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EVENODD: An Efficient Scheme for Tolerating 

Double Disk Failures in RAID Architectures 
Mario Blaum, Senior Member, IEEE, Jim Brady, Fellow, IEEE, Jehoshua Bruck, Senior Member, IEEE, and Jai Menon 

Abstract- We present a novel method, that we call EVEN ODD, 
for tolerating up to two disk failures in RAID architectures. 
EVEN ODD employs the addition of only two redundant disks and 
consists of simple exclusive-OR computations. This redundant 
storage is optimal, in the sense that two failed disks cannot 
be retrieved with less than two redundant disks. A major ad
vantage of EVENODD is that it only requires parity hardware, 
which is typically present in standard RAID-S controllers. Hence, 
EVENODD can be implemented on standard RAID-S controllers 
without any hardware changes. The most commonly used scheme 
that employes optimal redundant storage (i.e., two extra disks) 
is based on Reed-Solomon (RS) error-correcting codes. This 
scheme requires computation over finite fields and results in a 
more complex implementation. For example, we show that the 
complexity of implementing EVENODD in a disk array with 15 
disks is about 50% of the one required when using the RS scheme. 

The new scheme is not limited to RAID architectures: it can be 
used in any system requiring large symbols and relatively short 
codes, for instance, in multitrack magnetic recording. To this end, 
we also present a decoding algorithm for one column (track) in 
error. 

Index Terms- RAID architectures, erasure-correcting codes, 
Reed-Solomon codes, disk arrays. 

I. INTRODUCTION 

D ISK arrays [16], in particular RAID-3 and RAID-5 disk 

arrays, have become an accepted way for designing 

highly available and reliable disk subsystems. In such arrays, 

the exclusive-OR of data from some number of disks is 

maintained on a redundant disk. When a disk fails, the data 

on it can be reconstructed by exclusive-ORing the data on the 

surviving disks, and writing this into a spare disk. The mean 

time to data loss (MTIDL) of such a system is proportional 

to the square of the disk mean time between failures (MTBF) 

and inversely proportional to the square of the number of disks 

and the mean time to reconstruct (MTIR) the failed disk [16]. 

Data are lost if a second disk fails before the reconstruction 

is complete. Such arrays have acceptable MTIDL when the 

number of disks in the subsystem is small. However, the 

average number of disks in an installation is growing because 

of two reasons. First, disk form factors are becoming smaller, 

so each disk holds less data. Second, installation requirements 

Manuscript received November 29, 1993; revised April II, 1994. This 
paper was presented in part at the International Symposium in Computer 
Architecture (ISCA), Chicago, IL, April 1994. 

M. Blaum and J. Menon are with the IBM Research Division, Almaden 
Research Center, San Jose, CA 95120 USA. 

J. Bruck was with the IBM Research Division, Almaden Research Center, 
San Jose, CA 95120. He is now with the California Institute of Technology, 
Pasadena, CA 91125 USA. 

J. Brady is with the IBM SSD, San Jose, CA 95120 USA. 
IEEE Log Number 9407129. 

for data are increasing, caused by normal growth and by the 

increase in new forms of data like audio, video and fax. As 

these trends accelerate, it was shown that traditional arrays 

which can protect from the simultaneous loss of no more than 

one disk will prove to be inadequate by the year 2000 [7]. Also, 

[7] explores whether improving disk MTBF or decreasing 

MTIR can adequately compensate for the increase in the 

number of disks per installation, and concludes that it will not. 

As a result, a lot of interest has arisen in Large Disk Arrays 

and in attempting to design systems that will not lose data even 

when multiple disks fail simultaneously [2], [5], [6], [9], [13]. 

For this, the use of erasure-correcting codes [9] with higher 

correcting capability than simple parity is suggested (in coding 

theory terminology, an erasure is an error whose location is 

known). 

Theoretically, in order to retrieve the information lost in two 

failed (erased) disks, we need at least two redundant disks (in 

coding theory, this is known as the Singleton bound [I2]). A 

natural scheme, then, for recovering the information lost in 

two disks, is using the so called Reed-Solomon codes [I2]. 

However, Reed-Solomon codes involve operations over finite 

fields. It would be desirable to have codes doing exclusive

OR operations only, as in the case of simple parity. This 

was achieved in [ 17], although this code has the following 

drawback: when the error correcting capability of the code 

is broken, there is an infinite error propagation. Moreover, 

since the code is of convolutional type, there is an overhead 

redundancy at the end of the data. For higher correcting 

capability, the codes in [8], [I4], [I5] have the same disadvan

tages. Therefore, the problem still is finding codes based on 

exclusive-OR operations and of block type. The solution was 

achieved in [I], [2], [5], [10], [II] and later generalized in [6] 

for multiple erasures. However, those solutions, although very 

simple, still involve a recursion at the encoding process and 

during small write operations. There are-applications in which 

the size of each individual symbol can be as big as a whole 

sector: during updates operations, we will want to update a 

minimal number of redundant symbols when we update a 

single information symbol. The schemes in the papers above 

force the updating of most of the redundant symbols each time 

an information symbol is updated. 

In this paper, we present an efficient encoding procedure that 

is based on exclusive-OR operations and independent parities, 

therefore there is no recursion. We also present a simple 

decoding procedure for two erasures and also for a single error. 

As a result of the simple encoding procedure the small write 

operation is greatly simplified, since any modified information 
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symbol affects only two symbols in the redundancy most of 

the time. This implies that when a disk sector is modified, 

only two other disk sectors will need to be modified at the 

same time. We note here that EVENODD corresponds to a 

new 2-erasure correcting code which is optimal in terms of 

the redundancy and has very efficient encoding and decoding 

algorithms. Hence, it can be used in other applications where 

there is a need of correcting two erased symbols with low 

complexity, for example, in multitrack magnetic recording [1], 

[14], [15], [17]. As we stated above, we will show how to 

adapt the decoding algorithm to correct one error in such 
applications. 

The paper is organized as follows: in the next section we 

make some simple reliability calculations that show why single 

parity arrays may not be reliable enough for some applications 

and justify the need to consider building arrays which can 

survive two simultaneous disk failures. Then, in Section III, we 

describe the encoding procedure used by our new EVENODD 

scheme. In Section IV we present the corresponding decoding 

procedure which will be used after the failure of one or 

two disks, and we prove that it can, in effect, retrieve the 

contents of up to two disks. We also show how to correct one 

error. In Section V we give an algebraic description of the 

code. In Section VI we address the implementation of small 

write operations. In Section VII we address the complexity 

of implementation of EVENODD by comparing it to that of 

traditional Reed-Solomon codes. In Section VIII, we present 

some concluding remarks. For a discussion of performance 

issues, the reader is referred to [3]. 

II. RELIABILITY CALCULATIONS 

Under assumptions of independent disk failures, [ 16] derives 

an equation for mean time to data loss (MTIDL) for an N 

disk system organized into groups of size G as 

(MTBF) 2 

MTTDL = N( G- 1)(MTTR). (1) 

In this equation, MTBF is mean-time-to-failure of a single 

disk and MTIR is the mean-time-to-repair of a single disk. 

Assuming N = 96, G = 16, MTBF = 200000 hours and 

MTIR = 1 hour, the mean time to data loss of the system 

is 3000 years. This seems adequate, and seems to imply that 

single parity is sufficient. However, there are two reasons why 

the above calculation in (1) is too optimistic. 

First, (1) does not take into account uncorrectable error rates 

of disk devices. Uncorrectable error rates after error-correcting 

codes are 1 error in 1013 bits read for current state-of-the-art 

disks. Consider that a disk in a 15 + P (an array with 15 disk 

and a single parity disk) array fails. Assume that each disk 

has a capacity of 3 GB, so it has 6 million 512 byte sectors. 

To reconstruct the failed disk, 90 million sectors (6 million 

from each of the 15 surviving disks) must be successfully 

read. There is a data loss if even one of these sectors cannot 

be read successfully. The probability of reading all 90 million 

sectors successfully is 0.96. This means that 4% of all disk 

failures will result in data loss due to uncorrectable errors. 

This may be unacceptable for many applications. 

Another reason for having a second parity disk is the 

fact that during the reconstruction process after a failure, the 

system has no backup: a second failure during reconstruction 

will translate in data loss. This is an unacceptable risk for 

applications in which data integrity is essential. 

The discussion above implies that single parity arrays may 

not be sufficiently reliable for some applications. In this paper, 

we focus on how to efficiently design arrays which can 

withstand two simultaneous failures. 

III. ENCODING 

We will assume that there are m + 2 disks with the 

information stored in the first m disks while the redundant 

data are stored in the last two disks. It is possible, however, 

to distribute the redundancy among all disks in order to 

avoid bottleneck effects when repeated write operations are 

performed. That is, we shall describe a scheme which is an 

extension of RAID-4 (where parity is dedicated), but it can 

be easily made an extension of RAID-S (where parity is 

distributed). 

We assume that m, the number of information disks, is a 

prime number. This requirement is important, since without 

this assumption the scheme would fail. It will become clear 

when we prove our main result, i.e., the correction capability 

of the code. However, the primality of m is not a very hard 

constraining requirement. If we want to store an arbitrary 

number of disks, not necessarily prime, we can take the next 

prime following this arbitrary number and assume that there 

are disks with no information (all the information bits are 0). 

In order to simplify the presentation, we assume that each of 

the m disks has only m - 1 symbols of information on it. Our 

procedure works for disks with arbitrary capacity by treating 

each block of m - 1 symbols separately. For simplicity, in 

some of our examples, we will assume that each symbol is a 

bit. In some applications, a symbol may be as big as a 512 

byte disk sector. It is not necessary to assume that the symbols 

are binary. (in fact, our scheme works even when the symbols 

are elements in an arbitrary Abelian group). 

Based on the assumptions above, the problem of tolerating 

two disk failures can be described as follows: 

Problem Definition: Consider an (m- 1) x (m + 2) array, 

m a prime number, such that symbol aij, 0 ::;: i ::;: m- 2, 

0 ::;: j ::;: m + 1, is the ith symbol in the jth disk. Again, 

in some applications, a column of the array may be thought 

as a disk and a symbol as a disk sector. The last two disks 

(m and m + 1) are the disks with the redundant information. 

The question is how to compute the content of the redundant 

part based on the information part such that the information 

contained in any two disks can be reconstructed from the other 

m disks. 

Our encoding scheme solves the foregoing problem and 

requires only exclusive-OR operations for computing the re

dundancy. 

Before formally describing the encoding procedure, we 

consider the following notation: (n)m = j if and only if j = n 

(mod m) and 0 ::;: j ::;: m- 1. For instance, (7)5 = 2 and 

(-2)5 = 3. We also assume through this paper that there 
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is an imaginary 0-row after the last row, i.e., arn- 1,j = 0, 

0 ::; j ::; m - 1 (with this convention, the array is now an 

m x (m+2) array). This assumption is not necessary, but it is 

useful for notational purposes as we will see in the description 

of the code. 

A. The Encoding Procedure 

Let 

rn-1 

S = ffi am-1-t,t· 

t=1 

(2) 

Then, for each l, 0 ::; l ::; m - 2, the redundant symbols are 

obtained as follows: 

rn-1 

az,m = ffi az,t 
t=O 

(

m-1 ) 

az,m+1 = S EB ffi a(l-t)m,t . 
t=O 

(3) 

(4) 

Equations (3) and (4) define the encoding. We have two 

types of redundancy: horizontal redundancy and diagonal 

redundancy. Disk m is simply the exclusive-OR of disks 

0, 1, · · ·, m- 1. Its contents are exactly the same as the parity 

contents of the parity disk in an equivalent RAID-4 array with 

one less disk. Disk ( m + 1) carries the diagonal redundancy 

according to (4). Let us look closely at this equation, and 

assume that the symbols are bits. We see that there are two 

possibilities for the diagonal redundancy: the parity may be 

even or odd. This even or odd parity is determined by bit 

S in (2), which gives the parity of diagonal ( m - 2, 1 ), 

(m - 3, 2), · · ·, (0, m - 1). If this diagonal has an EVEN 

number of 1 's, then we have even parity in the rest of the 

diagonals. Otherwise, we have ODD parity. This is the reason 

we call this scheme the EVENODD scheme. 

The (m- 1) x (m + 2) array defined above can recover 

the information lost in any two columns. In other words, the 

minimum distance of the code is 3, in the sense that any 

nonzero array in the code has at least 3 columns that are 

nonzero. The proof relies on the fact that m is a prime number 

and it is based on ideas similar to those in [1], [6], [10], [11]. 

Here, we prove it in the next section, by showing that the 

decoding algorithm to be given there can retrieve any pair of 

erased columns. This implies that the minimum distance of the 

code is exactly 3, since, if we encode an array with only one 

nonzero information column, the resulting encoded array will 

have (column) weight exactly 3. The condition that a special 

diagonal carries either even or odd parity is not arbitrary. We 

will see in the examples that without this assumption, the 

resulting code does not have minimum distance 3, therefore it 

cannot retrieve any two columns that are erased. 

As we can see, the encoding is very simple and circuits 

implementing (3) and (4) are straightforward. More generally, 

we would implement (3) and (4) in software in the RAID 

controller, using exclusive-OR hardware. The next example 

illustrates the encoding for m = 5. 
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Example 3.1: Let m = 5, and let the symbols be denoted 

by aii, 0 ::; i ::; 3, 0 ::; j ::; 6. The redundant symbols are in 

columns 5 and 6. A practical implementation of this example 

is to consider 7 disks numbered 0 through 6, each disk has 4 

disk sectors, the data sectors are on disks numbered 0, 1, 2, 3, 

and 4, and the redundant disk sectors are on disks numbered 

5 and 6. Equation (2) gives 

S = a3,1 EB a2,2 EB a1,3 EB ao,4· 

According to (3) and (4) the redundant symbols are obtained 

as follows: 

az,s = az,o EB az,1 EB az,z EB az,3 EB az,4, 

o::;t::;3 

ao,6 = S EB ao,o EB a3,2 EB az,3 EB a1,4 

a1,6 = S EB a1,0 EB ao,1 EB a3,3 EB az,4 

a2,6 = S EB az,o EB a1,1 EB ao,2 EB a3,4 

a3,6 = S EB a3,0 EB a2,1 EB a1,2 EB ao,3· 

For instance, assume that we want to encode the 5 columns 

1 0 1 1 0 

0 1 1 0 0 

1 1 0 0 0 

0 1 0 1 1 

We have to fill up the last two columns with the encoded 

symbols. Notice that S = a3, 1 EB a2,2 EB a1,3 EB ao,4 = 1. 

Therefore, the diagonals will have odd parity. The encoding 

gives the following array: 

1 0 1 1 0 1 0 

0 1 1 0 0 0 0 

1 1 0 0 0 0 1 

0 1 0 1 1 1 0 

Notice that the sets of symbols associated with horizontal 

parity are illustrated as follows: 

<> <> <> <> <> <> .. .. .. .. .. .. -
Q Q Q Q Q Q 

• • • • • • 
Similarly, the sets of symbols associated with diagonal parity 

are illustrated as follows (note that oo is associated with the 

special diagonal that determines whether the diagonal parity 

is EVEN or ODD): 

<> .. Q • 00 <> .. Q • 00 <> .. 
Q • 00 <> .. Q 

• 00 <> .. Q • 
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Notice that we are assuming that in an (m- 1) x (m + 2) 
array, the parity is stored in columns m and m + 1. However, 

the next array may carry the parity in columns m + 1 and 0, 

the next in columns 0 and 1, and so on. That way, the parity 

gets equally distributed among all disks. 

We also want to point out that if we do not make the 

assumption that the diagonals carry either even or odd parity, 

the code has not minimum distance 3 (in coding theory 

terminology, the code is not maximum distance separable or 

MDS [12)). In effect, assume that all the diagonals (except, 

perhaps, diagonal ( m- 2, 1 ), ( m- 3, 2), · · · , (0, m -1 )) carry 

even parity. In other words, assume that the encoding is given 

only by (3) and (4) but in (4), the parameter S is ignored. 

Then, the following is a codeword of weight 2: 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 1 0 0 0 1 0 

If columns 1 and 5 are erased in the array above, it is not 

possible to retrieve them, since the all-zero array is also in 

the code. This counter-example shows the importance of the 

EVENODD assumption: it is the key to the MDS property of 

the code. 

IV. DECODING 

An essential part of EVENODD is the decoding algorithm 

for two erasures. This algorithm, to be described next, can 

be implemented either in software or in hardware, depending 

on the application. It will be executed when a disk fails, or 

when two disks fail simultaneously. Then we prove that the 

algorithm in effect corrects two erasures. 

We also give a decoding algorithm that corrects one error, 

i.e., only one column has failed, but its location is unknown. 

This is not the model in RAID architectures, where disk 

failures are catastrophic events in which an external pointer 

identifies the failed disks. However, in other applications, like 

in multitrack magnetic recording, track errors are common 

[15]. 

Before giving the actual algorithm for correction of two 

erasures, we give an example that illustrates the idea behind 

it. 

Example 4.1: We again assume that m = 5, as in Example 

3.1. Assume that we have the following array, in which 

columns (disks) 0 and 2 have been erased (lost): 

? 0 ? 1 0 1 1 

? 1 ? 0 0 0 1 

? 1 ? 0 0 1 1 

? 1 ? 1 1 0 0 

This is the main case for the algorithm: two information 

columns have been erased. The cases in which at least one 

of the two parity columns has been erased are special cases 

that are easy to handle, as we will see below. 

The first step is finding the parity of the diagonals: it is 

not difficult to see (and we will prove it in Theorem 4.1) that 

this parity is given by the exclusive-OR of the bits of the two 

parity columns. If this exclusive-OR is 0, then the diagonals 

have even parity, otherwise they have odd parity. In the array 

above, we can see that the exclusive-OR of the bits in the 

two redundant columns is I, therefore the diagonals have odd 

parity. 
Next, the algorithm starts a recursion to retrieve the missing 

bits .. a1,0 and a1,2 , 0 ~ l ~ 3. We first need an entry where 

we can start. For instance, diagonal (3, 1), (2, 2), (1, 3), (0, 

4) intersects column 2 in entry (2, 2) only: this is the special 

diagonal, which has odd parity. Since the only bit missing in 

this diagonal is bit (2, 2), by retrieving it using the other bits, 

we conclude that a 2 2 = 0. Next we retrieve bit (2, 0) using 

the horizontal parity, which is always even. We will obtain 

a 2 0 = 0. Next, we consider the diagonal going through entry 

(2: 0), which consists of the entries (2, 0), (1, 1), (0, 2), (3, 

4), (2, 6). The only bit missing is in entry (0, 2), and we 

conclude that a0 ,2 = 0. Again using the horizontal parity, we 

conclude that a0 0 = 0. Now using the diagonal through (0, 0), 

we obtain that ~ 3 , 2 = 0, which implies, using the horizontal 

parity, that a3 ,0 = 1. Using the diagonal through (3, 0), we 

obtain that a1,2 = 0, which finally implies that a1,o = 1. The 

final reconstructed array is 

0 0 0 1 0 1 1 

1 1 0 0 0 0 1 

0 1 0 0 0 1 1 

1 1 0 1 1 0 0 

The decoding algorithm to be given next formalizes the idea 

behind this example. 
Algorithm 4.1 (Two Erasure Decoding Algorithm): Consider 

the ( m - 1) x ( m + 2) array of symbols aij, such that the last 

two columns are redundant according to (2), (3), and (4). If 

one column (disk) has failed, say column (disk) i, i =/=- m + 1, 

then it can be retrieved using the exclusive-OR of columns 

(disks) l, 0 ~ l ~ m, l =f=. i. If column (m + 1) fails, then the 

symbols can be retrieved using (2) and (4). 

Next, assume that columns (disks) i and j have failed, where 

0 ~ i <j ~ m + 1. We have four cases: 

i = m and j = m + 1, i.e., both the redundant disks 

have failed. We can reconstruct disk m using (3) and disk 

(m + 1) using (2) and (4). In other words, the reconstruction 

is equivalent to the encoding. 

i < m and j = m, namely, one redundant disk and one data 

disk have failed. We can reconstruct disk i as follows: let 

(

m-1 ) 

S = a(i-l),,m+l EB E9 a(i-1-l)=,z , 

l=O 

(5) 
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where we assume that am- 1,1 = 0 for 0 ::; l ::; m + 1. Then, the array and (8) and (9), we find the syndromes. We obtain 

(6) 

and ak,m. 0 ::; k ::; m - 2, is obtained using (3) once disk 

i is reconstructed. 

i < m and j = m + 1, namely, one redundant disk and one 

data disk have failed. We can reconstruct disk i using (3) and 

disk m + 1 using (2) and (4) once disk i is reconstructed. 

i < m and j < m. This is the main case. Both failed disks 

carry information and we cannot retrieve them using the 

parities separately, as in the previous three cases. We analyze 

this case in detail. 

Assume that am- 1 ,1 = 0 for 0 ::; l ::; m- 1 and compute 

the diagonal parity S as follows: 

S = (EB a1,m) EB (EB al,m+1) (7) 
1=0 1=0 

(i.e., S is the exclusive-OR of the symbols in columns m and 

m + 1). Find the horizontal syndromes S(0 ) = Sb
0

), Sio), · · · 

, 5~~ 1 and the diagonal syndromes s<1l = Sb1
J, s?J, · · · , 

5~~1 as follows: 

s<o) = LD a 1 
u '\J7 u, (8) 

l=O 
l#i,j 

5~ 1 ) = S EB au,m+l EB (i a(u-l)m,l) (9) 
1=0 
l#i,j 

where 0 ::; u ::; m - 1. Next, we retrieve the symbols in 

columns i and j as follows: 

1) Sets+-- (-(j- i) -1)m and am-1,1 +-- 0 for 0::; l::; 
m-1. 

2 Le S<1J d s<o> ) t as,j +-- (j+s)m EB a(s+(j-i))m,i an as,i +-- s EB 

as,j· 

3) Sets +-- (s- (j- i))m· If s = m- 1 then stop, else 

go to step 2. 

Algorithm 4.1 is recursive and very simple to implement 

in software. We can also develop the recursion and obtain a 

closed formula for each entry as a function of the syndromes. 

This approach is useful if we want a hardware implementation. 

Before proving that Algorithm 4.1 allows us to retrieve up to 

two erased columns (which shows that the minimum distance 

of the code is 3), we illustrate it with an example. 

Example 4.2: Consider the same array as in Example 4.1. 

We will reconstruct the missing columns (disks) 0 and 2 using 

Algorithm 4.1 now. 

The first step is finding the parameter S, which is the 

exclusive-OR of the last two columns. We have seen that 

S = 1, meaning that the diagonals have odd parity. From 

s<o) = 0 1 0 1 0 and s(ll = 0 1 0 1 0. 

Now, we start the recursion to retrieve the missing bits a1,o and 

at, 2 , 0::; l::; 3. We sets+-- (-(j- i)- 1)m = (-3)5 = 2, 

then, 

a2,2 f- sill = 0 a2,0 f- s~O) EB a2,2 = 0 s+--0 

ao,2 +-- S~
1

l EB a2,o = 0 ao,o +-- S~o) EB ao,2 = 0 s+--3 

a3,2 f- s~l) EEl ao,o = 0 a3,0 f- S~O) ffi a3,2 = 1 s+--1 

al ,2 f- s~l) EEl a3,0 = 0 a1,0 f- s;o) ffi a1,2 = 1 s+--4 

The algorithm stops, since s = 4 = m-1. The reconstructed 

array is the same as in Example 4.1. 

We can see in this example the intuition behind the require

ment that m is a prime number: if m was not prime, there 

would be cases in which the main recursion will stop before 

all the entries in the two erased columns are received. We will 

strongly use the primality of m in the proof to be given next. 

For instance, if m = 4 (not a prime!), the following array is 

in the code and it has weight 2: 

1 0 1 0 0 0 

0 0 0 0 0 0 

-1 0 1 0 0 0 

It is easy to show that in general, if m is not prime, the 

code has minimum distance 2. 

Next we prove that Algorithm 4.1 allows to retrieve up to 

two erased columns, automatically showing that the minimum 

distance of the code is 3. 
Theorem 4.1: Algorithm 4.1 can correct up to any two 

erased columns. 

Proof If only one column is erased,~ the reconstruction 

is done by using the parity, so assume that columns i and j 

have been erased, 0 ::; i < j ::; m + 1. We consider the four 

cases of Algorithm 4.1. 

i = m,j = m + 1: This case is equivalent to the encoding. 

i < m,j = m: Notice that S as given by (5) gives the parity 

of diagonal ( (i- 1)m, 0), ((i- 2)m, 1), .. · , (i, m- 1). This 

diagonal is the only one that does not intersect column i, which 

is unavailable. Since all the diagonals have the same parity S, 

by solving for ak,i in (4), we obtain (6) which gives the erased 

entries in column i. Once column i is obtained, the algorithm 

finds column m using (3). 

i < m, j = m+ 1: This case is again similar to the encoding. 

i < j < m: First of all, we show that S as given by (7) gives 

the diagonal parity, i.e., (2) and (7) are equivalent (of course, 

we cannot use (2) to compute S since columns i and j are 

unavailable). In effect, notice that, according to (3) and (4), 
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(~ al,m) $ CP, al,m+l) 

= (EB (Ef) at,t)) EB (EB (s EB Ef) O(t-t)m,t)) 
l=O t=O l=O t=O 

= (EB (EB. -l az,t)) EB (m l)S 
l=O t=O 

(£l (EB (Ef) 0'(!-t}m,t)) 
l=O t=O 

(EB (Ef) Oz,t)) EB (EB (Ef) U(t-t)m,t)) 
l=O t=O 1=0 t=O 

(10) 

since m 1 is even, therefore ( m - 1 )S 0 mod 2. 

Also, since we are assuming that am-l,t 0 (imaginary 
row of zeros), we have 

0 = (EB (Ef) O[,t)) EB ($ ($ 0(1-t),..,t)) 
l=O t=O 1=0 t=O 

('ffi (Ef) az,t)) (EB ($ a(l-t)rn,t)) 
1=0 t=O 1=0 t=O 

(

>n-1 ) 

EB E9 Um-1-t,t 

t=l 

Thus, we obtain 

(EB ($ at,t)) EB (EB ($ a(i-t)=,t)) 
1=0 t=O l=O t=O 

m-1 

E9 Um-1-t,t 

t=1 

which replaced in (10), gives 

(

m-2 ) (m-2 ) m-1 E9 a1,m EB EfJ at,m+l = E9 am-1-t,t· 

1=0 1=0 t=1 

( 11) 

Equation ( 11) proves that (2) and (7) both give the parameter 

S that determines the diagonal parity, as claimed. 

Now we have to prove that columns i and j are uniquely 
retrieved by the algorithm. Assume that the syndromes S.(O) 

and sOl have been found according to (8) and (9). Having 

set the parameters as ( -(j- i) 1)m in the first step of the 
algorithm, in step 2 we set 

(1) 
a(-(j-i)-l)m,j f- S'(i-l)m. (12) 

Assignment (12) is correct in view of (4) and (9). Once we 

have found a(-(i-i)-l)m.i we obtain a(-(j-i)-l)m,, by setting 

s<o> 
ac-U-iJ-l)m,i ,._ <-(i-i)-l)m EB ac-CJ-iJ-l)m,j· (13) 

Assignment (13) is correct in view of (3) and (8). 

Next, in step 3, the parameters is reset as ( -2(.j- i) -1)m· 

Going back to step 2, the algorithm sets 

a(-2(j-i)-l)m,j f- .. , ~-.,..,.~·-•tm EB a(-(j-i)-l)m,i 

(14) 

(0) 
a{-2(j-i)-l)m,1 ,._ Sc_2(j-i)-l}m EB a(-2(j-i)-l)m.i· 

(15) 

In general, having found a(-(1-l)(j-i)-l)m.i' 1 ~ l- 1 ~ 

m-2, the algorithm finds a{-l(j-i)-l)m.i and a(-!(j-i)-l},..,i 

by setting 

a(-l(j-i)-I)m.,i 
s<t> 

(-l(j-i)+j-1}= a{-(1-l)(j-i)-l)m,i 

(16) 

a(-l(j-i)-l}m.i +-- s~.'::l(j-i)-l)m@ a(-!(j-i)-l),.,j· (17) 

Again, Assignment (16) is determined by (4) and (9), while 

Assignment (17) is determined by (3) and (8). 

Now, since m is a prime number, in particular, the numbers 

m and j - i are relatively prime. Therefore, the m- 1 values 

s = (-l(j- i) -l)m obtained in step 3 of the algorithm are 

all distinct If we take l = m, we obtain s m - 1, and the 

algorithm stops. Thus, the m-1 erased entries in both columns 

i and j are obtained after m - 1 iterations of step 2. When the 

mth value of s is determined, in step 3, the algorithm stops, 

since s = m 1. 

This completes the proof. D 
Next, we give the decoding algorithm in case one column 

is in error. 
Algorithm 4.2 (One Error Decoding Algorithm): Consider 

the (m 1) x (m + 2) array of symbols A (a;j). such 

that the last two columns are redundant according to (2), (3), 

and (4). Let B (b;1) be a possibly corrupted version of A. 

Assume that at most one column is in error, i.e., A and B 

coincide except perhaps in a single column. Further assume 

that bp-l,j = 0 for all j 0, 1, · · · m + 1 (this is again the 

imaginary row of zeros). 
The decoding procedure works as follows. First, we com

pute the horizontal syndrome S(O) = S~O), S~O) · · ·, S~~l 
as 

sj0
> E9b;,1 (18) 

1=0 

and the diagonal syndrome s<1l S~ 1 l, sp> · · ·, 8~~ 1 as 

(19) 

for i 0, 1, · .. m - 1. 

In the sequel Q and 1 stand for (0, 0, · · · , 0) and (I, 1, · · · , 

1), respectively. Next, we distinguish between the following 

four cases: 
Case 1: s<0> = Q, S(l) E {Q, 1}. In this case the algo

rithm concludes that no errors have occurred and no further 

action is taken. Note that S(l) = Q corresponds to the case 

in which all the diagonals have even parity, while S(l) = 1 
corresponds to the case in which the diagonals have odd parity. 
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Case 2: S(o) =1- Q, SC1l E {Q, 1}. In this case the error is 

in column m-the horizontal parity column. We can recon

struct this column by using (3). 

Case 3: S(o) = Q, sCll f/_ {Q, 1}. In this case the error 

is in column m + 1-the diagonal parity column. We can 

reconstruct this column by using (2) and (4). 

Case 4: S(o) =1- Q, SCll f/_ {Q, 1}. This is the main case. 

The column in error must be one of the information columns. 

The error itself is given by the first m - 1 bits of the 

horizontal syndrome S(o). Hence, the problem is to locate 

the information column in error. To this end we proceed as 

follows. For any vector ;r_ = (x0 , x1, · · ·, Xn-d let p(;r_) = 
(xn-1,xo, · · · ,xn-2) be the cyclic rotation of ;r_ to the right, 

and let Pj ( ·) denote the result of applying p( ·) successively 

j times (for exan1ple, p3 (0, 1, 0, 0) = (1, 0, 0, 0)). We then 

find the first index j with 0 :::; j :::; m - 1, such that 

Pj(SC0l) E {SC1l ,1 EB SCll}. This index j corresponds to the 

location of the column in error. If there is no such j, the 

algorithm declares an uncorrectable error pattern. The final 

step is to add modulo-2 the first m - 1 bits of the syndrome 

S(0
) to the jth column of B = (bij)· 

As we can see, Algorithm 4.2 involves cyclic shifts and 

exclusive-OR operations only, which makes it very easy to 

implement. Next we illustrate Algorithm 4.2 with an example. 

Example 4.3: As in previous exan1ples, we assume m = 5. 

Suppose we are given the following, possibly corrupted, array 

(to which we have appended the imaginary zero row): 

1 0 0 1 0 1 1 

0 1 1 0 0 1 0 

1 1 0 0 0 0 1 

1 1 0 1 1 1 0 

0 0 0 0 0 0 0 

Using (18) and (19), we find that the horizontal and diagonal 

syndromes are sCo) = (1, 1, 0, 1, 0) and sC1l = (0, 1, 0, 0, 

1), respectively. Note that p 2 (~ 0 ) = 1 EB ~ 1 . Hence the column 

at location j = 2, that is the third column from the left in 

the array, is in error. Adding the first four bits of ~ 0 to this 

column, we obtain the decoded array 

1 0 1 1 0 1 1 

0 1 0 0 0 1 0 

1 1 0 0 0 0 1 

1 1 1 1 1 1 0 

V. ALGEBRAIC DESCRIPTION OF EVENODD 

The array codes described in [6] were shown to be equiv

alent to Reed-Solomon codes of length m, m prime, with 

operations taken modulo the polynomial Mm(x) = (xm -
1)/(x - 1) = xm-1 + xm- 2 + · · · + x + 1. Note that the 

polynomial Mm(x) is not necessarily irreducible (in fact, it is 

irreducible if and only if 2 is primitive in GF(m) [6]), and 

therefore these codes are not defined over a field, but rather 
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over the ring of polynomials of degree :::; m - 2 modulo 

Mm(x). 

In terms of a ( m - 1) x ( m + 2) array, we shall assume that 

each column in the array is a polynomial modulo Mm(x). As 

we have seen in the previous sections, it is also convenient to 

assume that the array has an imaginary row of zeros, which 

makes it an m x (m + 2) array. A cyclic shift of a column 

in such array can cause the bit corresponding to the last row 

to be nonzero. However, if that is the case, the arithmetic 

modulo Mm ( x) forces to take the complement of the shifted 

column, restoring the zero in the last position. As in [6], 

we will use the notation a(f3) = am_ 2(3m- 2 + · · · + a1{3 + 
a0 to denote a polynomial modulo Mm ( x). Thus a({3)b({3) 

denotes polynomial multiplication modulo Mp(x). The usual 

multiplication of polynomials is written as a( x) b( x). 
With this notation, an alternative definition of EVEN ODD is 

{A= (ao(f3), a1({3), · · ·, am-1({3), am(f3), am+1(f3)): 

am ({3) = ~ ai ({3), am+l ({3) = ~ {3i ai ({3)}. 

(20) 

Note that the parameterS, defined in (2) and taking part in (4), 

essentially renders (4) to be the sum of cyclic shifts modulo 

Mm(x), rather than ordinary cyclic shifts. 

The following is a parity-check matrix for EVENODD: 

H = (1 1 
1 {3 

1 0) 
0 1 

(21) 

Note that the parity symbols am ({3) and am+1 ({3) depend on 

the information symbols but not on each other. This suggests a 

generalization of EVEN ODD based on the parity-check matrix 

given by (21 ), see [ 4] for more details. It is easy to see 

using the parity-check matrix that the minimum distance of 

EVEN ODD is 3, giving an alternative proof to the basic MDS 

property of the code. 

VI. SMALL WRITE OPERATIONS 

In systems involving many disks, we often encounter the 

situation in which many small write operations are needed. 

A small write operation is a write that updates a single data 

sector (one symbol). EVENODD offers great flexibility to do 

this, since the symbols involved can have an arbitrary size. 

Typically, we would implement a symbol as a disk sector. 

Every time an information symbol is rewritten, and this 

information symbol is not in diagonal (m- 2, 1), (m- 3, 2), 

· · ·, (0, m -1), then only two redundant symbols are affected, 

so we need only three read and three write operations. With 

a symbol as a disk sector, when a disk sector is updated, in 

most cases, we only need to read three disk sectors (the disk 

sector being updated and two redundant disk sectors containing 

parity) and write three disk sectors. Explicitly, if symbol aij, 

0 :::; i :::; m- 2, 0 :::; j :::; m- 1, (i + j)m =1- m -1, is replaced 

by symbol r (i.e., aij +--- r), we have to make the following 



BLAUM et al.: EVEN ODD: AN EFFICIENT SCHEME FOR TOLERATING DOUBLE DISK FAILURES IN RAID ARCHITECTURES 199 

modifications in the redundant symbols: 

a;,m +--- a;,m EB a;j EB r (22) 

a(i+i)m,m+l +--- a(i+i)m,m+l EB a;j EB r. (23) 

On the other hand, if the rewritten information symbol is in 

diagonal (m- 2, 1), (m- 3, 2), · · · , (0, m- 1), then all the 

symbols in column m + 1 are affected (and of course, the 

corresponding symbol in column m). 

Explicitly, if symbol a;j, 0 ~ i ~ m- 2, 0 ~ j ~ m- 1, 

(i + Jlm = m- 1, is replaced by symbol r (i.e., a;j +--- r), 

we have to make the following modifications in the redundant 

symbols: 

a;,m +--- a;,m EB a;j EB r 

at,m+1 +--- at,m+1 EB a;j EB r, 

(24) 

0 ~ t ~ m - 2. (25) 

Again, we illustrate the small write operations with an exam

ple. 

Example 6.1: Assume that the we have the following en

coded array: 

0 0 0 0 0 0 0 

1 1 0 1 0 1 0 

0 1 1 1 0 1 1 

0 1 0 0 1 0 0 

Say, we replace entry (0, 1) by a I. Since it is not in diagonal 

(3, 1), (2, 2), (1, 3), (0, 4), according to (22) and (23), we have 

to modify symbols (0, 5) and (1, 6). The new array is 

0 1 0 0 0 1 0 

1 1 0 1 0 1 1 

0 1 1 1 0 1 1 

0 1 0 0 1 0 0 

Thinking of columns as disks and symbols as disk sectors, we 

had to access 3 sectors, one from each of 3 disks. Finally, 

if we modify symbol (2, 2), since it is in diagonal (3, 1), 

(2, 2), (1, 3), (0, 4), according to (24) and (25), we have to 

modify symbols (2,5), (0,6), (1 ,6), (2,6), and (3,6). If columns 

represent disks and symbols represent disk sectors, we still 

only need to modify disk sectors on two disks in addition to 

modifying the disk sector containing the data to be modified. 

On one of the two redundant disks we need to change four 

consecutive sectors, on the other redundant disk we need ·to 

change a single sector. Changing four consecutive sectors takes 

almost the same time as changing a single sector (since seek 

and latency times are much larger than sector transfer times). 

The new array in our example is 

0 1 0 0 0 1 1 

1 1 0 1 0 1 0 

0 1 0 1 0 0 0 

0 1 0 0 1 0 1 

So far, in practical applications, we have considered each sym

bol as a 512-byte sector. There are many other possibilities, 

since the size of a symbol offers great flexibility. For example, 

another possible solution is to let each symbol be an 8-bit byte, 

and m = 257 (a Fermat prime number). Therefore, we have 

an array of up to 259 disks, more than enough for present and 

future applications. Note that the array does not have to have 

259 disks (this is just the maximum number); if it has fewer 

disks, simply treat the remaining columns as having zeros. 

Each column of the array consists of 256 bytes, i.e., half a 

sector. In this case, a small write operation consists of writing 

a whole column. Thus, the two redundant columns will be 

modified accordingly. Say, each symbol a;,j, 0 ~ i ~ m- 2 

in column j, 0 ~ j ~ m -1, is replaced by r;. Then, we have 

to do the following modifications in the redundant symbols: 

a;,m +--- a;,m EB a;,j EB r 

a;,m+1 +--- ai,m+l EB a(i-j)m.i EB r(i-i)m 

EB am-1-j,j EB rm-1-j, 

(26) 

(27) 

where 0 ~ i ~ m-2. That is, when a sector is updated, the two 

corresponding redundant sectors are also updated according to 

(26) and (27). 

VII. COMPLEXITY COMPARISON WITH EXISTING SCHEMES 

In this section, we compare the complexity of EVEN

ODD with the one of a traditional error-correcting code, 

a Reed-Solomon (RS) code [12]. Both EVENODD and a 

RS code require an optimal number of redundant disks, 

namely two. However, one major advantage of EVENODD 

is that it only requires parity hardware, which is typically 

present in standard RAID-5 controllers. Hence, EVENODD 

can be implemented on standard RAID-5 controllers without 

hardware changes. The scheme based on RS codes, on the 

other hand, requires special hardware to support finite field 

type of computations. Hence, it cannot be incorporated into 

standard RAID-5 controllers. We note here that the 2-D 

scheme of [9] has the same property as EVENODD, that 

is, it only needs standard parity hardware. However, if we 

assume that the m information disks are set in a square array of 

side ;m, 2-D needs 2vm redundant disks while EVENODD 

needs only two redundant disks. So, our scheme is much more 

efficient. 

Next we will make a detailed comparison between EVEN

ODD and RS schemes. We will consider RS codes over 8-bit 

bytes, or GF(28 ) in the language of finite fields. This is a 

standard in the industry, allowing for codes of length up to 

257 bytes. More specifically, we will consider the finite field 

generated by the primitive polynomial p(x) = 1 + x 2 + x 3 + 
x 4 + x 8 . Let a be a primitive element in GF(28

) such that 

p( a) = 0, and let m ~ 255. Then, a parity-check matrix for 

the RS code is the following: 

H = (1 1 1 
1 a a 2 

1 

0 
(28) 

At the encoding, if b0 , b1 , · · ·, bm-l is a string of information 

bytes, according to (28), the redundant bytes p and q are 
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obtained as follows: 
m-1 

p =EBb; 
i=O 

m-1 

q = E9 b;a'. 

i=O 

(29) 

(30) 

Now, if we compare with the encoding procedure of EVEN

ODD given by (3) and (29), we can see that (3) and (29) 

are equivalent. Therefore, the difference in complexity at 

the encoding is a result of the difference in computing the 

second redundancy disk, namely, (4) and (30). We analyze the 

complexity of the encoding both for EVENODD and for the 

RS scheme by counting the number of exclusive-OR (XOR) 

operations for each of them. 

We assume that each. symbol is an 8-bit byte, and the 

information symbols conslitute an ( m -1) x m array, where m 

is prime. With this assumption, the number of XOR operations 

due to (3) or (29) at the bit level is 8( m - 1 )2
. 

Let us count next the number of XOR's in (4) of EVEN

ODD. The first step is computing the symbol S, which is 

given by (2). This takes (m- 2) XOR operations at the byte 

level. At the bit level, this gives a total of 8(m- 2) XOR 

operations. Now, for each l in (4), we have a total of m 

XOR operations at the byte level. At the bit level, this gives a 

total of 8m XOR operations for each l, and since l runs from 

0 to m- 2, (4) takes 8(m- 1)m XOR operations. Adding 

to the number of XOR operations used in computing S, (4) 

takes a total of 8((m- 2) + (m- 1)m) = 8(m2 - 2) XOR 

operations. We observe that this number is quadratic in m and 

slightly bigger than the number of operations from (3). The 

discrepancy is due to the calculation of S first, but we cannot 

do better than quadratic complexity. By adding the total from 

(3), we conclude that EVENODD needs a total of 

8(2m2
- 2m- 1) 

XOR operations. 

Let us look at the RS scheme now, specifically at (30). Each 

multiplication of a byte by a, is represented by the following 

companion matrix A: 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

A= 
0 0 0 0 1 0 0 0 

(31) 
0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 1 

1 0 1 1 1 0 0 0 

Notice that multiplying the byte (c0, c1, c2, c3, c4, c5, c6, c7) by 
a takes 3 XOR operations. In fact, the outcome of multiplying 

the byte above by the matrix A will produce the byte (c7, c0 , 

c1 EB c7, c2 EB c7, c3 EB c7, c4, c5, c6)· Therefore, multiplying 
by ai will take 3i XOR operations. So, implementing (30) on 

the bytes bo,b1,···,bm-1 takes 

m-1 2 

8( m _ 1) + L 3i = _3m __ +_1-,-3_m_-_1_6 

i=1 
2 
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TABLE I 

NUMBER OF XOR OPERATIONS NEEDED TO ENCODE (m-1) BYTES PER DISK IN A 

DISK ARRAY WITH m INFORMATION DISKS 

#of EVEN ODD Reed- improvement 

information Solomon factor 

disks 

5 312 376 1.21 

7 664 954 1.44 

11 1752 3250 1.86 

13 2488 5112 2.05 

17 4344 10624 2.45 

23 8088 24442 3.02 

29 12948 46648 3.59 

31 14872 56250 3.78 

41 26232 124000 4.73 

43 28888 142002 4.92 

XOR operations. Since we have ( m - 1) bytes, this gives a 

total of 

0.5(m- 1)(3m2 +13m- 16) = 1.5m3 +5m2
- 14.5m + 8 

XOR operations. Adding the 8(m -1) 2 XOR operations from 

(29), we conclude that the encoding of the RS scheme requires 

1.5m3 + 13m2 
- 30.5m + 16 

XOR operations. 
As we can see, the complexity of the encoding of EVEN

ODD is quadratic in the number of information disks m, 

while the complexity of RS codes is cubic. Table I compares 

EVENODD to RS codes for different values of m, assuming 

that m is prime (as we have stated, this is not a hard constraint, 

since EVENODD codes can be shortened to cover cases 

in which m is not a prime). The last column of Table I 

contains the quotient between the number in column 3 (i.e., 

the number of operations needed in the RS code) and the 

number in column 2 (i.e., the number of operations needed in 

EVENODD). For instance, we can see that for m = 43 (last 

row), a RS code requires nearly 5 times as many operations 

as EVENODD at the encoding. 

We can see in Table I that the number of XOR operations 

needed for encoding EVENODD decreases dramatically with 

respect to a RS code when the number of disks increases. 

Similar calculations show the advantage of EVENODD in 

small write operations and in the decoding. 

An alternative implementation of the encoding of RS codes 

is implementing each matrix A i in hardware. Thus, we will 

save XOR operations for larger values of m. However, the 

hardware for this implementation is more complicated, and 

the matrices A i are not sparse anymore, therefore EVEN ODD 

still has the edge. 

We also compared the complexity of EVENODD and the 

RS based schemes with that of a simple parity scheme. The 

number of operations required in implementing the parity 

scheme on an m disk array with ( m - 1) bytes per disk 

is 8(m- 1) 2
. Hence, EVENODD is asymptotically twice as 

complicated as simple parity. Notice that this is optimal since 

there are two redundancy disks in EVENODD. The complexity 

of the RS scheme is asymptotically about 0.1875m times more 
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TABLE II 

COMPARISON OF THE NUMBER OF XOR OPERATIONS IN A SIMPLE 

PARITY SCHEME WITH EVENODD AND RS SCHEMES 

#of EVEN ODD RS 

information vs. vs. 

disks Parity Parity 

5 2.43 2.93 

7 2.30 3.31 

11 2.19 4.06 

13 2.15 4.43 

17 2.12 5.18 

23 2.08 6.30 

29 2.07 7.43 

31 2.06 7.80 

41 2.05 9.68 

43 2.04 10.06 

complex than the simple parity scheme. Table II presents the 

comparison for various values of m. As we can see, already in 

the case of m = 23 EVENODD is about twice more complex 

than the simple parity scheme (this is optimal), while the RS 

scheme requires more than 6 times XOR operations compared 
with the simple parity scheme. 

VIII. CONCLUDING REMARKS 

We have presented a novel method, called EVENODD, for 

tolerating double disk failure in RAID architectures. EVEN

ODD has the following advantages over other methods pro

posed for recovery against two disk failures: 

1) EVENODD employs the addition of only two redundant 

disks for tolerating two disk failures (this is optimal). 

2) It consists of simple exclusive-OR computations and 

only requires parity hardware, which is typically present 

in standard RAID-5 controllers. Hence, EVENODD can 

be implemented in standard RAID-5 controllers without 
any hardware changes. 

3) It can be incorporated to known RAID techniques. For 

example, parity can be distributed among all disks, 

avoiding bottleneck effects when repeated write oper
ations are involved (RAID-5). 

4) The symbols can have any size, from bits to multiple 

sectors. There are no constrains to bits or to bytes. 

5) Most small write operations affect two redundant sym

bols only, i.e., for every write we need up to three 

read and three write operations. Only when the affected 

symbol is in diagonal (m - 2, 1), (m - 3, 2), · · · , 

(0, m -1) we have to modify all the symbols in column 

m + 1 and one symbol in column m. In any case, the 
parities are independent. 

6) The traditional known scheme that employs optimal 

redundant storage (i.e., two extra disks) is based on 

Reed-Solomon (RS) error-correcting codes, requires 

computation over finite fields and results in a more 

complex implementation. For example, we showed that 

the complexity of implementing EVENODD in a disk 

array with 15 disks is about 50% of the one required 
when using the RS scheme. 

7) Other codes involving only exclusive-OR operations are 

of convolutional type. For the codes in [8], [17], an error 

in the decoding propagates indefinitely. Since our codes 

are of block type, they do not have this problem. Also, 

the redundancy of our codes is slightly smaller, since 

convolutional codes have an overhead redundancy. 

8) There are also optimal block codes based on exclusive

OR operations. However, these codes still need a recur

sion at the encoding and during small write operations. 

EVENODD has independent parities, making the com

plexity even smaller. 

An apparent constraint in our construction is that the number 

of information disks has to be a prime number. However, if 

the desired number of disks is not a prime number, one can 

simply assume that there are more disks which have all zeros 

without affecting the encoding and decoding procedures. 

From the perspective of error-correcting codes, we have 

constructed a new code that is capable of correcting either two 

erasures or one error. The application described in this paper 

is in RAID type of architectures, but the code can be also used 

in magnetic recording and in other situations involving large 

symbols and short codewords. 
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