
 Open access Journal Article DOI:10.1109/12.364531

EVENODD: an efficient scheme for tolerating double disk failures in RAID
architectures — Source link

Mario Blaum, James T. Brady, Jehoshua Bruck, Jai Menon

Institutions: IBM, California Institute of Technology

Published on: 01 Feb 1995 - IEEE Transactions on Computers (IEEE Computer Society)

Topics: Nested RAID levels, RAID, Parity drive and Disk array

Related papers:

 Row-diagonal parity for double disk failure correction

 X-code: MDS array codes with optimal encoding

 A case for redundant arrays of inexpensive disks (RAID)

 Polynomial Codes Over Certain Finite Fields

 STAR : An Efficient Coding Scheme for Correcting Triple Storage Node Failures

Share this paper:

View more about this paper here: https://typeset.io/papers/evenodd-an-efficient-scheme-for-tolerating-double-disk-
bdrj6a96kf

https://typeset.io/
https://www.doi.org/10.1109/12.364531
https://typeset.io/papers/evenodd-an-efficient-scheme-for-tolerating-double-disk-bdrj6a96kf
https://typeset.io/authors/mario-blaum-14q2e3jf5s
https://typeset.io/authors/james-t-brady-4dmgmt2e30
https://typeset.io/authors/jehoshua-bruck-bhg89m8j3k
https://typeset.io/authors/jai-menon-3318h4und9
https://typeset.io/institutions/ibm-3vfvs9ir
https://typeset.io/institutions/california-institute-of-technology-3qpga2aa
https://typeset.io/journals/ieee-transactions-on-computers-1pdvkvya
https://typeset.io/topics/nested-raid-levels-17rf1g3t
https://typeset.io/topics/raid-18xjia7t
https://typeset.io/topics/parity-drive-3s24x077
https://typeset.io/topics/disk-array-1a33qdb8
https://typeset.io/papers/row-diagonal-parity-for-double-disk-failure-correction-48j0oss50a
https://typeset.io/papers/x-code-mds-array-codes-with-optimal-encoding-4s1vh4gbq8
https://typeset.io/papers/a-case-for-redundant-arrays-of-inexpensive-disks-raid-3hqd903gnz
https://typeset.io/papers/polynomial-codes-over-certain-finite-fields-5cflmum51m
https://typeset.io/papers/star-an-efficient-coding-scheme-for-correcting-triple-54ybrkfrbt
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/evenodd-an-efficient-scheme-for-tolerating-double-disk-bdrj6a96kf
https://twitter.com/intent/tweet?text=EVENODD:%20an%20efficient%20scheme%20for%20tolerating%20double%20disk%20failures%20in%20RAID%20architectures&url=https://typeset.io/papers/evenodd-an-efficient-scheme-for-tolerating-double-disk-bdrj6a96kf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/evenodd-an-efficient-scheme-for-tolerating-double-disk-bdrj6a96kf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/evenodd-an-efficient-scheme-for-tolerating-double-disk-bdrj6a96kf
https://typeset.io/papers/evenodd-an-efficient-scheme-for-tolerating-double-disk-bdrj6a96kf

192 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO.2, FEBRUARY 1995

EVENODD: An Efficient Scheme for Tolerating

Double Disk Failures in RAID Architectures
Mario Blaum, Senior Member, IEEE, Jim Brady, Fellow, IEEE, Jehoshua Bruck, Senior Member, IEEE, and Jai Menon

Abstract- We present a novel method, that we call EVEN ODD,
for tolerating up to two disk failures in RAID architectures.
EVEN ODD employs the addition of only two redundant disks and
consists of simple exclusive-OR computations. This redundant
storage is optimal, in the sense that two failed disks cannot
be retrieved with less than two redundant disks. A major ad
vantage of EVENODD is that it only requires parity hardware,
which is typically present in standard RAID-S controllers. Hence,
EVENODD can be implemented on standard RAID-S controllers
without any hardware changes. The most commonly used scheme
that employes optimal redundant storage (i.e., two extra disks)
is based on Reed-Solomon (RS) error-correcting codes. This
scheme requires computation over finite fields and results in a
more complex implementation. For example, we show that the
complexity of implementing EVENODD in a disk array with 15
disks is about 50% of the one required when using the RS scheme.

The new scheme is not limited to RAID architectures: it can be
used in any system requiring large symbols and relatively short
codes, for instance, in multitrack magnetic recording. To this end,
we also present a decoding algorithm for one column (track) in
error.

Index Terms- RAID architectures, erasure-correcting codes,
Reed-Solomon codes, disk arrays.

I. INTRODUCTION

D ISK arrays [16], in particular RAID-3 and RAID-5 disk

arrays, have become an accepted way for designing

highly available and reliable disk subsystems. In such arrays,

the exclusive-OR of data from some number of disks is

maintained on a redundant disk. When a disk fails, the data

on it can be reconstructed by exclusive-ORing the data on the

surviving disks, and writing this into a spare disk. The mean

time to data loss (MTIDL) of such a system is proportional

to the square of the disk mean time between failures (MTBF)

and inversely proportional to the square of the number of disks

and the mean time to reconstruct (MTIR) the failed disk [16].

Data are lost if a second disk fails before the reconstruction

is complete. Such arrays have acceptable MTIDL when the

number of disks in the subsystem is small. However, the

average number of disks in an installation is growing because

of two reasons. First, disk form factors are becoming smaller,

so each disk holds less data. Second, installation requirements

Manuscript received November 29, 1993; revised April II, 1994. This
paper was presented in part at the International Symposium in Computer
Architecture (ISCA), Chicago, IL, April 1994.

M. Blaum and J. Menon are with the IBM Research Division, Almaden
Research Center, San Jose, CA 95120 USA.

J. Bruck was with the IBM Research Division, Almaden Research Center,
San Jose, CA 95120. He is now with the California Institute of Technology,
Pasadena, CA 91125 USA.

J. Brady is with the IBM SSD, San Jose, CA 95120 USA.
IEEE Log Number 9407129.

for data are increasing, caused by normal growth and by the

increase in new forms of data like audio, video and fax. As

these trends accelerate, it was shown that traditional arrays

which can protect from the simultaneous loss of no more than

one disk will prove to be inadequate by the year 2000 [7]. Also,

[7] explores whether improving disk MTBF or decreasing

MTIR can adequately compensate for the increase in the

number of disks per installation, and concludes that it will not.

As a result, a lot of interest has arisen in Large Disk Arrays

and in attempting to design systems that will not lose data even

when multiple disks fail simultaneously [2], [5], [6], [9], [13].

For this, the use of erasure-correcting codes [9] with higher

correcting capability than simple parity is suggested (in coding

theory terminology, an erasure is an error whose location is

known).

Theoretically, in order to retrieve the information lost in two

failed (erased) disks, we need at least two redundant disks (in

coding theory, this is known as the Singleton bound [I2]). A

natural scheme, then, for recovering the information lost in

two disks, is using the so called Reed-Solomon codes [I2].

However, Reed-Solomon codes involve operations over finite

fields. It would be desirable to have codes doing exclusive

OR operations only, as in the case of simple parity. This

was achieved in [17], although this code has the following

drawback: when the error correcting capability of the code

is broken, there is an infinite error propagation. Moreover,

since the code is of convolutional type, there is an overhead

redundancy at the end of the data. For higher correcting

capability, the codes in [8], [I4], [I5] have the same disadvan

tages. Therefore, the problem still is finding codes based on

exclusive-OR operations and of block type. The solution was

achieved in [I], [2], [5], [10], [II] and later generalized in [6]

for multiple erasures. However, those solutions, although very

simple, still involve a recursion at the encoding process and

during small write operations. There are-applications in which

the size of each individual symbol can be as big as a whole

sector: during updates operations, we will want to update a

minimal number of redundant symbols when we update a

single information symbol. The schemes in the papers above

force the updating of most of the redundant symbols each time

an information symbol is updated.

In this paper, we present an efficient encoding procedure that

is based on exclusive-OR operations and independent parities,

therefore there is no recursion. We also present a simple

decoding procedure for two erasures and also for a single error.

As a result of the simple encoding procedure the small write

operation is greatly simplified, since any modified information

0018-9340/95$04.00 © 1994 IEEE

BLAUM et al.: EVENODD: AN EFFICIENT SCHEME FOR TOLERATING DOUBLE DISK FAILURES IN RAID ARCHITECTURES I93

symbol affects only two symbols in the redundancy most of

the time. This implies that when a disk sector is modified,

only two other disk sectors will need to be modified at the

same time. We note here that EVENODD corresponds to a

new 2-erasure correcting code which is optimal in terms of

the redundancy and has very efficient encoding and decoding

algorithms. Hence, it can be used in other applications where

there is a need of correcting two erased symbols with low

complexity, for example, in multitrack magnetic recording [1],

[14], [15], [17]. As we stated above, we will show how to

adapt the decoding algorithm to correct one error in such
applications.

The paper is organized as follows: in the next section we

make some simple reliability calculations that show why single

parity arrays may not be reliable enough for some applications

and justify the need to consider building arrays which can

survive two simultaneous disk failures. Then, in Section III, we

describe the encoding procedure used by our new EVENODD

scheme. In Section IV we present the corresponding decoding

procedure which will be used after the failure of one or

two disks, and we prove that it can, in effect, retrieve the

contents of up to two disks. We also show how to correct one

error. In Section V we give an algebraic description of the

code. In Section VI we address the implementation of small

write operations. In Section VII we address the complexity

of implementation of EVENODD by comparing it to that of

traditional Reed-Solomon codes. In Section VIII, we present

some concluding remarks. For a discussion of performance

issues, the reader is referred to [3].

II. RELIABILITY CALCULATIONS

Under assumptions of independent disk failures, [16] derives

an equation for mean time to data loss (MTIDL) for an N

disk system organized into groups of size G as

(MTBF) 2

MTTDL = N(G- 1)(MTTR). (1)

In this equation, MTBF is mean-time-to-failure of a single

disk and MTIR is the mean-time-to-repair of a single disk.

Assuming N = 96, G = 16, MTBF = 200000 hours and

MTIR = 1 hour, the mean time to data loss of the system

is 3000 years. This seems adequate, and seems to imply that

single parity is sufficient. However, there are two reasons why

the above calculation in (1) is too optimistic.

First, (1) does not take into account uncorrectable error rates

of disk devices. Uncorrectable error rates after error-correcting

codes are 1 error in 1013 bits read for current state-of-the-art

disks. Consider that a disk in a 15 + P (an array with 15 disk

and a single parity disk) array fails. Assume that each disk

has a capacity of 3 GB, so it has 6 million 512 byte sectors.

To reconstruct the failed disk, 90 million sectors (6 million

from each of the 15 surviving disks) must be successfully

read. There is a data loss if even one of these sectors cannot

be read successfully. The probability of reading all 90 million

sectors successfully is 0.96. This means that 4% of all disk

failures will result in data loss due to uncorrectable errors.

This may be unacceptable for many applications.

Another reason for having a second parity disk is the

fact that during the reconstruction process after a failure, the

system has no backup: a second failure during reconstruction

will translate in data loss. This is an unacceptable risk for

applications in which data integrity is essential.

The discussion above implies that single parity arrays may

not be sufficiently reliable for some applications. In this paper,

we focus on how to efficiently design arrays which can

withstand two simultaneous failures.

III. ENCODING

We will assume that there are m + 2 disks with the

information stored in the first m disks while the redundant

data are stored in the last two disks. It is possible, however,

to distribute the redundancy among all disks in order to

avoid bottleneck effects when repeated write operations are

performed. That is, we shall describe a scheme which is an

extension of RAID-4 (where parity is dedicated), but it can

be easily made an extension of RAID-S (where parity is

distributed).

We assume that m, the number of information disks, is a

prime number. This requirement is important, since without

this assumption the scheme would fail. It will become clear

when we prove our main result, i.e., the correction capability

of the code. However, the primality of m is not a very hard

constraining requirement. If we want to store an arbitrary

number of disks, not necessarily prime, we can take the next

prime following this arbitrary number and assume that there

are disks with no information (all the information bits are 0).

In order to simplify the presentation, we assume that each of

the m disks has only m - 1 symbols of information on it. Our

procedure works for disks with arbitrary capacity by treating

each block of m - 1 symbols separately. For simplicity, in

some of our examples, we will assume that each symbol is a

bit. In some applications, a symbol may be as big as a 512

byte disk sector. It is not necessary to assume that the symbols

are binary. (in fact, our scheme works even when the symbols

are elements in an arbitrary Abelian group).

Based on the assumptions above, the problem of tolerating

two disk failures can be described as follows:

Problem Definition: Consider an (m- 1) x (m + 2) array,

m a prime number, such that symbol aij, 0 ::;: i ::;: m- 2,

0 ::;: j ::;: m + 1, is the ith symbol in the jth disk. Again,

in some applications, a column of the array may be thought

as a disk and a symbol as a disk sector. The last two disks

(m and m + 1) are the disks with the redundant information.

The question is how to compute the content of the redundant

part based on the information part such that the information

contained in any two disks can be reconstructed from the other

m disks.

Our encoding scheme solves the foregoing problem and

requires only exclusive-OR operations for computing the re

dundancy.

Before formally describing the encoding procedure, we

consider the following notation: (n)m = j if and only if j = n

(mod m) and 0 ::;: j ::;: m- 1. For instance, (7)5 = 2 and

(-2)5 = 3. We also assume through this paper that there

194

is an imaginary 0-row after the last row, i.e., arn- 1,j = 0,

0 ::; j ::; m - 1 (with this convention, the array is now an

m x (m+2) array). This assumption is not necessary, but it is

useful for notational purposes as we will see in the description

of the code.

A. The Encoding Procedure

Let

rn-1

S = ffi am-1-t,t·

t=1

(2)

Then, for each l, 0 ::; l ::; m - 2, the redundant symbols are

obtained as follows:

rn-1

az,m = ffi az,t
t=O

(

m-1)

az,m+1 = S EB ffi a(l-t)m,t .
t=O

(3)

(4)

Equations (3) and (4) define the encoding. We have two

types of redundancy: horizontal redundancy and diagonal

redundancy. Disk m is simply the exclusive-OR of disks

0, 1, · · ·, m- 1. Its contents are exactly the same as the parity

contents of the parity disk in an equivalent RAID-4 array with

one less disk. Disk (m + 1) carries the diagonal redundancy

according to (4). Let us look closely at this equation, and

assume that the symbols are bits. We see that there are two

possibilities for the diagonal redundancy: the parity may be

even or odd. This even or odd parity is determined by bit

S in (2), which gives the parity of diagonal (m - 2, 1),

(m - 3, 2), · · ·, (0, m - 1). If this diagonal has an EVEN

number of 1 's, then we have even parity in the rest of the

diagonals. Otherwise, we have ODD parity. This is the reason

we call this scheme the EVENODD scheme.

The (m- 1) x (m + 2) array defined above can recover

the information lost in any two columns. In other words, the

minimum distance of the code is 3, in the sense that any

nonzero array in the code has at least 3 columns that are

nonzero. The proof relies on the fact that m is a prime number

and it is based on ideas similar to those in [1], [6], [10], [11].

Here, we prove it in the next section, by showing that the

decoding algorithm to be given there can retrieve any pair of

erased columns. This implies that the minimum distance of the

code is exactly 3, since, if we encode an array with only one

nonzero information column, the resulting encoded array will

have (column) weight exactly 3. The condition that a special

diagonal carries either even or odd parity is not arbitrary. We

will see in the examples that without this assumption, the

resulting code does not have minimum distance 3, therefore it

cannot retrieve any two columns that are erased.

As we can see, the encoding is very simple and circuits

implementing (3) and (4) are straightforward. More generally,

we would implement (3) and (4) in software in the RAID

controller, using exclusive-OR hardware. The next example

illustrates the encoding for m = 5.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 2, FEBRUARY 1995

Example 3.1: Let m = 5, and let the symbols be denoted

by aii, 0 ::; i ::; 3, 0 ::; j ::; 6. The redundant symbols are in

columns 5 and 6. A practical implementation of this example

is to consider 7 disks numbered 0 through 6, each disk has 4

disk sectors, the data sectors are on disks numbered 0, 1, 2, 3,

and 4, and the redundant disk sectors are on disks numbered

5 and 6. Equation (2) gives

S = a3,1 EB a2,2 EB a1,3 EB ao,4·

According to (3) and (4) the redundant symbols are obtained

as follows:

az,s = az,o EB az,1 EB az,z EB az,3 EB az,4,

o::;t::;3

ao,6 = S EB ao,o EB a3,2 EB az,3 EB a1,4

a1,6 = S EB a1,0 EB ao,1 EB a3,3 EB az,4

a2,6 = S EB az,o EB a1,1 EB ao,2 EB a3,4

a3,6 = S EB a3,0 EB a2,1 EB a1,2 EB ao,3·

For instance, assume that we want to encode the 5 columns

1 0 1 1 0

0 1 1 0 0

1 1 0 0 0

0 1 0 1 1

We have to fill up the last two columns with the encoded

symbols. Notice that S = a3, 1 EB a2,2 EB a1,3 EB ao,4 = 1.

Therefore, the diagonals will have odd parity. The encoding

gives the following array:

1 0 1 1 0 1 0

0 1 1 0 0 0 0

1 1 0 0 0 0 1

0 1 0 1 1 1 0

Notice that the sets of symbols associated with horizontal

parity are illustrated as follows:

<> <> <> <> <> <> -
Q Q Q Q Q Q

• • • • • •
Similarly, the sets of symbols associated with diagonal parity

are illustrated as follows (note that oo is associated with the

special diagonal that determines whether the diagonal parity

is EVEN or ODD):

<> .. Q • 00 <> .. Q • 00 <> ..
Q • 00 <> .. Q

• 00 <> .. Q •

BLAUM eta/.: EVENODD: AN EFFICIENT SCHEME FOR TOLERATING DOUBLE DISK FAILURES IN RAID ARCHITECTURES 195

Notice that we are assuming that in an (m- 1) x (m + 2)
array, the parity is stored in columns m and m + 1. However,

the next array may carry the parity in columns m + 1 and 0,

the next in columns 0 and 1, and so on. That way, the parity

gets equally distributed among all disks.

We also want to point out that if we do not make the

assumption that the diagonals carry either even or odd parity,

the code has not minimum distance 3 (in coding theory

terminology, the code is not maximum distance separable or

MDS [12)). In effect, assume that all the diagonals (except,

perhaps, diagonal (m- 2, 1), (m- 3, 2), · · · , (0, m -1)) carry

even parity. In other words, assume that the encoding is given

only by (3) and (4) but in (4), the parameter S is ignored.

Then, the following is a codeword of weight 2:

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 1 0

If columns 1 and 5 are erased in the array above, it is not

possible to retrieve them, since the all-zero array is also in

the code. This counter-example shows the importance of the

EVENODD assumption: it is the key to the MDS property of

the code.

IV. DECODING

An essential part of EVENODD is the decoding algorithm

for two erasures. This algorithm, to be described next, can

be implemented either in software or in hardware, depending

on the application. It will be executed when a disk fails, or

when two disks fail simultaneously. Then we prove that the

algorithm in effect corrects two erasures.

We also give a decoding algorithm that corrects one error,

i.e., only one column has failed, but its location is unknown.

This is not the model in RAID architectures, where disk

failures are catastrophic events in which an external pointer

identifies the failed disks. However, in other applications, like

in multitrack magnetic recording, track errors are common

[15].

Before giving the actual algorithm for correction of two

erasures, we give an example that illustrates the idea behind

it.

Example 4.1: We again assume that m = 5, as in Example

3.1. Assume that we have the following array, in which

columns (disks) 0 and 2 have been erased (lost):

? 0 ? 1 0 1 1

? 1 ? 0 0 0 1

? 1 ? 0 0 1 1

? 1 ? 1 1 0 0

This is the main case for the algorithm: two information

columns have been erased. The cases in which at least one

of the two parity columns has been erased are special cases

that are easy to handle, as we will see below.

The first step is finding the parity of the diagonals: it is

not difficult to see (and we will prove it in Theorem 4.1) that

this parity is given by the exclusive-OR of the bits of the two

parity columns. If this exclusive-OR is 0, then the diagonals

have even parity, otherwise they have odd parity. In the array

above, we can see that the exclusive-OR of the bits in the

two redundant columns is I, therefore the diagonals have odd

parity.
Next, the algorithm starts a recursion to retrieve the missing

bits .. a1,0 and a1,2 , 0 ~ l ~ 3. We first need an entry where

we can start. For instance, diagonal (3, 1), (2, 2), (1, 3), (0,

4) intersects column 2 in entry (2, 2) only: this is the special

diagonal, which has odd parity. Since the only bit missing in

this diagonal is bit (2, 2), by retrieving it using the other bits,

we conclude that a 2 2 = 0. Next we retrieve bit (2, 0) using

the horizontal parity, which is always even. We will obtain

a 2 0 = 0. Next, we consider the diagonal going through entry

(2: 0), which consists of the entries (2, 0), (1, 1), (0, 2), (3,

4), (2, 6). The only bit missing is in entry (0, 2), and we

conclude that a0 ,2 = 0. Again using the horizontal parity, we

conclude that a0 0 = 0. Now using the diagonal through (0, 0),

we obtain that ~ 3 , 2 = 0, which implies, using the horizontal

parity, that a3 ,0 = 1. Using the diagonal through (3, 0), we

obtain that a1,2 = 0, which finally implies that a1,o = 1. The

final reconstructed array is

0 0 0 1 0 1 1

1 1 0 0 0 0 1

0 1 0 0 0 1 1

1 1 0 1 1 0 0

The decoding algorithm to be given next formalizes the idea

behind this example.
Algorithm 4.1 (Two Erasure Decoding Algorithm): Consider

the (m - 1) x (m + 2) array of symbols aij, such that the last

two columns are redundant according to (2), (3), and (4). If

one column (disk) has failed, say column (disk) i, i =/=- m + 1,

then it can be retrieved using the exclusive-OR of columns

(disks) l, 0 ~ l ~ m, l =f=. i. If column (m + 1) fails, then the

symbols can be retrieved using (2) and (4).

Next, assume that columns (disks) i and j have failed, where

0 ~ i <j ~ m + 1. We have four cases:

i = m and j = m + 1, i.e., both the redundant disks

have failed. We can reconstruct disk m using (3) and disk

(m + 1) using (2) and (4). In other words, the reconstruction

is equivalent to the encoding.

i < m and j = m, namely, one redundant disk and one data

disk have failed. We can reconstruct disk i as follows: let

(

m-1)

S = a(i-l),,m+l EB E9 a(i-1-l)=,z ,

l=O

(5)

196 IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO.2, FEBRUARY 1995

where we assume that am- 1,1 = 0 for 0 ::; l ::; m + 1. Then, the array and (8) and (9), we find the syndromes. We obtain

(6)

and ak,m. 0 ::; k ::; m - 2, is obtained using (3) once disk

i is reconstructed.

i < m and j = m + 1, namely, one redundant disk and one

data disk have failed. We can reconstruct disk i using (3) and

disk m + 1 using (2) and (4) once disk i is reconstructed.

i < m and j < m. This is the main case. Both failed disks

carry information and we cannot retrieve them using the

parities separately, as in the previous three cases. We analyze

this case in detail.

Assume that am- 1 ,1 = 0 for 0 ::; l ::; m- 1 and compute

the diagonal parity S as follows:

S = (EB a1,m) EB (EB al,m+1) (7)
1=0 1=0

(i.e., S is the exclusive-OR of the symbols in columns m and

m + 1). Find the horizontal syndromes S(0) = Sb
0

), Sio), · · ·

, 5~~ 1 and the diagonal syndromes s<1l = Sb1
J, s?J, · · · ,

5~~1 as follows:

s<o) = LD a 1
u '\J7 u, (8)

l=O
l#i,j

5~ 1) = S EB au,m+l EB (i a(u-l)m,l) (9)
1=0
l#i,j

where 0 ::; u ::; m - 1. Next, we retrieve the symbols in

columns i and j as follows:

1) Sets+-- (-(j- i) -1)m and am-1,1 +-- 0 for 0::; l::;
m-1.

2 Le S<1J d s<o>) t as,j +-- (j+s)m EB a(s+(j-i))m,i an as,i +-- s EB

as,j·

3) Sets +-- (s- (j- i))m· If s = m- 1 then stop, else

go to step 2.

Algorithm 4.1 is recursive and very simple to implement

in software. We can also develop the recursion and obtain a

closed formula for each entry as a function of the syndromes.

This approach is useful if we want a hardware implementation.

Before proving that Algorithm 4.1 allows us to retrieve up to

two erased columns (which shows that the minimum distance

of the code is 3), we illustrate it with an example.

Example 4.2: Consider the same array as in Example 4.1.

We will reconstruct the missing columns (disks) 0 and 2 using

Algorithm 4.1 now.

The first step is finding the parameter S, which is the

exclusive-OR of the last two columns. We have seen that

S = 1, meaning that the diagonals have odd parity. From

s<o) = 0 1 0 1 0 and s(ll = 0 1 0 1 0.

Now, we start the recursion to retrieve the missing bits a1,o and

at, 2 , 0::; l::; 3. We sets+-- (-(j- i)- 1)m = (-3)5 = 2,

then,

a2,2 f- sill = 0 a2,0 f- s~O) EB a2,2 = 0 s+--0

ao,2 +-- S~
1

l EB a2,o = 0 ao,o +-- S~o) EB ao,2 = 0 s+--3

a3,2 f- s~l) EEl ao,o = 0 a3,0 f- S~O) ffi a3,2 = 1 s+--1

al ,2 f- s~l) EEl a3,0 = 0 a1,0 f- s;o) ffi a1,2 = 1 s+--4

The algorithm stops, since s = 4 = m-1. The reconstructed

array is the same as in Example 4.1.

We can see in this example the intuition behind the require

ment that m is a prime number: if m was not prime, there

would be cases in which the main recursion will stop before

all the entries in the two erased columns are received. We will

strongly use the primality of m in the proof to be given next.

For instance, if m = 4 (not a prime!), the following array is

in the code and it has weight 2:

1 0 1 0 0 0

0 0 0 0 0 0

-1 0 1 0 0 0

It is easy to show that in general, if m is not prime, the

code has minimum distance 2.

Next we prove that Algorithm 4.1 allows to retrieve up to

two erased columns, automatically showing that the minimum

distance of the code is 3.
Theorem 4.1: Algorithm 4.1 can correct up to any two

erased columns.

Proof If only one column is erased,~ the reconstruction

is done by using the parity, so assume that columns i and j

have been erased, 0 ::; i < j ::; m + 1. We consider the four

cases of Algorithm 4.1.

i = m,j = m + 1: This case is equivalent to the encoding.

i < m,j = m: Notice that S as given by (5) gives the parity

of diagonal ((i- 1)m, 0), ((i- 2)m, 1), .. · , (i, m- 1). This

diagonal is the only one that does not intersect column i, which

is unavailable. Since all the diagonals have the same parity S,

by solving for ak,i in (4), we obtain (6) which gives the erased

entries in column i. Once column i is obtained, the algorithm

finds column m using (3).

i < m, j = m+ 1: This case is again similar to the encoding.

i < j < m: First of all, we show that S as given by (7) gives

the diagonal parity, i.e., (2) and (7) are equivalent (of course,

we cannot use (2) to compute S since columns i and j are

unavailable). In effect, notice that, according to (3) and (4),

BLAIJM et al.: EVENODD: AN EFFICIENT SCHEME FOR TOLERATING DOUBLE DISK FAILURES IN RAID ARCHITECTURES 197

(~ al,m) $ CP, al,m+l)

= (EB (Ef) at,t)) EB (EB (s EB Ef) O(t-t)m,t))
l=O t=O l=O t=O

= (EB (EB. -l az,t)) EB (m l)S
l=O t=O

(£l (EB (Ef) 0'(!-t}m,t))
l=O t=O

(EB (Ef) Oz,t)) EB (EB (Ef) U(t-t)m,t))
l=O t=O 1=0 t=O

(10)

since m 1 is even, therefore (m - 1)S 0 mod 2.

Also, since we are assuming that am-l,t 0 (imaginary
row of zeros), we have

0 = (EB (Ef) O[,t)) EB ($ ($ 0(1-t),..,t))
l=O t=O 1=0 t=O

('ffi (Ef) az,t)) (EB ($ a(l-t)rn,t))
1=0 t=O 1=0 t=O

(

>n-1)

EB E9 Um-1-t,t

t=l

Thus, we obtain

(EB ($ at,t)) EB (EB ($ a(i-t)=,t))
1=0 t=O l=O t=O

m-1

E9 Um-1-t,t

t=1

which replaced in (10), gives

(

m-2) (m-2) m-1 E9 a1,m EB EfJ at,m+l = E9 am-1-t,t·

1=0 1=0 t=1

(11)

Equation (11) proves that (2) and (7) both give the parameter

S that determines the diagonal parity, as claimed.

Now we have to prove that columns i and j are uniquely
retrieved by the algorithm. Assume that the syndromes S.(O)

and sOl have been found according to (8) and (9). Having

set the parameters as (-(j- i) 1)m in the first step of the
algorithm, in step 2 we set

(1)
a(-(j-i)-l)m,j f- S'(i-l)m. (12)

Assignment (12) is correct in view of (4) and (9). Once we

have found a(-(i-i)-l)m.i we obtain a(-(j-i)-l)m,, by setting

s<o>
ac-U-iJ-l)m,i ,._ <-(i-i)-l)m EB ac-CJ-iJ-l)m,j· (13)

Assignment (13) is correct in view of (3) and (8).

Next, in step 3, the parameters is reset as (-2(.j- i) -1)m·

Going back to step 2, the algorithm sets

a(-2(j-i)-l)m,j f- .. , ~-.,..,.~·-•tm EB a(-(j-i)-l)m,i

(14)

(0)
a{-2(j-i)-l)m,1 ,._ Sc_2(j-i)-l}m EB a(-2(j-i)-l)m.i·

(15)

In general, having found a(-(1-l)(j-i)-l)m.i' 1 ~ l- 1 ~

m-2, the algorithm finds a{-l(j-i)-l)m.i and a(-!(j-i)-l},..,i

by setting

a(-l(j-i)-I)m.,i
s<t>

(-l(j-i)+j-1}= a{-(1-l)(j-i)-l)m,i

(16)

a(-l(j-i)-l}m.i +-- s~.'::l(j-i)-l)m@ a(-!(j-i)-l),.,j· (17)

Again, Assignment (16) is determined by (4) and (9), while

Assignment (17) is determined by (3) and (8).

Now, since m is a prime number, in particular, the numbers

m and j - i are relatively prime. Therefore, the m- 1 values

s = (-l(j- i) -l)m obtained in step 3 of the algorithm are

all distinct If we take l = m, we obtain s m - 1, and the

algorithm stops. Thus, the m-1 erased entries in both columns

i and j are obtained after m - 1 iterations of step 2. When the

mth value of s is determined, in step 3, the algorithm stops,

since s = m 1.

This completes the proof. D
Next, we give the decoding algorithm in case one column

is in error.
Algorithm 4.2 (One Error Decoding Algorithm): Consider

the (m 1) x (m + 2) array of symbols A (a;j). such

that the last two columns are redundant according to (2), (3),

and (4). Let B (b;1) be a possibly corrupted version of A.

Assume that at most one column is in error, i.e., A and B

coincide except perhaps in a single column. Further assume

that bp-l,j = 0 for all j 0, 1, · · · m + 1 (this is again the

imaginary row of zeros).
The decoding procedure works as follows. First, we com

pute the horizontal syndrome S(O) = S~O), S~O) · · ·, S~~l
as

sj0
> E9b;,1 (18)

1=0

and the diagonal syndrome s<1l S~ 1 l, sp> · · ·, 8~~ 1 as

(19)

for i 0, 1, · .. m - 1.

In the sequel Q and 1 stand for (0, 0, · · · , 0) and (I, 1, · · · ,

1), respectively. Next, we distinguish between the following

four cases:
Case 1: s<0> = Q, S(l) E {Q, 1}. In this case the algo

rithm concludes that no errors have occurred and no further

action is taken. Note that S(l) = Q corresponds to the case

in which all the diagonals have even parity, while S(l) = 1
corresponds to the case in which the diagonals have odd parity.

198

Case 2: S(o) =1- Q, SC1l E {Q, 1}. In this case the error is

in column m-the horizontal parity column. We can recon

struct this column by using (3).

Case 3: S(o) = Q, sCll f/_ {Q, 1}. In this case the error

is in column m + 1-the diagonal parity column. We can

reconstruct this column by using (2) and (4).

Case 4: S(o) =1- Q, SCll f/_ {Q, 1}. This is the main case.

The column in error must be one of the information columns.

The error itself is given by the first m - 1 bits of the

horizontal syndrome S(o). Hence, the problem is to locate

the information column in error. To this end we proceed as

follows. For any vector ;r_ = (x0 , x1, · · ·, Xn-d let p(;r_) =
(xn-1,xo, · · · ,xn-2) be the cyclic rotation of ;r_ to the right,

and let Pj (·) denote the result of applying p(·) successively

j times (for exan1ple, p3 (0, 1, 0, 0) = (1, 0, 0, 0)). We then

find the first index j with 0 :::; j :::; m - 1, such that

Pj(SC0l) E {SC1l ,1 EB SCll}. This index j corresponds to the

location of the column in error. If there is no such j, the

algorithm declares an uncorrectable error pattern. The final

step is to add modulo-2 the first m - 1 bits of the syndrome

S(0
) to the jth column of B = (bij)·

As we can see, Algorithm 4.2 involves cyclic shifts and

exclusive-OR operations only, which makes it very easy to

implement. Next we illustrate Algorithm 4.2 with an example.

Example 4.3: As in previous exan1ples, we assume m = 5.

Suppose we are given the following, possibly corrupted, array

(to which we have appended the imaginary zero row):

1 0 0 1 0 1 1

0 1 1 0 0 1 0

1 1 0 0 0 0 1

1 1 0 1 1 1 0

0 0 0 0 0 0 0

Using (18) and (19), we find that the horizontal and diagonal

syndromes are sCo) = (1, 1, 0, 1, 0) and sC1l = (0, 1, 0, 0,

1), respectively. Note that p 2 (~ 0) = 1 EB ~ 1 . Hence the column

at location j = 2, that is the third column from the left in

the array, is in error. Adding the first four bits of ~ 0 to this

column, we obtain the decoded array

1 0 1 1 0 1 1

0 1 0 0 0 1 0

1 1 0 0 0 0 1

1 1 1 1 1 1 0

V. ALGEBRAIC DESCRIPTION OF EVENODD

The array codes described in [6] were shown to be equiv

alent to Reed-Solomon codes of length m, m prime, with

operations taken modulo the polynomial Mm(x) = (xm -
1)/(x - 1) = xm-1 + xm- 2 + · · · + x + 1. Note that the

polynomial Mm(x) is not necessarily irreducible (in fact, it is

irreducible if and only if 2 is primitive in GF(m) [6]), and

therefore these codes are not defined over a field, but rather

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 2, FEBRUARY 1995

over the ring of polynomials of degree :::; m - 2 modulo

Mm(x).

In terms of a (m - 1) x (m + 2) array, we shall assume that

each column in the array is a polynomial modulo Mm(x). As

we have seen in the previous sections, it is also convenient to

assume that the array has an imaginary row of zeros, which

makes it an m x (m + 2) array. A cyclic shift of a column

in such array can cause the bit corresponding to the last row

to be nonzero. However, if that is the case, the arithmetic

modulo Mm (x) forces to take the complement of the shifted

column, restoring the zero in the last position. As in [6],

we will use the notation a(f3) = am_ 2(3m- 2 + · · · + a1{3 +
a0 to denote a polynomial modulo Mm (x). Thus a({3)b({3)

denotes polynomial multiplication modulo Mp(x). The usual

multiplication of polynomials is written as a(x) b(x).
With this notation, an alternative definition of EVEN ODD is

{A= (ao(f3), a1({3), · · ·, am-1({3), am(f3), am+1(f3)):

am ({3) = ~ ai ({3), am+l ({3) = ~ {3i ai ({3)}.

(20)

Note that the parameterS, defined in (2) and taking part in (4),

essentially renders (4) to be the sum of cyclic shifts modulo

Mm(x), rather than ordinary cyclic shifts.

The following is a parity-check matrix for EVENODD:

H = (1 1
1 {3

1 0)
0 1

(21)

Note that the parity symbols am ({3) and am+1 ({3) depend on

the information symbols but not on each other. This suggests a

generalization of EVEN ODD based on the parity-check matrix

given by (21), see [4] for more details. It is easy to see

using the parity-check matrix that the minimum distance of

EVEN ODD is 3, giving an alternative proof to the basic MDS

property of the code.

VI. SMALL WRITE OPERATIONS

In systems involving many disks, we often encounter the

situation in which many small write operations are needed.

A small write operation is a write that updates a single data

sector (one symbol). EVENODD offers great flexibility to do

this, since the symbols involved can have an arbitrary size.

Typically, we would implement a symbol as a disk sector.

Every time an information symbol is rewritten, and this

information symbol is not in diagonal (m- 2, 1), (m- 3, 2),

· · ·, (0, m -1), then only two redundant symbols are affected,

so we need only three read and three write operations. With

a symbol as a disk sector, when a disk sector is updated, in

most cases, we only need to read three disk sectors (the disk

sector being updated and two redundant disk sectors containing

parity) and write three disk sectors. Explicitly, if symbol aij,

0 :::; i :::; m- 2, 0 :::; j :::; m- 1, (i + j)m =1- m -1, is replaced

by symbol r (i.e., aij +--- r), we have to make the following

BLAUM et al.: EVEN ODD: AN EFFICIENT SCHEME FOR TOLERATING DOUBLE DISK FAILURES IN RAID ARCHITECTURES 199

modifications in the redundant symbols:

a;,m +--- a;,m EB a;j EB r (22)

a(i+i)m,m+l +--- a(i+i)m,m+l EB a;j EB r. (23)

On the other hand, if the rewritten information symbol is in

diagonal (m- 2, 1), (m- 3, 2), · · · , (0, m- 1), then all the

symbols in column m + 1 are affected (and of course, the

corresponding symbol in column m).

Explicitly, if symbol a;j, 0 ~ i ~ m- 2, 0 ~ j ~ m- 1,

(i + Jlm = m- 1, is replaced by symbol r (i.e., a;j +--- r),

we have to make the following modifications in the redundant

symbols:

a;,m +--- a;,m EB a;j EB r

at,m+1 +--- at,m+1 EB a;j EB r,

(24)

0 ~ t ~ m - 2. (25)

Again, we illustrate the small write operations with an exam

ple.

Example 6.1: Assume that the we have the following en

coded array:

0 0 0 0 0 0 0

1 1 0 1 0 1 0

0 1 1 1 0 1 1

0 1 0 0 1 0 0

Say, we replace entry (0, 1) by a I. Since it is not in diagonal

(3, 1), (2, 2), (1, 3), (0, 4), according to (22) and (23), we have

to modify symbols (0, 5) and (1, 6). The new array is

0 1 0 0 0 1 0

1 1 0 1 0 1 1

0 1 1 1 0 1 1

0 1 0 0 1 0 0

Thinking of columns as disks and symbols as disk sectors, we

had to access 3 sectors, one from each of 3 disks. Finally,

if we modify symbol (2, 2), since it is in diagonal (3, 1),

(2, 2), (1, 3), (0, 4), according to (24) and (25), we have to

modify symbols (2,5), (0,6), (1 ,6), (2,6), and (3,6). If columns

represent disks and symbols represent disk sectors, we still

only need to modify disk sectors on two disks in addition to

modifying the disk sector containing the data to be modified.

On one of the two redundant disks we need to change four

consecutive sectors, on the other redundant disk we need ·to

change a single sector. Changing four consecutive sectors takes

almost the same time as changing a single sector (since seek

and latency times are much larger than sector transfer times).

The new array in our example is

0 1 0 0 0 1 1

1 1 0 1 0 1 0

0 1 0 1 0 0 0

0 1 0 0 1 0 1

So far, in practical applications, we have considered each sym

bol as a 512-byte sector. There are many other possibilities,

since the size of a symbol offers great flexibility. For example,

another possible solution is to let each symbol be an 8-bit byte,

and m = 257 (a Fermat prime number). Therefore, we have

an array of up to 259 disks, more than enough for present and

future applications. Note that the array does not have to have

259 disks (this is just the maximum number); if it has fewer

disks, simply treat the remaining columns as having zeros.

Each column of the array consists of 256 bytes, i.e., half a

sector. In this case, a small write operation consists of writing

a whole column. Thus, the two redundant columns will be

modified accordingly. Say, each symbol a;,j, 0 ~ i ~ m- 2

in column j, 0 ~ j ~ m -1, is replaced by r;. Then, we have

to do the following modifications in the redundant symbols:

a;,m +--- a;,m EB a;,j EB r

a;,m+1 +--- ai,m+l EB a(i-j)m.i EB r(i-i)m

EB am-1-j,j EB rm-1-j,

(26)

(27)

where 0 ~ i ~ m-2. That is, when a sector is updated, the two

corresponding redundant sectors are also updated according to

(26) and (27).

VII. COMPLEXITY COMPARISON WITH EXISTING SCHEMES

In this section, we compare the complexity of EVEN

ODD with the one of a traditional error-correcting code,

a Reed-Solomon (RS) code [12]. Both EVENODD and a

RS code require an optimal number of redundant disks,

namely two. However, one major advantage of EVENODD

is that it only requires parity hardware, which is typically

present in standard RAID-5 controllers. Hence, EVENODD

can be implemented on standard RAID-5 controllers without

hardware changes. The scheme based on RS codes, on the

other hand, requires special hardware to support finite field

type of computations. Hence, it cannot be incorporated into

standard RAID-5 controllers. We note here that the 2-D

scheme of [9] has the same property as EVENODD, that

is, it only needs standard parity hardware. However, if we

assume that the m information disks are set in a square array of

side ;m, 2-D needs 2vm redundant disks while EVENODD

needs only two redundant disks. So, our scheme is much more

efficient.

Next we will make a detailed comparison between EVEN

ODD and RS schemes. We will consider RS codes over 8-bit

bytes, or GF(28) in the language of finite fields. This is a

standard in the industry, allowing for codes of length up to

257 bytes. More specifically, we will consider the finite field

generated by the primitive polynomial p(x) = 1 + x 2 + x 3 +
x 4 + x 8 . Let a be a primitive element in GF(28

) such that

p(a) = 0, and let m ~ 255. Then, a parity-check matrix for

the RS code is the following:

H = (1 1 1
1 a a 2

1

0
(28)

At the encoding, if b0 , b1 , · · ·, bm-l is a string of information

bytes, according to (28), the redundant bytes p and q are

200

obtained as follows:
m-1

p =EBb;
i=O

m-1

q = E9 b;a'.

i=O

(29)

(30)

Now, if we compare with the encoding procedure of EVEN

ODD given by (3) and (29), we can see that (3) and (29)

are equivalent. Therefore, the difference in complexity at

the encoding is a result of the difference in computing the

second redundancy disk, namely, (4) and (30). We analyze the

complexity of the encoding both for EVENODD and for the

RS scheme by counting the number of exclusive-OR (XOR)

operations for each of them.

We assume that each. symbol is an 8-bit byte, and the

information symbols conslitute an (m -1) x m array, where m

is prime. With this assumption, the number of XOR operations

due to (3) or (29) at the bit level is 8(m - 1)2
.

Let us count next the number of XOR's in (4) of EVEN

ODD. The first step is computing the symbol S, which is

given by (2). This takes (m- 2) XOR operations at the byte

level. At the bit level, this gives a total of 8(m- 2) XOR

operations. Now, for each l in (4), we have a total of m

XOR operations at the byte level. At the bit level, this gives a

total of 8m XOR operations for each l, and since l runs from

0 to m- 2, (4) takes 8(m- 1)m XOR operations. Adding

to the number of XOR operations used in computing S, (4)

takes a total of 8((m- 2) + (m- 1)m) = 8(m2 - 2) XOR

operations. We observe that this number is quadratic in m and

slightly bigger than the number of operations from (3). The

discrepancy is due to the calculation of S first, but we cannot

do better than quadratic complexity. By adding the total from

(3), we conclude that EVENODD needs a total of

8(2m2
- 2m- 1)

XOR operations.

Let us look at the RS scheme now, specifically at (30). Each

multiplication of a byte by a, is represented by the following

companion matrix A:

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

A=
0 0 0 0 1 0 0 0

(31)
0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 1 1 1 0 0 0

Notice that multiplying the byte (c0, c1, c2, c3, c4, c5, c6, c7) by
a takes 3 XOR operations. In fact, the outcome of multiplying

the byte above by the matrix A will produce the byte (c7, c0 ,

c1 EB c7, c2 EB c7, c3 EB c7, c4, c5, c6)· Therefore, multiplying
by ai will take 3i XOR operations. So, implementing (30) on

the bytes bo,b1,···,bm-1 takes

m-1 2

8(m _ 1) + L 3i = _3m __ +_1-,-3_m_-_1_6

i=1
2

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO. 2, FEBRUARY 1995

TABLE I

NUMBER OF XOR OPERATIONS NEEDED TO ENCODE (m-1) BYTES PER DISK IN A

DISK ARRAY WITH m INFORMATION DISKS

#of EVEN ODD Reed- improvement

information Solomon factor

disks

5 312 376 1.21

7 664 954 1.44

11 1752 3250 1.86

13 2488 5112 2.05

17 4344 10624 2.45

23 8088 24442 3.02

29 12948 46648 3.59

31 14872 56250 3.78

41 26232 124000 4.73

43 28888 142002 4.92

XOR operations. Since we have (m - 1) bytes, this gives a

total of

0.5(m- 1)(3m2 +13m- 16) = 1.5m3 +5m2
- 14.5m + 8

XOR operations. Adding the 8(m -1) 2 XOR operations from

(29), we conclude that the encoding of the RS scheme requires

1.5m3 + 13m2
- 30.5m + 16

XOR operations.
As we can see, the complexity of the encoding of EVEN

ODD is quadratic in the number of information disks m,

while the complexity of RS codes is cubic. Table I compares

EVENODD to RS codes for different values of m, assuming

that m is prime (as we have stated, this is not a hard constraint,

since EVENODD codes can be shortened to cover cases

in which m is not a prime). The last column of Table I

contains the quotient between the number in column 3 (i.e.,

the number of operations needed in the RS code) and the

number in column 2 (i.e., the number of operations needed in

EVENODD). For instance, we can see that for m = 43 (last

row), a RS code requires nearly 5 times as many operations

as EVENODD at the encoding.

We can see in Table I that the number of XOR operations

needed for encoding EVENODD decreases dramatically with

respect to a RS code when the number of disks increases.

Similar calculations show the advantage of EVENODD in

small write operations and in the decoding.

An alternative implementation of the encoding of RS codes

is implementing each matrix A i in hardware. Thus, we will

save XOR operations for larger values of m. However, the

hardware for this implementation is more complicated, and

the matrices A i are not sparse anymore, therefore EVEN ODD

still has the edge.

We also compared the complexity of EVENODD and the

RS based schemes with that of a simple parity scheme. The

number of operations required in implementing the parity

scheme on an m disk array with (m - 1) bytes per disk

is 8(m- 1) 2
. Hence, EVENODD is asymptotically twice as

complicated as simple parity. Notice that this is optimal since

there are two redundancy disks in EVENODD. The complexity

of the RS scheme is asymptotically about 0.1875m times more

BLAUM eta/.: EVENODD: AN EFFICIENT SCHEME FOR TOLERATING DOUBLE DISK FAILURES IN RAID ARCHITECTURES 201

TABLE II

COMPARISON OF THE NUMBER OF XOR OPERATIONS IN A SIMPLE

PARITY SCHEME WITH EVENODD AND RS SCHEMES

#of EVEN ODD RS

information vs. vs.

disks Parity Parity

5 2.43 2.93

7 2.30 3.31

11 2.19 4.06

13 2.15 4.43

17 2.12 5.18

23 2.08 6.30

29 2.07 7.43

31 2.06 7.80

41 2.05 9.68

43 2.04 10.06

complex than the simple parity scheme. Table II presents the

comparison for various values of m. As we can see, already in

the case of m = 23 EVENODD is about twice more complex

than the simple parity scheme (this is optimal), while the RS

scheme requires more than 6 times XOR operations compared
with the simple parity scheme.

VIII. CONCLUDING REMARKS

We have presented a novel method, called EVENODD, for

tolerating double disk failure in RAID architectures. EVEN

ODD has the following advantages over other methods pro

posed for recovery against two disk failures:

1) EVENODD employs the addition of only two redundant

disks for tolerating two disk failures (this is optimal).

2) It consists of simple exclusive-OR computations and

only requires parity hardware, which is typically present

in standard RAID-5 controllers. Hence, EVENODD can

be implemented in standard RAID-5 controllers without
any hardware changes.

3) It can be incorporated to known RAID techniques. For

example, parity can be distributed among all disks,

avoiding bottleneck effects when repeated write oper
ations are involved (RAID-5).

4) The symbols can have any size, from bits to multiple

sectors. There are no constrains to bits or to bytes.

5) Most small write operations affect two redundant sym

bols only, i.e., for every write we need up to three

read and three write operations. Only when the affected

symbol is in diagonal (m - 2, 1), (m - 3, 2), · · · ,

(0, m -1) we have to modify all the symbols in column

m + 1 and one symbol in column m. In any case, the
parities are independent.

6) The traditional known scheme that employs optimal

redundant storage (i.e., two extra disks) is based on

Reed-Solomon (RS) error-correcting codes, requires

computation over finite fields and results in a more

complex implementation. For example, we showed that

the complexity of implementing EVENODD in a disk

array with 15 disks is about 50% of the one required
when using the RS scheme.

7) Other codes involving only exclusive-OR operations are

of convolutional type. For the codes in [8], [17], an error

in the decoding propagates indefinitely. Since our codes

are of block type, they do not have this problem. Also,

the redundancy of our codes is slightly smaller, since

convolutional codes have an overhead redundancy.

8) There are also optimal block codes based on exclusive

OR operations. However, these codes still need a recur

sion at the encoding and during small write operations.

EVENODD has independent parities, making the com

plexity even smaller.

An apparent constraint in our construction is that the number

of information disks has to be a prime number. However, if

the desired number of disks is not a prime number, one can

simply assume that there are more disks which have all zeros

without affecting the encoding and decoding procedures.

From the perspective of error-correcting codes, we have

constructed a new code that is capable of correcting either two

erasures or one error. The application described in this paper

is in RAID type of architectures, but the code can be also used

in magnetic recording and in other situations involving large

symbols and short codewords.

ACKNOWLEDGMENT

We are grateful to the reviewers for their useful comments

that helped in improving the presentation.

REFERENCES

[1] M. Blaum, "A class of byte-correcting array codes," IBM Research
Report, RJ 5652 (57151), May 1987.

[2] __ , "A coding technique for recovery against double disk failures

in disk arrays," in Proc. IEEE Int. Conf Commun., Chicago, IL, June
1992, pp. 1366-1368.

[3] M. Blaum, J. Brady, J. Bruck, and J. Menon, "EVENODD: An optimal
scheme for tolerating double disk failures in RAID architectures" in
Proc. Int. Symp. Comput. Architecture (ISCA), Chicago, IL, Apr. 1994.

[4] M. Blaum, J. Bruck, and A. Vardy, "Binary codes with large symbols,"
in Proc. I994 IEEE Int. Symp. Inform. Theory, June 1994.

[5] M. Blaum, H. Hao, R. Mattson, and J. Menon, "A coding technique for
double disk failures in disk Arrays," U.S. Patent 5 271012, Dec. 1993.

[6] M. Blaum and R. Roth, "New array codes for multiple phased burst
correction," IEEE Trans. Inform. Theory, pp. 66-77, Jan. 1993.

[7] W. Burkhard and J. Menon, "Disk array storage system reliability,"
in Proc. 23rd Annu. Int. Symp. Fault-Tolerant Computing, Toulouse,
France, June 1993.

[8] T. Fuja, C. Heegard, and M. Blaum, "Cross parity check convolutional
codes," IEEE Trans. Inform. Theory, July 1989, pp. 1264-1276.

[9] G. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz, and D. A. Patterson,
"Coding techniques for handling failures in large disk arrays," Report
No. UCB/CSD 88/477, Dec. 1988.

[10] R. Goodman and M. Sayano, "Size limits on phased burst error
correcting array codes," Electron. Lett., vol. 26, pp. 55-56, 1990.

[11] R. Goodman, R. J. McEiiece, and M. Sayano, "Phased burst correcting
array codes," IEEE Trans. Inform. Theory, pp. 684--{)93, Mar. 1993.

[12] F. J. MacWilliams and N.J. A. Sloane, The Theory of Error-Correcting

Codes. Amsterdam, The Netherlands: North-Holland, 1977.
[13] S. W. Ng, "Some design issues of disk arrays," IBM Research Report,

RJ 6590 (63550), Dec. 1988.
[14] A. M. Patel, "Multitrack error correction with cross-parity check cod

ing," IBM Technical Report TR02.813, 1978.
[15] A. M. Patel, "Adaptive cross parity code for a high density magnetic

tape subsystem," IBM J. Res. Develop., vol. 29, pp. 546-562, 1985.
[16] D. A. Patterson, G. A. Gibson, and R. Katz, "A case for redundant arrays

of inexpensive disks," in Proc. SIGMOD Int. Conf Data Management,

Chicago, IL, 1988, pp. 109-116.
[17] P. Prusinkiewicz and S. Budkowski, "A double track error-correction

code for magnetic tape," IEEE Trans. Comput., pp. 642-645, June 1976.

202

Mario Blaum (S'84-M'85-SM'92) was born in
Buenos Aires, Argentina. He received the degree
of Licenciado from the University of Buenos Aires
in 1977, the M.Sc. degree from the Israel Institute
of Technology in 1981 and the Ph. D. degree from
the California Institute of Technology in 1984, all
these degrees in mathematics.

From January to June, 1985, he was a Research
Fellow at the Department of Electrical Engineering
at Caltech. In August, 1985, he joined the IBM
Research Division at the Almaden Research Center,

where he is presently a Research Staff Member. From September 1990
to September 1991 he was a Consulting Professor at Stanford University,
where he taught a course in Error-Correcting Codes. His research interests
include error-correcting codes, storage technology, combinatorics and neural
networks.

Jim Brady (M'83-SM'89-F'94) has substantial experience in designing large,
complex systems. He has had major responsibility in the design of XRF, RSS,
System/390 architecture, ExpaJided Storage, MVS SP 1.2, MVS SYSPLEX,
and VM HPO 4.0. He developed one of the first software error models and
received an IBM Outstanding Innovation Award for his work on system
modeling. Both of these efforts produced efforts that moved analytical models
from being relative predictors, to accurate estimators.

He joined IBM in 1961 in the Omaha Branch Office as a Systems Engineer
Scientific. He held numerous positions in the Branch covering most of the
large system's customers in the Omaha area. In 1967 he was promoted to
Advisory Advanced Systems Specialist working on the development of large
systems marketing requirements. His next assignment involved working on the
problems of software and system availability. In 1971 he became a Consulting
Marketing Representative in Nashville. In 1975 he moved to Poughkeepsie
into the systems technology area, where he has held various management
positions, the last being Program Manager-Systems Technology. He moved
to San Jose in 1983 where he was Product Manager-Storage Systems
Strategy and Architecture, an organization concerned with the identification of
growth opportunities for SSD and the integration of new technology into large
systems products. In 1988 he started the Storage System Lab, a joint effort
between the Storage Systems Division and IBM Research, which develops
new systems technologies such as RAID and storage hierarchies. In 1991
he became the chief architect of a new storage controller. In 1993 he was
appointed IBM Fellow. He is current President of the IBM Academy of
Technology.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 44, NO.2, FEBRUARY 1995

Jeboshua Bruck (S'86-M'89-SM'93) received the
B.Sc. and M.Sc. degrees in electrical engineering
from the Technion, Israel Institute of Technology, in
1982 and 1985, respectively, and the Ph.D. degree
in electrical engineering from Stanford University
in 1989.

He is an Associate Professor of Computation
and Neural Systems and Electrical Engineering at
the California Institute of Technology. His research
interests include parallel and distributed computing,
fault-tolerant computing, error-correcting codes and

neural networks. He has an extensive industrial experience, including, serving
as manager of the Foundations of Massively Parallel Computing Group at the
IBM Almaden Research Center from 1990 to 1994, a research staff member
at the IBM Almaden Research Center from 1989 to 1990 and a researcher at
the IBM Haifa Science center from 1982 to 1985. Dr. Bruck is the recipient
of a 1994 National Science Foundation Young Investigator Award, a 1992
IBM Outstanding Innovation Award for his work on "Harmonic Analysis
of Neural Networks" and a 1994 IBM Outstanding Technical Achievement
Award for his contributions to the design and implementation of the SP-1,
the first IBM scalable parallel computer. He also received five IBM Plateau
Invention Achievement Awards and he holds 15 patents.

Jai Menon received the B. Tech degree in electrical
engineering from the Indian Institute of Technology,
Madras, in 1977, and the M.S. and Ph.D degrees
in computer science from Ohio State University in
1978 and 1981, respectively. For his Ph.D, he did
research in database machine architectures, and he
is contributing author on two books on database
machine architectures.

Since 1982, he has been with the IBM Almaden
Research Center, San Jose, CA, where he has been
working in the area of UO and Storage Systems.

Since 1987, he has been Manager of Storage Attachment Architecture in
the Computer Science Department at the Almaden Research Center. He has
received an Outstanding Technical Achievement Award and five Invention
Achievement Awards from IBM. His group is one of the leading groups
doing research in disk arrays. He has published 15 papers on disk arrays,
and presented several disk array tutorials.

