highly detailed view of motion within the vector field.

A second family of techniques is based around stream-

lines; curves in the domain that are tangent to the velocity

of the flow field. The use of streamlines to depict motion in

vector fields is of key interest in many areas of flow visual-

ization. The low visual complexity of the technique coupled

with scalable density means that important flow features and

behaviour may be expressed elegantly and intuitively, in both

static and interactive applications. Since one of the primary

appeals of using streamlines is their visual intuitiveness, a

great deal of prior research has focussed on effective seeding

and placement within the vector field. All streamline-based

flow visualization techniques have to face the seeding prob-

lem, that is, finding the optimal distribution of streamlines

such that all the features in the vector field are visualized.

One popular approach to this problem stems from the use of

evenly spaced streamlines, i.e. streamlines that are distributed

uniformly in space. Specifically, this work has centred around

ensuring streamlines are evenly spaced, of an optimal length

and are spatio-temporally coherent (Figure 1).

Until relatively recently, the task of distributing stream-

lines uniformly onto 3D surfaces has received comparatively

little attention. This is due in part to the numerous difficulties

encountered when performing particle tracing in 3D space.

In this paper, we propose a novel and conceptually simple

method of seeding and integrating evenly spaced streamlines

for surfaces by making use of image space. In previous ap-

proaches, streamlines are first seeded and integrated in object

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and
Blackwell Publishing Ltd. Published by Blackwell Publishing,
9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main
Street, Malden, MA 02148, USA.

1618

B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach 1619

Figure 1: Visualization of flow at the surface of a cooling

jacket. The upper image presents an overview of the sur-

face. The lower image focuses on the bottom left-hand cor-

ner of the jacket. The mesh is comprised of approximately

227 000 adaptive resolution polygons. Detailed images of

sample grids have been presented earlier [Lar04].

space. The result is then projected onto the image plane. In

our approach, we reverse the classic order of operations by

projecting the vector field onto the image plane, then seed-

ing and integrating the streamlines. The advantages of this

approach are as follows:

• Streamlines are always evenly spaced in image space,

regardless of the resolution, geometric complexity or

orientation of the underlying mesh (Figure 1).

• Streamlines are never generated for occluded or other-

wise invisible regions of the surface.

• Various stages of the process are accelerated easily using

programmable graphics hardware (Section 3.3).

• The user has a precise and intuitive level of control over

the spacing and density of the streamlines.

• The algorithm is fast, resulting in support for user-

interaction such as zooming, panning and rotation

(Section 5).

• The distribution of the streamlines remains constant,

independent of the user’s viewpoint, e.g. zoom level.

• The algorithm decouples the complexity of the under-

lying mesh from the streamline computation and so

does not require any parametrization of the surface

(Section 3).

• The algorithm is simple and intuitive and thus could be

incorporated into any visualization library.

However, in order to obtain these characteristics, certain

challenges, both technical and perceptual, must first be over-

come. We describe these in detail in the sections that follow.

To our knowledge, this is the first general solution with an

accompanying description to the problem of seeding evenly

spaced streamlines for surfaces in 3D since the fast and pop-

ular 2D algorithm was presented by Jobard and Lefer [JL97]

over 10 years ago.

The rest of this paper is organized as follows. In Section 2,

we review previous related literature. In Section 3, we break

down our method into multiple stages and describe each

one in detail. We then propose several visual enhancements

in Section 4 which help accentuate the perception of 3D

space, the motion of the flow and the visual appeal of the

streamlines. In Section 5, we demonstrate our technique by

providing images and performance timings of the algorithm

at work, using data generated by CFD solvers. Finally, we

conclude in Section 6 with a summary of our method together

with several promising avenues of future research.

2. Previous Work

In our review of the literature, we focus on automatic stream-

line seeding strategies as opposed to manual or interactive

techniques [BL92]. See Laramee et al. [LHD∗04] and Post

et al. [PVH∗03] for more comprehensive overviews of flow

visualization literature.

2.1. Evenly spaced streamlines in 2D

Turk and Banks introduce the first evenly spaced stream-

line strategy [TB96]. The algorithm is based on an iterative

optimization process that uses an energy function to guide

streamline placement. Their work is extended to paramet-

ric surfaces (or curvilinear grids) by Mao et al. [MHHI98].

They adapt the aforementioned energy function to work in 2D

computational space analogous to the way that Forssell and

Cohen [FC95] extended the original LIC algorithm [CL93]

to curvilinear grids.

The Turk and Banks algorithm [TB96] is enhanced by

Jobard and Lefer [JL97] who introduce an accelerated

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1620 B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach

version of the automatic streamline seeding algorithm. This

algorithm uses the streamlines to perform what is essentially

a search process for spaces in which streamlines have not

already been seeded. Animated [JL00] and multiresolution

versions of the algorithm [JL01] have been implemented.

Mebarki et al. [MAD05] introduce an alternative approach

to that of Jobard and Lefer [JL97] by using a search strategy

that locates the largest areas of the spatial domain not con-

taining any streamlines. Liu and Moorhead [LM06] present

another alternative approach capable of detecting closed and

spiraling streamlines. Li et al. [LHS08] describe a seeding

approach that resembles hand-drawn streamlines for a flow

field.

2.2. Evenly spaced streamlines in 3D

Mattausch et al. [MT∗03] implement an evenly spaced

streamline seeding algorithm for 3D flow data and incorpo-

rate illumination. The technique does not generate evenly

spaced streamlines in image space however, but object

space.

Li and Shen describe an image-based streamline seed-

ing strategy for 3D flows [LS07]. The goal of their work

is to improve the display of 3D streamlines and reduce vi-

sual cluttering in the output images. Their algorithm does

not however, necessarily, result in evenly spaced streamlines

in image space. Streamlines may overlap one another after

projection from 3D to 2D. Furthermore, unnecessary com-

plexity is introduced by performing the integration in object

space.

We also note the closely related, automatic streamline

seeding strategies of Verma et al. [VKP00] and Ye et al.

[YKP05]. These techniques seed streamlines first by extract-

ing and classifying singularities in the vector field and then

applying a template-based seeding pattern that corresponds

to the shape of the singularity. Chen et al. [CML∗07] also use

a topology-based seeding strategy.

We have chosen to base our work on that of Jobard and

Lefer [JL97] due to its clarity of exposition and elegant im-

plementation. Their evenly spaced seeding algorithm has be-

come a well-known classic flow visualization technique.

3. Evenly Spaced Streamlines for Surfaces

Here we present the details of our algorithm starting with a

short discussion of why we chose an image-based approach.

3.1. Object versus parameter versus image space

In order to seed evenly spaced streamlines for surfaces, sev-

eral challenges must first be addressed. To begin with, per-

spective projection can destroy the evenly spaced property of

the streamlines (for example, Figure 14). Undesirable visual

clutter may arise due to bunching of projected streamlines on

surfaces near-perpendicular to the view vector. Secondly, vi-

sualization in 3D space is view-independent. Streamlines are

likely to be generated for occluded surfaces which incurs a

much greater computational overhead. Thirdly, zooming and

panning of the viewpoint introduces problems with arbitrary

levels of detail. In order to keep the coverage of the vector

field constant, new streamlines would need to be integrated

whenever the view changes. At high levels of magnification

streamlines would need to lie relatively close together in

object space, requiring a complex algorithm to detect which

parts of the model were in view and which were not. Avoiding

the generation of streamlines for non-visible regions outside

the viewing frustum creates difficulty and introduces another

layer of complexity.

The process of tracing streamlines over a 3D surface is

made complex by the problem of particle tracing, which

can be performed in either object or parameter space. In

object space, a data structure is required which permits mi-

gration of particles from one polygon to another as they

move around the surface. The process is made more difficult

when polygons differ in area by six or more orders of magni-

tude as they typically do in meshes from CFD (for example,

Figure 1). Tracing streamlines on surfaces demands robust

intersection testing and numerically stable methods of han-

dling special cases, such as when streamlines pass through

vertices. Finally, checking for collisions between streamlines

may require geodesic distance checking; a process which is

typically very computationally expensive.

In parameter space, the mesh is treated as a locally Eu-

clidean two-manifold. While this approach simplifies the

process of particle advection, the task of parametrizing the

surface is still very complex, especially when the structure is

topologically intricate. Furthermore, parametrization intro-

duces a distortion when mapping back onto physical space,

and can also produce errors in the vector field.

3.2. Method overview

Our algorithm overcomes all of these difficulties by perform-

ing streamline integration in image space utilizing a multi-

pass technique that is both conceptually simple and compu-

tationally efficient. It operates by projecting flow data onto

the view plane, selecting and tracing seed candidates to gen-

erate the streamlines, and finally rendering both geometry

and streamlines to the framebuffer. To generate our images

we use a 3D polygonal model of a flow data set. Technically,

the velocity is defined as 0 at the boundary (no slip condi-

tion) so we have extrapolated the velocity from just inside the

boundary for visualization purposes. Each vertex describes

the direction and magnitude of the flow at that point on the

surface. An overview diagram describing each conceptual

stage of the algorithm can be seen in Figure 2.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach 1621

Figure 2: An Overview diagram for generating evenly

spaced streamlines on surfaces. Here, n is the frame number.

3.3. Flow data projection

One of the key goals of our algorithm is to map the flow

data into a structure over which streamlines may be traced

effectively. To accomplish this we use a technique in which

the flow information at each vertex is encoded into the colour

and alpha channels of the frame buffer. This approach has

several useful properties.

• The sparse flow data stored at each vertex of the mesh is

automatically interpolated to an arbitrary level of detail

using graphics hardware.

• Occluded surfaces are automatically discarded by z-

testing and frustum culling.

• Rendering may be carried out in hardware. This is both

fast and allows for the use of pixel and vertex shaders

to compute flow projection.

• The complex problem of integrating evenly spaced

streamlines over a 3D mesh is reduced to a simpler

2D problem.

Since perspective projections are view-variant, each ve-

locity vector has to be transformed to homogeneous clip

space at each frame before being encoded and rendered to

the frame buffer. Transforming, projecting and encoding each

flow vector is a task ideally suited to programmable graphics

hardware since the computationally expensive matrix multi-

plications involved can be carried out using the GPU.

To pass the flow data to the graphics card, we store each

flow velocity vector f as a float3 texture coordinate at each

vertex. We also scale f by the reciprocal of the maximum

magnitude |f max| in the data set, thus mapping |f | to the

range [0, 1]. Flow data encoding and rendering is performed

on the GPU by a single pass vertex and pixel shader. The

vertex shader performs the following operations on each

vertex v:

1. Add f to p, where f is the flow vector belonging to v

and p is the position of v in object space.

2. Transform f and p to homogeneous clip space using a

world-view-projection matrix such that each vector is

represented by a homogeneous (x, y, z, w) matrix.

3. Store the w component of the vector f

4. Transform f and p into inhomogeneous screen space

by dividing by wf and wp, respectively.

5. Subtract f from p to localize the flow velocity to the

origin.

6. Multiply f by the stored value of w thereby reversing

the foreshortening effect of the transform by cancelling

out the perspective divide. This step is important for

two reasons: first, the precision of the encoded data on

distant surfaces is not diminished. Secondly, particle

advection step length does not become a function of

z-depth, thus reducing computation time.

7. Map the x and y components of f to the red and green

channels of the framebuffer by outputting the diffuse

vertex colour as:

r = 2d−1 + fx(2d−1 − 1) (1)

g = 2d−1 + fy(2d−1 − 1). (2)

Here, d is the bit depth of each colour channel. The output

from this projection represents a velocity image of the flow

field (Figure 3, top left-hand panel). Every pixel with an

appropriate depth value stores a vector that can be decoded

on an as-needed basis during the streamline seeding and

integration process (Section 3.5).

In addition to encoding the flow velocity, we also store a

16-bit representation of the z-depth at each pixel using the re-

maining blue and alpha channels. Regions of the framebuffer

which are not filled by triangles have a zero depth value and

can be used to determine which pixels do not lie on the sur-

face. Depth information is important when both seeding the

streamlines and detecting discontinuities, aspects which are

described in Section 4.

There are several additional options available if greater

numerical accuracy is desired. We can normalize the

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1622 B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach

Figure 3: Different stages of our algorithm: (upper left-hand

panel) the velocity image result from vector field projection,

(upper right-hand panel) the local regions (and their local

boundary edges) of the geometry after projection to image

space, (lower left-hand panel) evenly spaced streamlines in

image-space with edge detection, (lower right-hand panel) a

composite image of the streamlines and a shaded rendering

of the intake port.

vector samples in an attempt to reduce loss of precision

since the magnitude information is not critical (only the di-

rectional) for computing streamlines. We can also realize

arbitrary levels of numerical precision by using a high dy-

namic range display buffer or multiple rendering passes. For

example, we can store a 16-bit (or greater) representation

of any arbitrary vector component, vn, by using both the r

and g channels (or more) for storage of vn. Longer stream-

lines could be shortened to streamlets. However, we have

found these measures unnecessary. A simple, single-pass,

hardware-based projection produces streamlines with the

same accuracy as an object-spaced, CPU approach. This can

be seen in Figures 14 and 15 which compare the CPU, object-

space and GPU, image-based approaches side-by-side. The

image-based streamlines follow the same paths and depict

the same flow characteristics as the object-space streamlines

and are very suitable for visualization purposes. If an engi-

neer is interested in exact velocity values, they simply click

on the mesh at the point of interest to retrieve it (rather than

using streamlines).

3.4. Rasterized image space search

Once the velocity image has been rendered to the frame-

buffer, we can proceed by identifying suitable points on the

Figure 4: Image-based seeding. (a) The image is sequen-

tially scanned at intervals of d sep from left to right and top to

bottom. (b) A viable seed point is found and streamlines are

traced in that distinct region. (c) Scanning continues down

the image. (d) Another viable grid-based seed point is found

and the rest of the vector field is visualized with streamlines.

mesh at which we can seed the streamlines. The problem of

properly visualizing multiple, locally discontinuous regions

is depicted in Figure 3 (upper right-hand paper). Here, each

coloured zone represents a local region of the geometry after

projection to 2D space, in which we render streamlines. To

ensure that we find discontinuities, we divide up the frame

buffer using a grid and sequentially attempt to seed a stream-

line at the centre of each cell. The dimensions of the grid cells

should ideally be the same as the user-supplied distance of

separation between streamlines, d sep. A cell is deemed to be

a suitable seed candidate if both of the following conditions

are met:

• The z-depth is non-zero, indicating that the seed point

lies on the mesh.

• There are no streamlines that lie closer than d sep to the

seed point.

Starting from the top-left hand corner of the image, our

algorithm sequentially scans across and downwards until

the bottom-right cell has been reached (Figure 4). We call

the seeds resulting from the rasterized image-spaced search,

grid-based seeds. In practice, only a few streamlines are

seeded in this fashion, the rest being placed by the vec-

tor field-based seeding strategy described in the following

section.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach 1623

3.5. Streamline integration

When a property is defined and advected on visible portions

of a surface in 3D space, its end position is independent of

whether its projection to the image plane takes place before

or after the integration [LvWJH04]. As each grid-based seed

point is determined (shown in red in Figure 5), we perform

a modified version of the 2D evenly spaced streamline al-

gorithm of Jobard and Lefer [JL97]. From the grid-based

seed, the particle tracer integrates forwards and backwards

through the flow. Upon termination, the algorithm then at-

tempts to seed new streamlines. We call these type of seeds

vector field-based seeds. At regular intervals along the length

of the streamline curve, new candidate seedlings at a perpen-

dicular distance d sep are tested. Whenever a valid seed point

is discovered, a new streamline is traced from it and pushed

onto a queue. When no more seedlings can be found, the

next streamline is popped from the queue and the process is

repeated until the queue is empty. A more detailed overview

of this algorithm can be found in previous literature [JL97].

At each iteration, the flow velocity at the position of the

particle is computed by looking up the pixel value h at the

corresponding position in image space. Inverting the trans-

form used to originally encode the data into the velocity

image results in the flow velocity vector f (u, v):

fu =
hr − 2d−1

2d−1 − 1
fv =

hg − 2d−1

2d−1 − 1
. (3)

The particle tracer terminates when the proximity between

two neighbouring streamlines drops below the user-specified

threshold dtest(dtest ≈
dsep

2
), or when the z-depth drops to zero

indicating the edge of the mesh has been reached. Proximity

testing is accelerated using a static grid, the cells of which

contain pointers to the streamline elements already placed.

The size of each cell is d sep, making the proximity test a

simple matter of checking the cells adjacent to and containing

the current element.

The problem of a streamline immediately terminating by

incorrectly detecting immediate proximity to itself is ad-

dressed by introducing another condition into the proximity

check (Figure 6). Specifically, neighbouring samples may

only be considered when the dot product between the direc-

tion of motion and the relative position of the neighbouring

sample is greater than zero. That is, when:

δxα

δt
(xβ − xα) +

δyα

δt
(yβ − yα) > 0, (4)

where α is the sample belonging to the current streamline

and β a neighbouring sample tested for proximity checking.

x and y represent the position of the samples on the grid

and t the interval over which the particle is integrated. This

solution bears resemblance to previous work [LS07].

Figure 5: Seed points: (top row) A gas engine simulation.

(bottom row) A cooling jacket data set. The red circles repre-

sent seed points placed by our scanline algorithm (grid-based

seeds). Blue circles are those seeded by other streamlines

(vector field-based seeds).

Figure 6: Proximity testing: The dot product between the

direction of motion (δx, δy) and the relative position of the

neighbouring sample β n − α, determines whether β n is

tested. In this case, β 0 to β 2 have negative products and

are not tested. β 3 and β 4, however, have positive prod-

ucts and will subsequently trigger the termination of the

streamline.

3.6. Discontinuity detection

Tracing streamlines over a projected mesh differs from con-

ventional integration over a planar flow field due to potential

geometric discontinuities arising from edges and occluding

surfaces. If the particle tracer is not aware of these fea-

tures, undesirable artefacts may appear when integrating the

streamlines. An example of such an artefact can be seen when

a streamline abruptly changes direction due to a geomet-

ric discontinuity generated by one surface partially occlud-

ing another. Conversely, two such overlapping surfaces may

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1624 B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach

Figure 7: Edge detection. Top left-hand panel: a close-up

view of an edge from the diesel engine data set. Top right-

hand panel: the same view with streamlines. Bottom left-hand

panel: no edge-detection applied. Notice how the streamlines

run off the edge of the upper surface then suddenly change

direction due to the flow over the lower surface (highlighted

in red). Bottom right-hand panel: the same scene with edge

detection. The underlying structure of the flow mesh is now

more clearly reflected by the streamlines.

exhibit the same flow direction allowing a streamline to seam-

lessly cross from one surface to the other (Figure 7, bottom

left-hand panel).

Given that our algorithm operates in image space, it is im-

portant to detect discontinuities when integrating streamlines

so as to reflect the edges and silhouettes of the mesh. Our

solution to this problem is to use the encoded output from the

z-buffer stored in the blue and alpha channels of the frame

buffer to track the depth value of each streamline element.

Using this information, we augment the set of termination

criteria to take into account surface geometry. In addition to

the conditions specified by Jobard and Lefer [JL97], stream-

lines are also terminated when either:

1. The z-depth drops to zero indicating that the edge of

the model has been reached.

2. The z-depth changes too abruptly indicating that the

edge of two overlapping regions has been reached.

More specifically, if the change in the depth between

two samples exceeds a user-defined threshold then the

streamline is terminated. This termination condition

can also be expressed as follows:

∣

∣

∣

∣

dz

df

∣

∣

∣

∣

> ǫ. (5)

Here z is the z-depth, f is the absolute position of the

streamline on the flow field and ǫ is a user-defined thresh-

old. Choosing a suitable value for ǫ depends on the distance

between the near and far clipping planes. In our implemen-

tation, we adjusted the range of the z-depth information to

fit closely to the dimensions of the mesh. We found a value

of ǫ ≈ 0.3% yields good results. Alternatively, one could

include the z-component into the distance calculation.

We found that using the gradient of the depth buffer worked

well for edge detection, however achieving clean edges

still proved difficult since streamlines would often terminate

before reaching an edge boundary. This was caused by the

proximity of streamlines on the other side of the edge falling

below d sep, thereby interfering with the edge detection. To

solve this problem, we impose a constraint on the streamline

distance check whereby streamline elements must be at ap-

proximately the same z-depth before proximity checking is

applied. This approach is effective at producing clean edges

and thus preserving the sense of depth and discontinuity

(Figure 7).

3.7. Visual coherency

Our decoupling of object space and image space results in a

streamline visualization with an unusual characteristic: new

streamlines are generated whenever the viewpoint changes.

One might presume that such a decoupling will result in dis-

turbing visual artefacts during exploration of the simulation

results. However, the algorithm yields streamlines with a high

level of visual coherency as a result of the image-based grid

used during the rasterized image space search described in

Section 3.4. The grid-based seeds resulting from this raster-

ized search tend to remain in the same place (in image space)

when the viewpoint changes slowly. Since the seeding algo-

rithm starts with the grid-based seeds the vector field-based

seeds ultimately stemming from the grid-based seeds tend to

maintain a pleasing level of visual coherency. However, we

also offer an option for users wishing to suppress the stream-

line generation process during changes to the viewpoint. This

offers even faster interaction and the streamlines only require

subsecond computation times after the user has modified the

viewing parameters.

4. Streamline Rendering and Enhancements

Once the streamlines have been computed for the visible por-

tions of the mesh, the next stage deals with rendering the data

to the framebuffer. Before rendering and compositing the fi-

nal image, the velocity image used to compute the streamlines

can first be replaced. While our colour encoding describes

the velocity and direction of the flow, the mapping is rela-

tively complex and it is not intuitive or easily decipherable

at a glance. Furthermore, the lack of any directed lighting

means that a full sense of depth is not always conveyed.

We use a colour gradient mapped to the magnitude of the

velocity and which is used to compute the diffuse colour

at each vertex of the flow mesh. Re-rendering using diffuse

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach 1625

illumination coupled with specular highlighting greatly im-

proves the appearance of the scene at the expense of another

rendering pass (as in Figure 14).

4.1. Flow animation

Animating the streamlines at interactive frame rates so as

to better convey a sense of the downstream direction in the

flow is a useful feature. We accomplish this by adapting the

method described by Jobard et al [JL97] whereby a periodic

intensity function f (i) is mapped onto the streamline:

f (i) =
1

2

{

1 + sin

[

2π

(

i

N

)

+ θ

]}

. (6)

Here, i is a given sample on the streamline, N is the size

of the wave period interval and θ is the wave phase. The

output from this function can be used to vary a number of

attributes including streamline width, alpha value and colour.

We define θ per frame as θ = 2π n

M
, where n is the current

frame number and M is the number of frames per period.

The effect resulting from varying θ is a series of visual cues

moving along the length of the streamline in the direction of

motion.

Our implementation utilizes a particle tracer with an adap-

tive step-size which distributes samples along the length of

the streamline regardless of the magnitude of the flow. One

drawback with the sinusoidal function described above is that

the flow velocity appears constant at all points on the stream-

line. This is as a result of information lost by the uniform

spacing of samples and results in an non-optimal perception

of the flow field magnitude.

To correct this, we store the time taken by the integrator

to reach each streamline element and use this information to

independently calculate the value of the parameter, i. This

means that as θ is varied, the resulting wave pattern travels

faster in regions of higher velocity magnitude. A demonstra-

tion of this feature can be found on the video that accompa-

nies this paper.

4.2. Perspective foreshortening

A desirable result of perspective projection is the sense of

depth produced by foreshortening. Using a fixed value of d sep

in image space means that distant surfaces have the same pro-

jected density of streamlines as those nearby. When overlaid

and rendered onto the underlying mesh, the resulting effect

could be considered counter-intuitive in certain situations.

To address this, we propose dynamically adjusting the

value of d sep depending on the distance between the surface

and the view plane. The desired outcome is to alter the den-

sity of streamlines in image space so that it more closely

resembles a projection of evenly spaced streamlines in world

Figure 8: Top panel: a top view of the gas engine sim-

ulation without perspective foreshortening. Bottom panel:

the same scene with perspective foreshortening. Notice how

the streamline density is much higher towards the rear

of the model. In addition to varying d sep, we have also ad-

justed the thickness of the streamlines to compensate for the

change in density.

space. For a given point with depth z on the flow mesh, we

calculate the new separating distance d ′
sep as being:

d ′
sep =

dsep(zmax + zmin)

2z
(7)

Where zmin and zmax are equal to the minimum and max-

imum visible points on the surface, respectively. Depending

on the position and orientation of the mesh, the overhead

from proximity checking is generally slightly higher than

usual. Figure 8 demonstrates perspective foreshortening with

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1626 B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach

Figure 9: Top: visualization of a diesel engine simulation

with coarse, heavily weighted streamlines. Bottom: with fine,

tapering streamlines. The output from the periodic intensity

function has been used to determine the thickness of each

streamline.

one image exhibiting a variable density of streamlines. No-

tice how the evenly spaced property is still maintained while

conveying a more realistic sense of depth.

4.3. Variable width and tapering streamlines

Varying the width of the streamlines can be used, both to

enhance certain flow features, as well as improve aesthetic

appearance. Figure 9 demonstrates two examples of variable

width. The right-hand example defines the width w(i) at any

given point i on the streamline w as:

w(i) = 1 + (wmax − 1) sin

(

2π
i

imax

)

, (8)

where imax is the length of the streamline and wmax is the max-

imum width. In this example, the value of d sep is relatively

Figure 10: Visualization of flow through the gas engine sim-

ulation. Here, d sep is set as a function of flow importance.

Regions of slower flow exhibit a higher streamline density.

low the and the streamlines relatively thick so as to create an

artistic, hand-painted appearance. Figure 9 also demonstrates

the result of varying the streamline width using the output

from the periodic intensity function f (i). In the neighbouring

example wmax is equivalent to d test so as to create a very

dense and highly detailed flow effect. The first example uses

the output from w(i) to vary the streamline thickness.

4.4. Increasing information content

There are several ways in which the information conveyed

by our seeding algorithm may be increased. To begin with

we can extend the technique outlined in 4.2 by decreasing

d sep in regions of greater importance or increasing flow com-

plexity. For example, flow velocity, vorticity and proximity

to critical points all yield scalar values and may be used

to control streamline density. By encoding these values into

the velocity image, we can guide the streamline placement

algorithm into rendering areas of greater definition where

appropriate. Figure 10 demonstrates the effect of mapping

d sep to flow importance. In this example, regions of the field

with low magnitude correspond to a higher streamline den-

sity. Notice how the density of the streamlines increases in

the regions containing flow features. Here a saddle point, a

sink and the separatrix connecting them are emphasized by

the streamlines that are no longer evenly spaced.

By decreasing d sep to approximately one pixel we can

also obtain complete coverage of the vector field. This is

highlighted in Figure 11 where the colour of each streamline

is mapped to the flow velocity. In addition we can also reduce

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach 1627

Figure 11: A close-up visualization of flow through the

diesel engine simulation. In this example d sep has been set to

2.0 and d test to 0.1 × d sep.

d test to a arbitrarily small value. This has the effect of relaxing

the separation constraints, allowing streamlines to converge

and bunch together. By setting d test << d sep streamlines tent

to converge on areas of increasing flow complexity and sin-

gularities in the vector field. An example can be seen in

Figure 12. In this instance, vortex cores and periodic orbits

within the flow are highlighted by the increase in density. We

have verified the correctness of this result based on our expe-

rience of extracting these same features directly [CML∗07].

Figure 3 shows d sep mapped to depth of field. Figure 10

shows d sep mapped to velocity magnitude. Figure 11 shows

d sep ≈ 2 pixels in order to gain complete coverage of the

vector field, thus maximizing information content. Figure 14

shows d sep mapped to the dot product of the view vector

with the surface normal which can give the appearance of

streamline density as a function of distance to the surface,

i.e. the object-space method. We emphasize that in fact, d sep

can be mapped to any property or scalar field of the data

set arbitrarily. What is shown here are only a few of the

possibilities.

5. Implementation and Results

We tested our algorithm on a range of data sets taken from

complex CFD simulations. To obtain high-quality results,

we use a second-order Runge–Kutta particle tracer with an

adaptive step size in the sub-pixel range. Our test system in-

cluded an Intel Core 2 Duo 6400 processor with 2GB RAM

Figure 12: Visualization of flow through the gas engine sim-

ulation. By setting d test to 0.05 × d sep, streamlines bunch

together highlighting loops within the flow field.

and an nVidia GeForce 7900 GS graphics card. Given that

the flow projection and mesh rendering passes are handled

by the GPU, we found that increasing the complexity of the

underlying model did not adversely affect the time taken to

generate an image. Except when the number of polygons

was relatively high, our graphics card capped the frame rate

at 60Hz. In order to render the streamlines to the framebuffer,

however, the memory associated with the device needed to

be locked at each frame. Reading from video memory typi-

cally incurs a read-back penalty (we encountered it to be ap-

proximately 570ms per megabyte of framebuffer data) which

adversely affects performance. However the net gain of off-

loading computationally expensive tasks onto the graphics

hardware meant that this was an acceptable trade-off. In all

our examples, the underlying colour gradient is mapped to

flow velocity.

Figure 13 demonstrates a ring surface. In this example,

d sep has been reduced to 2.0 and the alpha channel is varied

using Equation (6). This gives the appearance of an image-

based flow effect such as LIC, although each visible fibre is

actually a streamline.

Figure 14 uses high-detail data from the computed flow

through two intake ports. Here, the colour scheme has

been chosen to highlight slow-moving flow. Notice how the

streamlines fit well around the small holes on top of each of

the two intake lines. We also compare our algorithm with an

object-based approach (middle image). There is no visible

difference in terms of the accuracy between each method of

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1628 B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach

Figure 13: The simulation of flow through a ring. The vis-

ible spectrum colour gradient has been overlaid with dense

streamlines, The widths of which are varied by a sinusoidal,

periodic intensity function.

streamline integration. Further results are illustrated in the

accompanying video.

The data set in Figure 1 is a snapshot from a simulation

of fluid flow through an engine cooling jacket. The adap-

tive resolution mesh is composed of over 227 000 polygons

and contains many holes, discontinuities and seeding zones.

Despite the high level of geometric complexity, our algo-

rithm computes evenly spaced streamlines cleanly and effi-

ciently. In this instance, using a technique based on surface

parametrization would be especially difficult owing to the

complex topology of the shape.

In Figure 15, we demonstrate the flexibility of our al-

gorithm in handling arbitrary levels of magnification. The

left-most image shows a profile view of a gas engine simula-

tion cut-away with object-based streamlines. The next image

Figure 14: The visualization of flow at the boundary surface of two intake ports. (Left) With our novel, image-based streamlines.

(Middle) With full-precision, object-based streamlines computed on the CPU. (Right) High-contrast, image-based streamlines.

This mesh is comprised of approximately 222 000 polygons at an adaptive resolution.

shows the same data set rendered using image-based stream-

lines. The remaining images show progressively higher fac-

tors of magnification with the small square in the first frame

corresponding to the field of view in the final frame. Note

how the spacing of the streamlines automatically remains

uniform, independent of the level of magnification.

Table 1 compares the time taken to integrate streamlines

over the velocity image for each of the four models de-

scribed above. The figures describing the size of the flow

field are calculated by summing the number of visible pix-

els belonging to the flow mesh that are rasterized onto the

framebuffer. Our performance times are comparable to pre-

vious 2D seeding algorithms. Furthermore, our algorithm is

approximately two orders of magnitude faster than the CPU,

object-based method owing to the reduced computational

complexity.

The CPU, object-based method requires more than 60 s of

computation time (several minutes). It is worth noting that

our implementation of the original evenly spaced streamline

algorithm is not fully optimized. Several enhancements and

improvements have been proposed that both speed up and re-

fine seeding and placements of streamlines [LM06], however

we have deliberately kept our implementation simple so as

to concentrate on extending it to a higher spatial dimension.

6. Accuracy

There are several additional options available if greater nu-

merical accuracy is desired. We can normalize the vector

samples since the magnitude information is not critical (only

the directional) for computing streamlines. We can also re-

alize arbitrary levels of numerical precision by using a high

dynamic range display buffer or multiple rendering passes.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach 1629

Table 1: Streamline generation timing figures for a variable value of d sep. In these examples, the integration step size is set to 1 pixel.

Foreshortening and edge detection is enabled. The dimensions of the framebuffer upon which each mesh is rendered is 5002 pixels. % is the

amount of the image plane covered by the geometry after projection.

d sep (pixels)

Scene % 1.0 2.0 4.0 8.0 16.0 32.0

Gas Engine 39.3% 1977.6 ms 627.49 ms 244.21 ms 95.27 ms 46.76 ms 18.93 ms

Diesel Engine 39.6% 1455.08 ms 456.58 ms 166.28 ms 73.44 ms 29.69 ms 16.20 ms

Ring Surface 41.3% 1392.65 ms 368.39 ms 132.23 ms 53.79 ms 24.41 ms 12.59 ms

Cooling Jacket 39.3% 3774.56 ms 1345.37 ms 592.95 ms 250.81 ms 126.44 ms 46.55 ms

Figure 15: Zooming: Visualization of the flow at the surface of a gas engine simulation at progressively higher levels of

magnification. The left-most image was generated using a full floating-point, object-based algorithm computed on the CPU.

The successive images were generated using our novel, image-based technique.

For example, we can store a 16-bit (or greater) representation

of any arbitrary vector component, vn, by using both the r

and g channels (or more) for storage of vn. Longer stream-

lines could be shortened to streamlets. However, we have

found these measures unnecessary. A simple, single-pass,

hardware-based projection produces streamlines with the

same accuracy as an object-spaced, CPU approach. This can

be seen in Figures 14 and 15 which compare the CPU, object-

space and GPU, image-based approaches side-by-side.

The full precision, floating point, object space technique

we use for comparison is adapted directly from Jobard and

Lefer’s original algorithm [JL97]. We implement particle

advection using the local coordinate frame of the occupied

triangle to interpolate flow velocity. Migration to adjacent

polygons is also tracked. Proximity checking is accomplished

by computing the geodesic distance across the surface to

neighbouring streamlines. Algorithm 1 describes pseudocode

outlining the particle tracing step of this process. While an

object space approach is very accurate, geodesic distance

checking incurs a high performance penalty. As a result,

complete coverage of the surface takes considerably longer

than our image space approach.

Notice how the image-based streamlines follow the same

paths and depict the same flow characteristics as the object-

space streamlines making them very suitable for visualization

purposes (Figures 14 and 15). If an engineer is interested in

exact velocity values, they simply click on the mesh at the

point of interest to retrieve it (rather than using streamlines).

We also point out that no exact method for tracing indi-

vidual trajectories exists. Visualization of vector fields using

individual trajectories can raise questions with respect to ac-

curacy in general, due to the discrete nature of the simulation

data. First, data samples are only given at discrete locations

such as cell centres or cell vertices. Interpolation schemes are

then used to reconstruct the vector field between the given

samples. Secondly, the given data samples themselves are

numerical approximations, e.g. approximate solutions to a

set of partial differential equations. Thirdly, the given flow

data are often only a linear approximation of the underlying

dynamics. Finally, the visualization algorithms themselves,

e.g. streamline integrators, have a certain amount of error

inherent associated with them.

In summary, approaches on how to handle such error is a

topic for other papers [CML∗07, CMLZ08].

7. Conclusion and Future Work

In this paper, we have proposed a novel, image-based

technique for generating evenly spaced streamlines over

surfaces—a problem that has remained unsolved for more

than 10 years. We have shown that our algorithm effectively

places streamlines on data sets with arbitrary topological and

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

1630 B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach

Algorithm 1 TRACESTREAMLINE(SeedPoint, MaxSteps).

1: Particle ← SeedPoint

2: Streamline.Add(Particle) {Add initial segment to streamline}
3: for i = 0 to MaxSteps do

4: if ISCLOSEDLOOP(Streamline) then

5: break

6: end if

7: {Get a list of triangles within the geodesic range of Particle}

8: PolyList ← FASTMARCHINGGEODESIC(Particle, d test)

9: {If Particle passes too close to a streamline in PolyList}
10: if ISCLOSETOSTREAMLINE(Particle, PolyList, d test) then

11: break

12: end if

13: {If Particle passes too close to a singularity in Polylist

14: if ISCLOSETOSINGULARITY(Particle, PolyList, d test) then

15: break

16: end if

17: Particle ← INTEGRATEPARTICLE(Particle)

18: Streamline.Add(Particle) {Add segment to streamline}
19: end for

20: return Streamline

geometric complexity. We have also demonstrated how a

sense of depth and volume can be conveyed while preserving

the desirable evenly spaced property of the algorithm’s 2D

counterpart. Our results show that an image-based projec-

tion approach and seeding strategy can automatically handle

zooming, panning and rotation at arbitrary levels of detail.

The efficiency of the technique is also highlighted by the

fact that streamlines are never generated for invisible regions

of the data set. The accuracy of the visualization is demon-

strated by comparing the results of image- and object-based

approaches.

As future work we would like to explore the possibil-

ity of implementing the entire algorithm on programmable

graphics hardware. Finally, we would like to investigate the

feasibility of parallelizing the streamline integration step, so

as to take advantage of the increasing availability of multi-

core processors. We would also like to extend our algorithm

to handle unsteady flow.

Acknowledgement

This research was funded in part by the EPSRC Research

Grant EP/F002335/1.

References

[BL92] BRYSON S., LEVIT C.: The virtual wind tunnel.

IEEE Computer Graphics and Applications 12, 4 (1992),

25–34.

[CL93] CABRAL B., LEEDOM L. C.: Imaging vector fields

using line integral convolution. In Proceedings of ACM

SIGGRAPH’ 1993, Annual Conference Series (1993),

pp. 263–272.

[CML*07] CHEN G., MISCHAIKOW K., LARAMEE R. S.,

PILARCZYK P., ZHANG E.: Vector field editing and periodic

orbit extraction using morse decomposition. IEEE Trans-

actions on Visualization and Computer Graphics 13, 4

(2007), 769–785.

[CMLZ08] CHEN G., MISCHAIKOW K., LARAMEE R. S.,

ZHANG E.: Efficient morse decompositions of vector fields.

IEEE Transactions on Visualization and Computer Graph-

ics 14, 4 (2008), 1–15.

[FC95] FORSSELL L. K., COHEN S. D.: Using line inte-

gral convolution for flow visualization: curvilinear grids,

variable-speed animation, and unsteady flows. IEEE

Transactions on Visualization and Computer Graphics 1,

2 (1995), 133–141.

[JEH01] JOBARD B., ERLEBACHER G., HUSSAINI M. Y.:

Lagrangian-Eulerian advection for unsteady flow visual-

ization. In Proceedings IEEE Visualization ’01 (2001),

IEEE Computer Society, pp. 53–60.

[JL97] JOBARD B., LEFER W.: Creating evenly-spaced

streamlines of arbitrary density. In Proceedings of the Eu-

rographics Workshop on Visualization in Scientific Com-

puting ’97 (1997), vol. 7, pp. 45–55.

[JL00] JOBARD B., LEFER W.: Unsteady flow visualiza-

tion by animating evenly spaced streamlines. In Computer

Graphics Forum (Eurographics 2000) (2000), vol. 19(3),

pp. 21–31.

[JL01] JOBARD B., LEFER W.: Multiresolution flow visual-

ization. In WSCG 2001 Conference Proceedings (Plzen,

Czech Republic, 2001), pp. 33–37.

[Lar04] LARAMEE R. S.: Interactive 3D Flow Visualiza-

tion Using Textures and Geometric Primitives. PhD thesis,

Vienna University of Technology, Institute for Computer

Graphics and Algorithms, Vienna, Austria, 2004.

[LHD*04] LARAMEE R. S., HAUSER H., DOLEISCH H., POST

F. H., VROLIJK B., WEISKOPF D.: The state of the art in

flow visualization: dense and texture-based techniques.

Computer Graphics Forum 23, 2 (2004), 203–221.

[LHS08] LI L., HSIEH H.-S., SHEN H.-W.: Illustrative

streamline placement and visualization. In IEEE Pacific

Visualization Symposium 2008 (2008), IEEE Computer

Society, pp. 79–85.

[LM06] LIU Z. P., MOORHEAD, II R. J.: An advanced evenly

spaced streamline placement algorithm. IEEE Transac-

tions on Visualization and Computer Graphics 12, 5

(2006), 965–972.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

B. Spencer et al. / Evenly Spaced Streamlines for Surfaces: An Image-Based Approach 1631

[LS07] LI L., SHEN H.-W.: Image-based streamline gener-

ation and rendering. IEEE Transactions on Visualization

and Computer Graphics 13, 3 (2007), 630–640.

[LvWJH04] LARAMEE R. S., vAN WIJK J. J., JOBARD B.,

HAUSER H.: ISA and IBFVS: Image space based visual-

ization of flow on surfaces. IEEE Transactions on Visual-

ization and Computer Graphics 10, 6 (2004), 637–648.

[MAD05] MEBARKI A., ALLIEZ P., DEVILLERS O.: Farthest

point seeding for efficient placement of streamlines. In

Proceedings IEEE Visualization 2005 (2005), IEEE Com-

puter Society, pp. 479–486.

[MHHI98] MAO X., HATANAKA Y., HIGASHIDA H., IMAMIYA

A.: Image-guided streamline placement on curvilinear

grid surfaces. In Proceedings IEEE Visualization ’98

(1998), pp. 135–142.

[MT*03] MATTAUSCH O., THEUSSL T., HAUSER H., GRÖLLER

E.: Strategies for interactive exploration of 3d flow us-

ing evenly spaced illuminated streamlines. In Proceed-

ings of the 19th Spring Conference on Computer Graphics

(2003), pp. 213–222.

[PVH*03] POST F. H., VROLIJK B., HAUSER H., LARAMEE

R. S., DOLEISCH H.: The state of the art in flow visualiza-

tion: feature extraction and tracking. Computer Graphics

Forum 22, 4 (2003), 775–792.

[TB96] TURK G., BANKS D.: Image-guided streamline

placement. In ACM SIGGRAPH 96 Conference Proceed-

ings (1996), pp. 453–460.

[VKP00] VERMA V., KAO D., PANG A.: A flow-guided

streamline seeding strategy. In Proceedings IEEE Visu-

alization 2000 (2000), pp. 163–170.

[vW91] vAN WIJK J. J.: Spot noise-texture synthesis for

data visualization. In Computer Graphics (Proceedings

of ACM SIGGRAPH’91) (1991), SEDERBERG T. W., (Ed.),

vol. 25, pp. 309–318.

[vW02] vAN WIJK J. J.: Image based flow visualization.

ACM Transactions on Graphics 21, 3 (2002), 745–754.

[YKP05] YE X., KAO D., PANG A.: Strategy for seeding

3D streamlines. In Proceedings IEEE Visualization 2005

(2005), pp. 471–476.

c© 2009 The Authors
Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

